MOBILE MANIFESTATIONS OF ALERTNESS:

Connecting biological rhythms with patterns of smartphone app use

Elizabeth Murnane, Saeed Abdullah, Mark Matthews, Matthew Kay, Julie Kientz, Tanzeem Choudhury, Geri Gay, Dan Cosley
Research Goals

• **Describing** phone use
 (E.g., Böhmer et al., 2011; Brown et al., 2014; Falaki et al., 2010; Ferreira et al., 2014; Hang et al., 2013; Jones et al., 2015; Shin et al., 2012; Xu et al., 2013; Yan et al., 2012)

• **Deriving signals for modeling** latent traits or phenomena
 (E.g., Bai et al., 2012; Huang et al., 2015; Mark et al., 2014; Min et al., 2014; Oulasvirta et al., 2012; Pielot et al., 2014; Pielot et al., 2015)

• **Interpreting** usage patterns
 (E.g., Do et al., 2011; Lee et al., 2011; Rahmati et al., 2012)
Research Goals

• Describing phone use
 (E.g., Böhmer et al., 2011; Brown et al., 2014; Falaki et al., 2010; Ferreira et al., 2014; Hang et al., 2013; Jones et al., 2015; Shin et al., 2012; Xu et al., 2013; Yan et al., 2012)

• Deriving signals for **modeling** latent traits or phenomena
 (E.g., Bai et al., 2012; Huang et al., 2015; Mark et al., 2014; Min et al., 2014; Oulasvirta et al., 2012; Pielot et al., 2014; Pielot et al., 2015)

• Interpreting usage patterns
 (E.g., Do et al., 2011; Lee et al., 2011; Rahmati et al., 2012)
Research Goals

• Describing phone use
 (E.g., Böhmer et al., 2011; Brown et al., 2014; Falaki et al., 2010; Ferreira et al., 2014; Hang et al., 2013; Jones et al., 2015; Shin et al., 2012; Xu et al., 2013; Yan et al., 2012)

• Deriving signals for **modeling** latent traits or phenomena
 (E.g., Bai et al., 2012; Huang et al., 2015; Mark et al., 2014; Min et al., 2014; Oulasvirta et al., 2012; Pielot et al., 2014; Pielot et al., 2015)

• **Interpreting** usage patterns
 (E.g., Do et al., 2011; Lee et al., 2011; Rahmati et al., 2012)
Research Goals

• Describing phone use
 (E.g., Böhmer et al., 2011; Brown et al., 2014; Falaki et al., 2010; Ferreira et al., 2014; Hang et al., 2013; Jones et al., 2015; Shin et al., 2012; Xu et al., 2013; Yan et al., 2012)

• Deriving signals for modeling latent traits or phenomena
 (E.g., Bai et al., 2012; Huang et al., 2015; Mark et al., 2014; Min et al., 2014; Oulasvirta et al., 2012; Pielot et al., 2014; Pielot et al., 2015)

• Interpreting usage patterns
 (E.g., Do et al., 2011; Lee et al., 2011; Rahmati et al., 2012)

* from a biological perspective *
Research Goals

• **Interpreting** usage patterns from a biological perspective

• Identify signals informative for passive alertness sensing

• Enable the design of novel circadian-aware technologies
Research Goals

• Interpreting usage patterns from a biological perspective

• Identify signals informative for **passive alertness sensing**

• Enable the design of novel circadian-aware technologies
• Interpreting usage patterns from a biological perspective

• Identify signals informative for passive alertness sensing

• Enable the design of novel circadian-aware technologies
Circadian Rhythms: biological processes following a roughly 24-hour period
Almost every neurobehavioral process displays circadian rhythms.
Circadian Rhythms: biological processes following a roughly 24-hour period

Almost every neurobehavorial process displays circadian rhythms
Motivation

Method

Findings
Chronotype
Chronotype:
A reflection of a person’s underlying circadian rhythms, quantified using a measure of sleep-midpoint
Chronotype:

A reflection of a person’s underlying circadian rhythms, quantified using a measure of sleep-midpoint.
Chronotype:
A reflection of a person’s underlying circadian rhythms, quantified using a measure of sleep-midpoint
Method
Study

- 20 participants
- 40 days

Data
- Phone usage logs
- Alertness assessment EMA
- Daily sleep diary
- Interviews
Alertness Assessment

• Median response time from a PVT session

• Establish individual baseline across all session

• Alertness is departure from baseline
App Logging

- AWARE (http://www.awareframework.com/)

<table>
<thead>
<tr>
<th>Category</th>
<th>Example Apps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Browser</td>
<td>Chrome, Firefox</td>
</tr>
<tr>
<td>Communication</td>
<td>Facebook Messenger, GroupMe, Phone, SMS</td>
</tr>
<tr>
<td>Email</td>
<td>Gmail, Inbox</td>
</tr>
<tr>
<td>Entertainment</td>
<td>Clash of Clans, Ebay, Netflix, YouTube</td>
</tr>
<tr>
<td>Productivity</td>
<td>Evernote, OfficeSuite, To Do Reminder, Piazza</td>
</tr>
<tr>
<td>Social Media</td>
<td>Facebook, Twitter, Yik Yak</td>
</tr>
<tr>
<td>Time & Weather</td>
<td>Clock, Timely, Weather Channel</td>
</tr>
</tbody>
</table>
RESULTS
Findings

• **Daily patterns** in app use replicate prior findings

• App use also shows **weekly patterns**

• Different **chronotypes** have different usage patterns

• App use patterns correlate with **alertness patterns**

• App use features can distinguish periods of **low vs. high alertness**

• App use reflects **sleep** duration, interruptions, and subsequent fatigue
Findings

• **Daily patterns** in app use replicate prior findings

• App use also shows **weekly patterns**

• Different **chronotypes** have different usage patterns

• App use patterns correlate with **alertness patterns**

• App use features can distinguish periods of **low vs. high alertness**

• App use reflects **sleep** duration, interruptions, and subsequent fatigue
Findings

- **Daily patterns** in app use replicate prior findings
- App use also shows **weekly patterns**
- Different **chronotypes** have different usage patterns
- App use patterns correlate with **alertness patterns**
- App use features can distinguish periods of **low vs. high alertness**
- App use reflects **sleep** duration, interruptions, and subsequent fatigue
Findings

• **Daily patterns** in app use replicate prior findings

• App use also shows **weekly patterns**

• Different **chronotypes** have different usage patterns

• App use patterns correlate with **alertness patterns**

• App use features can distinguish periods of **low vs. high alertness**

• App use reflects **sleep** duration, interruptions, and subsequent fatigue
Findings

• **Daily patterns** in app use replicate prior findings

• App use also shows **weekly patterns**

• Different **chronotypes** have different usage patterns

• App use patterns correlate with **alertness patterns**

• App use features can distinguish periods of **low vs. high alertness**

• App use reflects **sleep** duration, interruptions, and subsequent fatigue
Findings

- **Daily patterns** in app use replicate prior findings
- App use also shows weekly patterns
- Different *chronotypes* have different usage patterns
- App use patterns correlate with *alertness patterns*
- App use features can distinguish periods of low vs. high alertness
- App use reflects sleep duration, interruptions, and subsequent fatigue
Findings

Daily patterns in app use replicate prior findings

- App use also shows weekly patterns
- Different chronotypes have different usage patterns
- App use patterns correlate with alertness patterns
- App use features can distinguish periods of low vs. high alertness
- App use reflects sleep duration, interruptions, and subsequent fatigue
Daily Rhythms in App Use

Motivation

Method

Results
Daily Rhythms in App Use

![Graph showing application usage events over time for various categories such as Productivity, Entertainment, Communication, Social Media, Email, Browsing, Time & Weather. The x-axis represents time (0-23 hours), and the y-axis represents application usage events (0-2500).]
Daily Rhythms in App Use

Motivation

Method

Results
Daily Rhythms in App Use
Daily Rhythms in App Use

Motivation

Method

Results
Findings

• Daily patterns in app use replicate prior findings

• App use also shows weekly patterns

• Different chronotypes have different usage patterns

• App use patterns correlate with alertness patterns

• App use features can distinguish periods of low vs. high alertness

• App use reflects sleep duration, interruptions, and subsequent fatigue
Findings

• Daily patterns in app use replicate prior findings
• App use also shows weekly patterns

Different chronotypes have different usage patterns

• App use patterns correlate with alertness patterns
• App use features can distinguish periods of low vs. high alertness
• App use reflects sleep duration, interruptions, and subsequent fatigue
Usage Differences by Chronotype

- Early-Late Usage Change (%)

- Morning (6AM-12PM)
- Afternoon (12PM-6PM)
- Evening (6PM-12AM)
- Night (12AM-6AM)

- Green: Productivity
- Orange: Entertainment
Usage Differences by Chronotype

- **Morning (6AM-12PM)**: Productivity usage change about 20%
- **Afternoon (12PM-6PM)**: Productivity usage change about 0%
- **Evening (6PM-12AM)**: Productivity usage change about -40%
- **Night (12AM-6AM)**: Productivity usage change about -20%

- **Productivity**
- **Entertainment**

Results
Usage Differences by Chronotype

- **Morning (6AM-12PM):** 25% increase in Productivity
- **Afternoon (12PM-6PM):** 20% increase in Entertainment
- **Evening (6PM-12AM):** 40% decrease in Productivity, 60% increase in Entertainment
- **Night (12AM-6AM):** 10% increase in Productivity, 10% decrease in Entertainment
Usage Differences by Chronotype

- Early-Late Usage Change (%)
 - Morning (6AM-12PM)
 - Afternoon (12PM-6PM)
 - Evening (6PM-12AM)
 - Night (12AM-6AM)

- Productivity
- Entertainment

- Motivation
- Method
- Results
Usage Differences by Chronotype

![Bar chart showing usage differences by chronotype. The X-axis represents different time periods: Morning (6AM-12PM), Afternoon (12PM-6PM), Evening (6PM-12AM), and Night (12AM-6AM). The Y-axis represents Early-Late Usage Change (%). The chart indicates a 19% difference in activity levels between early and late periods.]

- **Morning (6AM-12PM)**: Productivity and Entertainment levels are relatively low.
- **Afternoon (12PM-6PM)**: Productivity levels are slightly higher than Entertainment.
- **Evening (6PM-12AM)**: A significant increase in both Productivity and Entertainment, with Entertainment being more pronounced.
- **Night (12AM-6AM)**: A slight decrease in Productivity, while Entertainment shows a moderate increase.

Results

- **Entertainment** shows a notable increase in the evening, indicating a peak in usage.
- **Productivity** experiences a peak in the evening as well, suggesting a balance between work and leisure activities.

Motivation

- Understanding personal chronotype can help in optimizing daily routines and managing activities accordingly.

Method

- The study involves tracking usage patterns across different times of the day to analyze the peak usage times for both productivity and entertainment activities.
Usage Differences by Chronotype

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Productivity Change</th>
<th>Entertainment Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morning (6AM-12PM)</td>
<td>-19%</td>
<td>29%</td>
</tr>
<tr>
<td>Afternoon (12PM-6PM)</td>
<td>-20%</td>
<td>29%</td>
</tr>
<tr>
<td>Evening (6PM-12AM)</td>
<td>-80%</td>
<td>70%</td>
</tr>
<tr>
<td>Night (12AM-6AM)</td>
<td>-20%</td>
<td>20%</td>
</tr>
</tbody>
</table>
Usage Differences by Chronotype

![Bar chart showing usage differences by chronotype]

- Productivity
- Entertainment

- Morning (6AM-12PM): 19%
- Afternoon (12PM-6PM): 29%
- Evening (6PM-12AM):
- Night (12AM-6AM):

Motivation
Method
Results
Usage Differences by Chronotype

Early-Late Usage Change (%)

Morning (6AM-12PM) Afternoon (12PM-6PM) Evening (6PM-12AM) Night (12AM-6AM)

Productivity

Entertainment

Motivation Method Results
Usage Differences by Chronotype

<table>
<thead>
<tr>
<th>Time Slot</th>
<th>Productivity</th>
<th>Entertainment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morning (6AM-12PM)</td>
<td>-20%</td>
<td>-15%</td>
</tr>
<tr>
<td>Afternoon (12PM-6PM)</td>
<td>20%</td>
<td>15%</td>
</tr>
<tr>
<td>Evening (6PM-12AM)</td>
<td>-40%</td>
<td>80%</td>
</tr>
<tr>
<td>Night (12AM-6AM)</td>
<td>10%</td>
<td>20%</td>
</tr>
</tbody>
</table>

Motivation

Method

Results
Usage Differences by Chronotype

![Bar chart showing usage differences by chronotype]

- **Early-Late Usage Change (%)**
 - **Morning (6AM-12PM)**: 15%
 - **Afternoon (12PM-6PM)**: 50%
 - **Evening (6PM-12AM)**: 15%
 - **Night (12AM-6AM)**: 50%

Legend:
- Green: Productivity
- Orange: Entertainment

Motivation

Method

Results
Usage Differences by Chronotype

![Bar chart showing usage differences by chronotype. The chart compares productivity and entertainment usage across different time periods: Morning (6AM-12PM), Afternoon (12PM-6PM), Evening (6PM-12AM), and Night (12AM-6AM). The chart highlights an increase in entertainment usage in the Evening and Night periods, with a decrease in the Morning and Afternoon periods.]

- **Morning (6AM-12PM)**: Productivity increase of 15%, Entertainment decrease of 5%
- **Afternoon (12PM-6PM)**: Productivity increase of 50%, Entertainment decrease of 20%
- **Evening (6PM-12AM)**: Productivity increase of 15%, Entertainment increase of 50%
- **Night (12AM-6AM)**: Productivity decrease of 20%, Entertainment increase of 30%

Motivation

Method

Results
Usage Differences by Chronotype

- **Morning (6AM-12PM)**: 0%
- **Afternoon (12PM-6PM)**: -20%
- **Evening (6PM-12AM)**: 22%
- **Night (12AM-6AM)**: 10%

Categories:
- Productivity
- Entertainment
Usage Differences by Chronotype

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Productivity</th>
<th>Entertainment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morning (6AM-12PM)</td>
<td>68%</td>
<td>22%</td>
</tr>
<tr>
<td>Afternoon (12PM-6PM)</td>
<td>22%</td>
<td>22%</td>
</tr>
<tr>
<td>Evening (6PM-12AM)</td>
<td>68%</td>
<td>22%</td>
</tr>
<tr>
<td>Night (12AM-6AM)</td>
<td>0%</td>
<td>22%</td>
</tr>
</tbody>
</table>

Motivation

- **Early-Late Usage Change (%):**
 - Morning: 68%
 - Afternoon: 22%
 - Evening: 68%
 - Night: 22%

Method

- **Motivation:**
- **Method:**
- **Results:**
Usage Differences by Chronotype

- Morning (6AM-12PM): Productivity -20%, Entertainment 22%
- Afternoon (12PM-6PM): Productivity -20%, Entertainment 0%
- Evening (6PM-12AM): Productivity 0%, Entertainment 68%
- Night (12AM-6AM): Productivity -20%, Entertainment 22%

Motivation
Method
Results
Findings

• Daily patterns in app use replicate prior findings

• App use also shows weekly patterns

Different chronotypes have different usage patterns

• App use patterns correlate with alertness patterns

• App use features can distinguish periods of low vs. high alertness

• App use reflects sleep duration, interruptions, and subsequent fatigue
Findings

• Daily patterns in app use replicate prior findings

• App use also shows weekly patterns

• Different chronotypes have different usage patterns

App use patterns correlate with alertness patterns

• App use features can distinguish periods of low vs. high alertness

• App use reflects sleep duration, interruptions, and subsequent fatigue
External Time

- “Local time”, “clock time”
- Hours since midnight
- I.e., the midpoint of night time
External Time

- “Local time”, “clock time”
- Hours since midnight
- I.e., the midpoint of night time

Internal Time

- “Biological time”, “body clock time”
- Hours since sleep midpoint
- I.e., midpoint of “biological night”
External Time

- “Local time”, “clock time”
- Hours since midnight
- I.e., the midpoint of night time

Internal Time

- “Biological time”, “body clock time”
- Hours since sleep midpoint
- I.e., midpoint of “biological night”

Internal Time = External Time – Chronotype
Application Usage Events

- Productivity
- Entertainment
- Communication
- Social Media
- Email
- Browsing
- Time & Weather

External Time (ExT)

Application Usage Events
Biological...
Morning
Mid-Day
Night
The graph shows the usage of three different applications: Alertness, Productivity, and Entertainment, across different times of the day. The x-axis represents the Internal Time (InT), ranging from 0 to 23, and the y-axis represents the Usage. The graph is color-coded to represent different biological times: Morning, Mid-Day, and Night. The usage peaks at different times for each application, indicating the optimal times for usage according to the biological rhythms.
Productivity Apps ~ Higher Alertness

\[r = 0.52, \ p < .001 \]
Entertainment Apps ~ Lower Alertness

$r = -0.31, p<.05$
Manifestations of Biological Phenomena

Graph Description:
- The graph depicts the usage and performance over internal time (InT) with internal time ranging from 0 to 23.
- Usage is shown on the y-axis ranging from 0 to 1, and performance is shown on the y-axis ranging from -8 to 6.
- Three categories are plotted:
 - **Alertness** represented by blue stars.
 - **Productivity** represented by green circles.
 - **Entertainment** represented by orange squares.
- The graph illustrates the peaks and troughs of these categories throughout the day.

Biological Phenomena:
- Internal Time (InT) is divided into three segments:
 - **Morning:** 0 to 8
 - **Mid-Day:** 8 to 16
 - **Night:** 16 to 24

Legend:
- Blue star: Alertness
- Green circle: Productivity
- Orange square: Entertainment
Sleep Inertia

![Graph showing usage and performance over Internal Time (InT). The graph includes data for Alertness, Productivity, and Entertainment. The graph is color-coded with blue for Alertness, green for Productivity, and orange for Entertainment. The x-axis represents Internal Time (InT) ranging from 0 to 23, and the y-axis represents Usage and Performance. The graph highlights various time periods such as Biological, Morning, Mid-Day, and Night.](image-url)
Sleep Inertia

Performance

Usage

Internal Time (InT)

Alertness
Productivity
Entertainment

Biological… Morning

Mid-Day

Night

Motivation

Method

Results
Sleep Inertia

“I’ll stay on the phone longer, browsing YouTube, etc, if I’m more tired.”
Late Morning Performance Peak

- **Motivation**
- **Method**
- **Results**
Mid-Day Dip & Evening Rebound

- Alertness
- Productivity
- Entertainment

Internal Time (InT)

- Biological
- Morning
- Mid-Day
- Night

Usage

Performance
Late Night Lull

![Graph showing usage and performance over Internal Time (InT)]

- **Alertness**
- **Productivity**
- **Entertainment**

Biological Time
- Morning
- Mid-Day
- Night

Usage
- 0
- 0.1
- 0.2
- 0.3
- 0.4
- 0.5
- 0.6
- 0.7
- 0.8
- 0.9
- 1

Performance
- -8
- -7
- -6
- -5
- -4
- -3
- -2
- -1
- 0
- 1
- 2
- 3
- 4
- 5
- 6

Internal Time (InT)
- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
Late Night Lull

"Every time before I go to bed, I play a card game until I feel sleepy."
Findings

• Daily patterns in app use replicate prior findings

• App use also shows weekly patterns

• Different chronotypes have different usage patterns

• App use patterns correlate with alertness patterns

• App use features can distinguish periods of low vs. high alertness

• App use reflects sleep duration, interruptions, and subsequent fatigue
Opportunities
Opportunities

• **Predicting** alertness from phone data

• Cognitive Rhythms: Unobtrusive and Continuous Sensing of Alertness Using a Mobile Phone (UbiComp 2016)
Opportunities

• **Predicting** alertness from phone data

 • Cognitive Rhythms: Unobtrusive and Continuous Sensing of Alertness Using a Mobile Phone (UbiComp 2016)

• Circadian-aware **designs** for productivity technology

 • Scheduling, education, interruption, personal awareness
Ambient awareness of personal alertness levels
<table>
<thead>
<tr>
<th>Motivation</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient awareness of personal alertness levels</td>
<td>Scheduling recommendation</td>
</tr>
</tbody>
</table>
Ambient awareness of personal alertness levels

Diagram showing a day's schedule:
- 7am: Exercise
- 8am: Group Meeting
- 9am: Group Meeting
- 10am: Lab
- 11am: Dental appointment
- 12pm: Lunch
- 1pm: Lab
- 2pm: Laundry

Scheduling recommendation
Ambient awareness of personal alertness levels

Scheduling recommendation
Summary

• Using biology to interpret mobile usage behaviors

• Associations between biological factors (alertness, chronotype, sleep) and mobile use (especially productivity & entertainment apps)

• Opportunities for predicting alertness and creating alertness-aware technology
Summary

- Using biology to interpret mobile usage behaviors
- Associations between biological factors (alertness, chronotype, sleep) and mobile use (especially productivity & entertainment apps)
- Opportunities for predicting alertness and creating alertness-aware technology

Elizabeth Murnane
elm236@cornell.edu
Summary

- Using biology to interpret mobile usage behaviors
- Associations between biological factors (alertness, chronotype, sleep) and mobile use (especially productivity & entertainment apps)
- Opportunities for predicting alertness and creating alertness-aware technology
Summary

• Using biology to interpret mobile usage behaviors

• Associations between biological factors (alertness, chronotype, sleep) and mobile use (especially productivity & entertainment apps)

• Opportunities for predicting alertnessness and creating alertness-aware technology
Summary

• Using biology to interpret mobile usage behaviors

• Associations between biological factors (alertness, chronotype, sleep) and mobile use (especially productivity & entertainment apps)

• Opportunities for predicting alertness and creating alertness-aware technology
Thank You! Questions?

• Using biology to interpret mobile usage behaviors

• Associations between biological factors (alertness, chronotype, sleep) and mobile use (especially productivity & entertainment apps)

• Opportunities for predicting alertness and creating alertness-aware technology