RESLVE: Leveraging User Interest to Improve Entity Disambiguation on Short Text

Elizabeth L. Murnane elm236@cornell.edu
Bernhard Haslhofer bernhard.haslhofer@univie.ac.at
Carl Lagoze clagoze@umich.edu
A Personalized Approach to Entity Resolution

Background
- Task Definitions
- Challenges & Examples
- Attempted Solutions

Approach
- Motivations
- Modeling a Knowledge Context
- Implementation: The RESLVE System

Evaluation
- Experiments
- Results
- Future Work
A Personalized Approach to Entity Resolution

Background
- Task Definitions
- Challenges & Examples
- Attempted Solutions

Approach
- Motivations
- Modeling a Knowledge Context
- Implementation: The RESLVE System

Evaluation
- Experiments
- Results
- Future Work
Social Web

10 million pages per day
Social Web

800 million visitors per month
Social Web

7 billion images
(twice 4 years ago)
Task Definition
Task Definition

Named Entity Recognition (NER)

• Systematically identifying mentions of *entities* (e.g., people, places, concepts, ideas)
Task Definition

Named Entity Recognition (NER)
 • Systematically identifying mentions of *entities* (e.g., people, places, concepts, ideas)

Named Entity Disambiguation (NED)
 Resolving the intended meaning of ambiguous entities from multiple *candidate meanings*
Ambigious Entities

aaahh one more day until finn!!! #cantwait

office holiday party

Beetle
Ambiguous Entities

aaahh one more day until finn!!! #cantwait

office holiday party

Beetle
Ambiguous Entities

aaahh one more day until finn!!! #cantwait

office holiday party

Beetle
Ambiguous Entities

aaahh one more day until finn!!! #cantwait

office holiday party

Beetle
Footage:

office holiday party
Footage:
• Workplace?
Footage:
- Workplace?
- TV Show?
YouTube

office holiday party

Episode 4

Footage:
• Workplace?
• TV Show?
Episode 4

Footage:
- Workplace?
- TV Show?
- US Version?
- UK Version?
Episode 4

office holiday party

Episode 4

office, december 3

Footage:
• Workplace?
• TV Show?
 • US Version?
 • UK Version?
Challenges & Focus
Challenges & Focus

- Short Length
Challenges & Focus

- Short Length
- Sparse Lexical Context
Challenges & Focus

• Short Length
• Sparse Lexical Context
• Noisy
Challenges & Focus

- Short Length
- Sparse Lexical Context
- Noisy
- Highly personal in nature
Challenges & Focus

- Short Length
- Sparse Lexical Context
- Noisy
- Highly personal in nature
Limitations of Extant Research

Tweets severely degrade traditional techniques
Limitations of Extant Research

Tweets severely degrade traditional techniques

- Stanford NER: F_1 drops 90% → 46%
- DBPedia Spotlight & Wikipedia Miner: $P@1 < 40\%$
Limitations of Extant Research

Tweets severely degrade traditional techniques
- Stanford NER: F1 drops 90% \rightarrow 46%
- DBPedia Spotlight & Wikipedia Miner: P@1 < 40%

Recent strategies
Limitations of Extant Research

Tweets severely degrade traditional techniques
 • Stanford NER: F1 drops 90% → 46%
 • DBPedia Spotlight & Wikipedia Miner: P@1 < 40%

Recent strategies
 • Crowd-sourcing
 • Limitation: Dependent on reliable human workers
Limitations of Extant Research

Tweets severely degrade traditional techniques
• Stanford NER: F_1 drops 90% → 46%
• DBPedia Spotlight & Wikipedia Miner: $P@1 < 40$

Recent strategies
• Crowd-sourcing
 • Limitation: Dependent on reliable human workers
• Automated attempts
 • Limitation: Focus on NER not NED
 • Limitation: Generalizability beyond Twitter?
Challenges & Focus

- Short Length
- Sparse Lexical Context
- Noisy
- Highly personal in nature
Challenges & Focus

- Short Length
- Sparse Lexical Context
- Noisy
- Highly personal in nature

- User’s past content on same platform not feasible background corpus
Task Definition

Named Entity Recognition (NER)
- Systematically identifying mentions of entities (e.g., people, places, concepts, ideas)

Named Entity Disambiguation (NED)
Resolving the intended meaning of ambiguous entities from multiple candidate meanings

Our focus: disambiguating any entity detected in users’ text-based utterances on social Web
Exploring a Personalized Solution

- Individual-centric approach to NED
Exploring a Personalized Solution

- Individual-centric approach to NED
- Incorporates external, user-specific semantic data
Exploring a Personalized Solution

- Individual-centric approach to NED
- Incorporates external, user-specific semantic data
- Model personal interests with respect to this information
Exploring a Personalized Solution

- Individual-centric approach to NED
- Incorporates external, user-specific semantic data
- Model personal interests with respect to this information
- Determine user’s likely intended meaning of ambiguous entity based on similarity between potential meanings and interests
Exploring a Personalized Solution

- Individual-centric approach to NED
- Incorporates external, user-specific semantic data
- Model personal interests with respect to this information
- Determine user’s likely intended meaning of ambiguous entity based on similarity between potential meanings and interests

RESLVE
Resolving Entity Sense by LeVeraging Edits
Agenda

Background
- Task Definitions
- Challenges & Examples
- Attempted Solutions

Approach
- Motivations
- Modeling a Knowledge Context
- Implementation: The RESLVE System

Evaluation
- Experiments
- Results
- Future Work
Underlying Assumptions
Underlying Assumptions

• User has core interests
 • User more likely to mention an entity about a topic relevant to personal interests than mention a topic of non-interest
Underlying Assumptions

• User has core interests
 • User more likely to mention an entity about a topic relevant to personal interests than mention a topic of non-interest

• User expresses these interests consistently in content she posts online in multiple communities
Underlying Assumptions

• User has core interests
 • User more likely to mention an entity about a topic relevant to personal interests than mention a topic of non-interest

• User expresses these interests consistently in content she posts online in multiple communities

• Can use a semantic knowledge base to formally represent these topics of interest
Underlying Assumptions

• User has core interests
 • User more likely to mention an entity about a topic relevant to personal interests than mention a topic of non-interest

• User expresses these interests consistently in content she posts online in multiple communities

• Can use a semantic knowledge base to formally represent these topics of interest

 ➢ Bridge user identity between social Web and knowledge base, K
 ➢ Model interests using K’s organizational scheme
 ➢ Rank entity senses according to relevance to interests
Qualitative Analysis: Stable Interests
Qualitative Analysis: Stable Interests

User’s topics of contribution similar across Web:
Qualitative Analysis: Stable Interests

User’s topics of contribution similar across Web:

Same Topics

Ambiguous YouTube post: *office*, december 3

Same user’s recent Wikipedia edit: <item userid="xxxx" user="xxxx" pageid="31841130" title="The Office (U.S. season 8)"/>
Qualitative Analysis: Stable Interests

User’s topics of contribution similar across Web:

Same Topics

Ambiguous YouTube post: *office*, december 3

Same user’s recent Wikipedia edit:

```xml
<item userid="xxxx" user="xxxx" pageid="31841130" title="The Office (U.S. season 8)"/>
```

Same categories

- On average, 52.4% of entities a user mentions in social Web (e.g., “Java”) have at least 1 candidate sense in same parent category of Wikipedia article same user edited (e.g., “Programming language”)
- If extend to just 4 parents up category hierarchy, get all 100%
Theoretical Motivations
Theoretical Motivations

• Online Contribution:
 • Users produce online content about key set of personally-interesting topics because it is fulfilling and seen as having better cost benefit
 • (Harper et al., 2007; Lakhani & von Hippel, 2003; Lerner & Tirole, 2000; Ling et al., 2006; Maslow, 1970)
Theoretical Motivations

- **Online Contribution:**
 - Users produce online content about key set of personally-interesting topics because it is fulfilling and seen as having better cost benefit
 - (Harper et al., 2007; Lakhani & von Hippel, 2003; Lerner & Tirole, 2000; Ling et al., 2006; Maslow, 1970)

- **Modeling Interests:**
 - Effective to model these topic interests from lexical features of these text-based contributions
 - (Chen et al., 2010; Cosley et al., 2007; Pennacchiotti & Popescu, 2011)
Modeling a Knowledge Context

- Knowledge base, K
- $K=(N,E)$
- 2 node types:
 - Categories
 - Topics
The Knowledge Graph
The Knowledge Graph

- **Category** nodes: $N_{\text{Category}} \subset N$
The Knowledge Graph

- **Category** nodes: $N_{Category} \subset N$
The Knowledge Graph

- **Category** nodes: $N_{\text{Category}} \subset N$
The Knowledge Graph

- **Category** nodes: $N_{\text{Category}} \subset N$
The Knowledge Graph

- **Category** nodes: $N_{\text{Category}} \subset N$
 - Unique identifier
The Knowledge Graph

- **Category** nodes: $N_{\text{Category}} \subset N$
 - Unique identifier
 - Semantic relationships with other nodes
The Knowledge Graph

- **Category** nodes: $N_{\text{Category}} \subset N$
 - Unique identifier
 - Semantic relationships with other nodes

- **Topic** nodes: $N_{\text{Topic}} \subset N$
The Knowledge Graph

- **Category** nodes: $N_{\text{Category}} \subset N$
 - Unique identifier
 - Semantic relationships with other nodes

- **Topic** nodes: $N_{\text{Topic}} \subset N$
The Knowledge Graph

- **Category** nodes: $N_{\text{Category}} \subset N$
 - Unique identifier
 - Semantic relationships with other nodes

- **Topic** nodes: $N_{\text{Topic}} \subset N$
The Knowledge Graph

- **Category** nodes: $N_{\text{Category}} \subset N$
 - Unique identifier
 - Semantic relationships with other nodes

- **Topic** nodes: $N_{\text{Topic}} \subset N$
 - Unique identifier
The Knowledge Graph

- **Category** nodes: $N_{\text{Category}} \subseteq N$
 - Unique identifier
 - Semantic relationships with other nodes

- **Topic** nodes: $N_{\text{Topic}} \subseteq N$
 - Unique identifier
The Knowledge Graph

- **Category** nodes: $N_{\text{Category}} \subseteq N$
 - Unique identifier
 - Semantic relationships with other nodes

- **Topic** nodes: $N_{\text{Topic}} \subseteq N$
 - Unique identifier
The Knowledge Graph

- **Category** nodes: $N_{\text{Category}} \subset N$
 - Unique identifier
 - Semantic relationships with other nodes

- **Topic** nodes: $N_{\text{Topic}} \subset N$
 - Unique identifier
 - Belongs to one or more categories
The Knowledge Graph

- **Category** nodes: $N_{Category} \subset N$
 - Unique identifier
 - Semantic relationships with other nodes

- **Topic** nodes: $N_{Topic} \subset N$
 - Unique identifier
 - Belongs to one or more categories
The Knowledge Graph

• **Category** nodes: $N_{\text{Category}} \subseteq N$
 - Unique identifier
 - Semantic relationships with other nodes

• **Topic** nodes: $N_{\text{Topic}} \subseteq N$
 - Unique identifier
 - Belongs to one or more categories
The Knowledge Graph

- **Category** nodes: $N_{\text{Category}} \subseteq N$
 - Unique identifier
 - Semantic relationships with other nodes

- **Topic** nodes: $N_{\text{Topic}} \subseteq N$
 - Unique identifier
 - Belongs to one or more categories
The Knowledge Graph

- **Category** nodes: $N_{\text{Category}} \subset N$
 - Unique identifier
 - Semantic relationships with other nodes

- **Topic** nodes: $N_{\text{Topic}} \subset N$
 - Unique identifier
 - Belongs to one or more categories
 - Associated with text-based description
User Interest Model
User Interest Model

- Editing a description signals interest in associated topic
User Interest Model

• Editing a description signals interest in associated topic
User Interest Model

- Editing a description signals interest in associated topic
User Interest Model

- Editing a description signals interest in associated topic
- Topic nodes: all topics user edited description of
User Interest Model

- Editing a description signals interest in associated topic
- Topic nodes: all topics user edited description of
User Interest Model

- Editing a description signals interest in associated topic
- Topic nodes: all topics user edited description of
User Interest Model

- Editing a *description* signals interest in associated topic
- *Topic* nodes: all topics user edited description of
User Interest Model

- Editing a description signals interest in associated topic
- **Topic** nodes: all topics user edited description of
- **Category** nodes: categories reachable in knowledge graph from those topics
User Interest Model

- Editing a description signals interest in associated topic
- Topic nodes: all topics user edited description of
- Category nodes: categories reachable in knowledge graph from those topics
User Interest Model

- Editing a **description** signals interest in associated topic
- **Topic** nodes: all topics user edited description of
- **Category** nodes: categories reachable in knowledge graph from those topics
User Interest Model

- Editing a description signals interest in associated topic
- Topic nodes: all topics user edited description of
- Category nodes: categories reachable in knowledge graph from those topics
- Edge weight = inverse of shortest path length
User Interest Model

• Editing a description signals interest in associated topic
• Topic nodes: all topics user edited description of
• Category nodes: categories reachable in knowledge graph from those topics
• Edge weight = inverse of shortest path length
User Interest Model

- Editing a description signals interest in associated topic
- Topic nodes: all topics user edited description of
- Category nodes: categories reachable in knowledge graph from those topics
- Edge weight = inverse of shortest path length

\[
\begin{array}{c|cccc}
 & c1 & c2 & c3 & c4 \\
\hline
t1 & \frac{1}{2} & 1 & \frac{1}{3} & 0 \\
t2 & \frac{1}{2} & 1 & \frac{1}{2} & 1 \\
t3 & 0 & 0 & \frac{1}{2} & 1 \\
\end{array}
\]
User Interest Model

• Editing a description signals interest in associated topic
• Topic nodes: all topics user edited description of
• Category nodes: categories reachable in knowledge graph from those topics
• Edge weight = inverse of shortest path length

- Same representation for candidates

<table>
<thead>
<tr>
<th></th>
<th>c1</th>
<th>c2</th>
<th>c3</th>
<th>c4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>(\frac{1}{2})</td>
<td>1</td>
<td>(\frac{1}{3})</td>
<td>0</td>
</tr>
<tr>
<td>t2</td>
<td>(\frac{1}{2})</td>
<td>1</td>
<td>(\frac{1}{2})</td>
<td>1</td>
</tr>
<tr>
<td>t3</td>
<td>0</td>
<td>0</td>
<td>(\frac{1}{2})</td>
<td>1</td>
</tr>
</tbody>
</table>
Instantiating the Model

- Wikipedia
- DBPedia
- Freebase
Instantiating the Model

• Wikipedia
• DBPedia
• Freebase
Instantiating on Wikipedia

- Articles, categories effectively represent topics (Syed, 2008)
Instantiating on Wikipedia

- Articles, categories effectively represent topics (Syed, 2008)
- Good coverage of even rare entity concepts (Zesch, 2007)
Instantiating on Wikipedia

• Articles, categories effectively represent topics (Syed, 2008)
• Good coverage of even rare entity concepts (Zesch, 2007)
• Compatible with NER toolkits
 • DBPedia Spotlight, Wikipedia Miner
Instantiating on Wikipedia

- Articles, categories effectively represent topics (Syed, 2008)
- Good coverage of even rare entity concepts (Zesch, 2007)
- Compatible with NER toolkits
 - DBPedia Spotlight, Wikipedia Miner
- Article editing behavior effective for modeling interests (Cosley, 2007; Lieberman & Lin, 2009; Wattenberg et al., 2007)
Article editing signals topic interest

Editing behaviors indicative of user interest:

<table>
<thead>
<tr>
<th>Editing Behavior</th>
<th>Intuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of times user edits article</td>
<td>Repeatedly editing an article implies greater commitment and interest</td>
</tr>
<tr>
<td>Article’s overall edit activity and total number of editors</td>
<td>Generally popular and actively edited articles are less discriminative of individual interest and personal relevance</td>
</tr>
<tr>
<td>Time period user edits article</td>
<td>Long-term interests are stronger than fleeting, short-term interests</td>
</tr>
<tr>
<td>Type of edit according to revision tag</td>
<td>Trivial edits such as vandalism reversion or typo correction less indicative of interest than thoughtful, effortful edits</td>
</tr>
<tr>
<td>Complexity, completeness, informativeness of edit according to metrics of</td>
<td>Type, substantiveness, and overall quality of care user gives to an edit indicates concern and interest in topic</td>
</tr>
<tr>
<td>Information Quality</td>
<td></td>
</tr>
</tbody>
</table>
Article editing signals topic interest

Editing behaviors indicative of user interest:

<table>
<thead>
<tr>
<th>Editing Behavior</th>
<th>Intuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of times user edits article</td>
<td>Repeatedly editing an article implies greater commitment and interest</td>
</tr>
<tr>
<td>Article’s overall edit activity and total number of editors</td>
<td>Generally popular and actively edited articles are less discriminative of individual interest and personal relevance</td>
</tr>
<tr>
<td>Time period user edits article</td>
<td>Long-term interests are stronger than fleeting, short-term interests</td>
</tr>
<tr>
<td>Type of edit according to revision tag</td>
<td>Trivial edits such as vandalism reversion or typo correction less indicative of interest than thoughtful, effortful edits</td>
</tr>
<tr>
<td>Complexity, completeness, informativeness of edit according to metrics of Information Quality</td>
<td>Type, substantiveness, and overall quality of care user gives to an edit indicates concern and interest in topic</td>
</tr>
</tbody>
</table>
Less Meaningful Edits

<table>
<thead>
<tr>
<th>Ignore Irrelevant Edits</th>
<th>Clean Article Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Articles with less than 100 non-stopwords</td>
<td>Stem, tokenize, lowercase; remove stopwords, punctuation, non-printable characters.</td>
</tr>
<tr>
<td>Trivial edits, i.e., typo correction, vandalism reversion.</td>
<td>Parse Wiki Markup to remove article maintenance information</td>
</tr>
<tr>
<td>List pages merely containing widely diverse sets of topics that are all not necessarily indicative of the piece personally relevant to the user</td>
<td></td>
</tr>
</tbody>
</table>
Implementation: The RESLVE System

RESLVE (Resolving Entity Sense by Leveraging Edits) addresses NED by:

1. **BRIDGING USER IDENTITY**
 - User utterances
 - Username
 - Unstructured short texts

2. **MODELING USER INTEREST**
 - User contributed structured documents
 - Detected entities & candidate meanings ("m")

3. **RANKING CANDIDATES BY PERSONAL RELEVANCE**
 - DBPedia Spotlight
 - Top ranked personally-relevant candidates
 - User interest model
 - Detected entities & candidate meanings ("m")
Implementation: The RESLVE System

RESLVE (Resolving Entity Sense by Leveraging Edits) addresses NED by:

1. Connecting social Web + Wikipedia editor identity
Implementation: The RESLVE System

RESLVE (Resolving Entity Sense by Leveraging Edits) addresses NED by:

I. Connecting social Web + Wikipedia editor identity
II. Modeling topics of interests using article edits
Implementation: The RESLVE System

RESLVE (Resolving Entity Sense by LeVeraging Edits) addresses NED by:

I. Connecting social Web + Wikipedia editor identity
II. Modeling topics of interests using article edits
III. Ranking entity candidates by personal relevance
Implementation: The RESLVE System

RESLVE (Resolving Entity Sense by Leveraging Edits) addresses NED by:

I. Connecting social Web + Wikipedia editor identity
II. Modeling topics of interests using article edits
III. Ranking entity candidates by personal relevance
Phase 1: Bridging Web Identities

- Connect identity of social media user with Wikipedia editor
Phase 1: Bridging Web Identities

- Connect identity of social media user with Wikipedia editor

- Simple string matching
 - Iofciu, 2011; Perito, 2011
Phase 2: Representing Users and Entities

- Models user’s topics of interest using bridged Wiki account’s editing-history
- Compares similarity of those topics to topic associated with candidate sense
Phase 2: Representing Users and Entities

- Models user’s topics of interest using bridged Wiki account’s editing-history
- Compares similarity of those topics to topic associated with candidate sense
- Content-based & knowledge-graph based similarity
Phase 2: Representing Users and Entities

- Models user’s topics of interest using bridged Wiki account’s editing-history
- Compares similarity of those topics to topic associated with candidate sense
- Content-based & knowledge-graph based similarity
- Weighted vectors used to represent user and candidate sense
Content-based similarity

• Bag-Of-Words
 • Titles of articles user edited
 • Candidate’s article title
 • Words from those articles’ pages & category titles

• TF-IDF weighted
Content-based similarity

• Bag-Of-Words
 • Titles of articles user edited
 • Candidate’s article title
 • Words from those articles’ pages & category titles
• TF-IDF weighted

• User, u: $V_{content, u}$
• Candidate meaning, m: $V_{content, m}$

$$sim_{content}(u, m) = cossim(V_{content, u}, V_{content, m})$$
Knowledge-context based similarity

- Vectors of articles’ category IDs
- Weight is distance between the article (topic) and category in knowledge graph
- E.g., “American Television Series” > “Broadcasting”
Knowledge-context based similarity

- Vectors of articles’ category IDs
- Weight is distance between the article (topic) and category in knowledge graph
- E.g., “American Television Series” > “Broadcasting”

- User, $u : V_{\text{category}, u}$
- Candidate meaning, $m: V_{\text{category}, m}$

$$sim_{\text{category}}(u, m) = \text{cossim}(V_{\text{category}, u}, V_{\text{category}, m})$$
Phase 3: Ranking by Personal Relevance

Output highest scoring candidate as intended meaning by measuring:

\[\text{sim}(u,m) = \alpha \times \text{sim}_{\text{content}}(u,m) + (1-\alpha) \times \text{sim}_{\text{category}}(u,m) \]
Pre-processing & preparation modules
Pre-processing & preparation modules

Tweets:
- Normalize @name to MENTION
- Remove RT (retweet) tag
- Remove leading “#” but keep hash tag’s target concept if English word

YouTube, Flickr:
- Bypass auto-generated file names like IMG_336.jpg or MOV_02.AVI
- Remove file type suffix, e.g., “.png”, but leave file name if an English word
- Ignore auto-generated tags, e.g., “hidden:filter=Boost” machine-tag on Flickr

All utterances:
- Remove URLs
- Remove non-English
Pre-processing & preparation modules

Pre-processor

Tweets:
- Normalize @name to MENTION
- Remove RT (retweet) tag
- Remove leading “#” but keep hash tag’s target concept if English word

YouTube, Flickr:
- Bypass auto-generated file names like IMG_336.jpg or MOV_02.AVI
- Remove file type suffix, e.g., “.png”, but leave file name if an English word
- Ignore auto-generated tags, e.g., “hidden:filter=Boost” machine-tag on Flickr

All utterances:
- Remove URLs
- Remove non-English
Pre-processing & preparation modules

Tweets:
- Normalize @name to MENTION
- Remove RT (retweet) tag
- Remove leading “#” but keep hash tag’s target concept if English word

YouTube, Flickr:
- Bypass auto-generated file names like IMG_336.jpg or MOV_02.AVI
- Remove file type suffix, e.g., “.png”, but leave file name if an English word
- Ignore auto-generated tags, e.g., “hidden:filter=Boost” machine-tag on Flickr

All utterances:
- Remove URLs
- Remove non-English

Language based:
- Non-English
- Single characters and parse errors

Entity based:
- Non-entities, i.e., detected terms that are not a Noun class (NN, NNS, NNP, NP) or Named Entity class (e.g., location, person, organization) according to named entity corpora IEER, ACE, or CoNLL
- Non-ambiguous entities (0 or 1 meaning)
Agenda

Background
- Task Definitions
- Challenges & Examples
- Attempted Solutions

Approach
- Motivations
- Modeling a Knowledge Context
- Implementation: The RESLVE System

Evaluation
- Experiments
- Results
- Future Work
Experiment

Data Sample
- Twitter: tweets
- YouTube: video titles, descriptions
- Flickr: photo tags, titles, descriptions
Experiment

Data Sample

- Twitter: tweets
- YouTube: video titles, descriptions
- Flickr: photo tags, titles, descriptions
- String-matched usernames of posters to Wikipedia accounts
- Mechanical Turk used to confirm accounts were same person
Experiment

Data Sample

- Twitter: tweets
- YouTube: video titles, descriptions
- Flickr: photo tags, titles, descriptions
- String-matched usernames of posters to Wikipedia accounts
- Mechanical Turk used to confirm accounts were same person

For confirmed matches:

- Collected 100 most recent utterances
- ID, title, page content, categories of edited articles
Experiment

Labeling correct entity meaning

• 1545 valid ambiguous entities
• Mechanical Turk Categorization Masters
• Averaged observed agreement across all coders and items = 0.866
• Average Fleiss Kappa = 0.803
• 918 unanimously labeled ambiguous entities
Dataset Characteristics
Text Length

Longest utterances still shorter than even shortest texts from NER task corpora like Reuters-21578, Brown-Corpus
High Ambiguity

- NER services have low confidence
High Ambiguity

- NER services have low confidence

- Many potential candidates (2 to 163, avg. 5-6, median 4)
High Ambiguity

- 91% of utterances contain at least 1 ambiguous entity
- 2/3 of entities detected are ambiguous
- Almost no entities without at least 2 senses to disambiguate

<table>
<thead>
<tr>
<th></th>
<th>Twitter</th>
<th>YouTube</th>
<th>Flickr</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>Tweet</td>
<td>Title</td>
<td>Desc</td>
</tr>
<tr>
<td>93%</td>
<td>88%</td>
<td>98%</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>64%</td>
<td>55%</td>
<td>46%</td>
</tr>
<tr>
<td></td>
<td>Title</td>
<td>Desc</td>
<td>Tag</td>
</tr>
<tr>
<td>92%</td>
<td>97%</td>
<td>77%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>66%</td>
<td>44%</td>
<td>73%</td>
</tr>
</tbody>
</table>
Performance

Metric

- Precision at rank 1 \((P@1)\)
Performance

Metric
• Precision at rank 1 (P@1)

Methods of comparison
• Human annotated gold standard
• RC: Randomly sorted candidates
• PF: Prior frequency
• RU: RESLVE given a random Wikipedia user's interest model
• DS: DBPedia Spotlight
• WM: Wikipedia Miner
<table>
<thead>
<tr>
<th></th>
<th>Flickr</th>
<th>Twitter</th>
<th>YouTube</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESLVE</td>
<td>0.63</td>
<td>0.76</td>
<td>0.84</td>
</tr>
<tr>
<td>RC</td>
<td>0.21</td>
<td>0.32</td>
<td>0.31</td>
</tr>
<tr>
<td>PF</td>
<td>0.74</td>
<td>0.69</td>
<td>0.66</td>
</tr>
<tr>
<td>RU</td>
<td>0.51</td>
<td>0.71</td>
<td>0.78</td>
</tr>
<tr>
<td>WM</td>
<td>0.78 ✗</td>
<td>0.58</td>
<td>0.80</td>
</tr>
<tr>
<td>DS</td>
<td>0.53</td>
<td>0.67</td>
<td>0.63</td>
</tr>
</tbody>
</table>
Discussion

- Best performance on YouTube texts (longest) due to content-based sim
Discussion

- Best performance on YouTube texts (longest) due to content-based sim
 ![YouTube logo]

- Outperforms on more personal text (e.g., tweets)
 ![Twitter logo]

- Random user model less effective
Discussion

- Best performance on YouTube texts (longest) due to content-based sim
- Outperforms on more personal text (e.g., tweets)
- Random user model less effective

- Less effective on impersonal text (e.g., photo geo-tags)
 - High prior frequency so standard methods suffice
 - Personally-unfamiliar topics so not likely to make Wiki edits about them
 - Stable interests assumption breaks down here
Error Cases

- Automated messages
 - “I uploaded a video on @youtube” → 1945 European Films
Error Cases

• Automated messages
 • “I uploaded a video on @youtube” → 1945 European Films

• Entities not in knowledge base
 • “Peter on the dock”
Error Cases

• Automated messages
 • “I uploaded a video on @youtube” → 1945 European Films

• Entities not in knowledge base
 • “Peter on the dock”

• Less prolific contributors
Future Work
Future Work

- Computability
 - Wikipedia has 5M articles, 700K categories → Vector pruning
Future Work

• Computability
 • Wikipedia has 5M articles, 700K categories ➔ Vector pruning

• User identity & modeling interests
Bridging User Accounts

<table>
<thead>
<tr>
<th>Platform</th>
<th># Usernames</th>
<th>Exist on Wikipedia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twitter</td>
<td>479</td>
<td>46.1%</td>
</tr>
<tr>
<td>YouTube</td>
<td>454</td>
<td>19.6%</td>
</tr>
<tr>
<td>Flickr</td>
<td>226</td>
<td>21.7%</td>
</tr>
</tbody>
</table>
Bridging User Accounts

<table>
<thead>
<tr>
<th>Platform</th>
<th># Usernames</th>
<th>Exist on Wikipedia</th>
<th>Matches are same person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twitter</td>
<td>479</td>
<td>46.1%</td>
<td>47%</td>
</tr>
<tr>
<td>YouTube</td>
<td>454</td>
<td>19.6%</td>
<td>48%</td>
</tr>
<tr>
<td>Flickr</td>
<td>226</td>
<td>21.7%</td>
<td>71%</td>
</tr>
</tbody>
</table>
Bridging User Accounts
Bridging User Accounts

a. True negative (no identity in knowledge base)
Bridging User Accounts

a. True negative (no identity in knowledge base)

b. False negative (same person, different usernames)
Bridging User Accounts

a. True negative (no identity in knowledge base)

b. False negative (same person, different usernames)

c. False positives (string match, but different people)
Bridging User Accounts

a. True negative (no identity in knowledge base)
 - Collaborative filtering techniques to approximate user's own interests with contributions of social connections

b. False negative (same person, different usernames)

c. False positives (string match, but different people)
Bridging User Accounts

a. True negative (no identity in knowledge base)
 ✓ Collaborative filtering techniques to approximate user's own interests with contributions of social connections

b. False negative (same person, different usernames)
 ✓ Consider more profile attributes than username

c. False positives (string match, but different people)
Bridging User Accounts

a. True negative (no identity in knowledge base)
 ✔ Collaborative filtering techniques to approximate user's own interests with contributions of social connections

b. False negative (same person, different usernames)
 ✔ Consider more profile attributes than username

c. False positives (string match, but different people)
Bridging User Accounts

a. True negative (no identity in knowledge base)
 - Collaborative filtering techniques to approximate user's own interests with contributions of social connections

b. False negative (same person, different usernames)
 - Consider more profile attributes than username

 ![Green Checkmark]

c. False positives (string match, but different people)

 - Use other knowledge base besides Wikipedia
Bridging User Accounts

a. True negative (no identity in knowledge base)
 - Collaborative filtering techniques to approximate user's own interests with contributions of social connections

b. False negative (same person, different usernames)
 - Consider more profile attributes than username

 ![Green check mark]

b. False positives (string match, but different people)

• Use other knowledge base besides Wikipedia
• Model user interest from additional kinds of participation (e.g., page visits, bookmarking favoriting)
Bridging User Accounts

a. True negative (no identity in knowledge base)
 - Collaborative filtering techniques to approximate user's own interests with contributions of social connections

b. False negative (same person, different usernames)
 - Consider more profile attributes than username

c. False positives (string match, but different people)
 - Use other knowledge base besides Wikipedia
 - Model user interest from additional kinds of participation (e.g., page visits, bookmarking favoriting)
 - Interest drift & time-frame of postings
Summary & Conclusion

• Social Web texts: *short & highly personal*

• User posts about same topics across communities (but not always)

• Models *user interest as personal context* with respect to a knowledge base’s categorical organization scheme

• Ranking technique compares entity’s potential meanings to user’s interests to determine *intended meaning*
 • Language and context independent

• Promising performance *gains*

• Going forward: such a strategy becomes increasingly necessary, feasible, and effective
Thank You!

Elizabeth L. Murnane
elm236@cornell.edu

Bernhard Haslhofer
bernhard.haslhofer@univie.ac.at

Carl Lagoze
clagoze@umich.edu

Acknowledgements

• Claire Cardie, Dan Cosley, Lillian Lee, Sean Allen, Wenceslaus Lee
• National Science Foundation Graduate Research Fellowship under Grant No. DGE 1144153
• Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme (PIOF-GA-2009-252206).

• Questions?