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I. INTRODUCTION

The third generation partnership project (3GPP) defined
three service categories for the fifth-generation (5G) standard
[1]. Each service category defines requirements on bandwidth,
reliability, latency, and complexity to facilitate the develop-
ment of future applications not yet feasible using current
wireless standards. The already adopted enhanced mobile
broadband (eMBB) standard aims to provide higher data rates
than previous generations. The other two standards place less
emphasis on throughput and emphasize reliability, latency
and low complexity. The massive machine-type communica-
tion (mMTC) standard promises to support communication
between large numbers of ultra-low-power devices whereas
the ultra-reliable and low latency communication (URLLC)
standard aims to support highly delay-sensitive applications.
While each of these standards will require some form of
forward error correction, mMTC and URLLC have the addi-
tional requirement of low complexity and low latency in order
to achieve their respective service category requirements.
Convolutional codes and turbo codes under list decoding may
be capable of providing the low complexity and powerful error
correction required by these standards.

Convolutional codes (CC) have had a profound impact in
many communication standards, including 3rd generation cel-
lular standards and deep-space communications. In addition,
tail-biting convolutional codes (TBCCs) [2] and turbo codes
[3] were used for forward error correction in the long-term
evolution (LTE) standard.

Decoding methods for CCs, likewise, have a long, storied
history. Andrew Viterbi developed a practical maximum-
likelihood (ML) decoding algorithm for CCs based on the trel-
lis representation for cyclic codes [4]. Bahl et al. developed
a bit-wise maximum a posteriori (MAP) decoding algorithm
for convolutional codes which later played an important
role in turbo codes [5]. Seshadri et al. developed a method
for performing CRC-aided decoding of CCs using an outer
cyclic redundancy check (CRC) code [6]. Further, Lou et al.
introduced an algorithm that maximizes the distance spectrum
of a concatenated CC-CRC code where the encoder for the
CC is in a feedforward implementation [7].

Methods for decoding TBCCs and turbo codes have also
developed over a long period of time. The theory of TBCCs
was further developed in [2] and near ML decoding algo-
rithms for TBCCs were introduced in [8], [9]. Maximum

likelihood decoding of a concatenated inner TBCC with an
outer CRC code was further explored in [10], [11]. Turbo
codes [3] are often considered the first, low-complexity,
capacity approaching codes. Serial-list Viterbi decoding of
concatenated turbo codes with CRCs was first introduced in
[12] and further studied in [13]–[17].

A. Project Outline

The goal of this project is to begin the development of
the software and the analysis required to design, decode, and
simulate the performance of CCs, TBCCs, and turbo codes
concatenated with CRCs decoded using serial-list Viterbi de-
coding [6]. A brief recapitulation of the development schedule
for the code base is given in the following:
• Prior to the Feb. 7th proposal deadline, I implemented

an encoder for a rate-1/n systematic feedback (SFB) and
non-systematic feedforward (NSFF) CC. On the decoder
side, I implemented a distance-based soft decoder using
the Viterbi algorithm and the wrap-around Viterbi algo-
rithm [9].

• Over the next two weeks from Feb. 8th to Feb. 22nd,
I implemented a generalized list-decoding algorithm for
trellis-based decoders following the work in [6], [11].
The decoding algorithm was used in decoding zero-
terminated convolutional codes (ZTCC) with both SFB
and NSFF trellis structures. I also implemented a new
decoding algorithm for TBCCs in the feed-forward con-
figuration.

• In the two weeks from Feb. 23rd to Mar. 8th, I im-
plemented a bit-wise MAP decoder based on the BCJR
algorithm. The implementation of the code is valid for
CCs in both the SFB and NSFF structures and for both
terminated and "open-ended" trellis structures.

Upon the completion of each of the three implementation
phases above, I performed simulations leading to a collection
of observations and results that are analyzed later in this
report. These results also lend some insight into the design
of concatenated turbo codes with a CRCs that would lead to
improved decoding performance.

Ultimately, this project aims to use the techniques described
among the papers cited in the introduction to design con-
catenated TBCCs with CRCs and concatenated turbo codes
with CRCs which, under serial-list Viterbi decoding, exhibit
performance near the finite-blocklength coding bounds in
[18]. Although the decoder for concatenated turbo codes with



CRCs is not yet completed, the results presented in this paper
show that the development of the constituent elements of the
decoder has been completed.

II. PRELIMINARIES

This section will provide an introduction to the notation
used throughout the paper and will restate important results
in a way that is amenable to derivations in later sections. To
balance brevity with accessibility, relevant major results will
be stated without proof and will refer the reader to [19] for
further discussion.

A. Convolutional codes and the Viterbi algorithm

Let f(x) denote a k bit information sequence and let
p(x) denote an m + 1 bit CRC polynomial of degree m.
Let r(x) define the remainder after message polynomial
xmf(x) is divided by p(x). m(x) is the resulting k + m
bit sequence which is the input to the convolutional encoder.
All polynomials are assumed to be big-endian, i.e., f(x) =
fk−1x

k−1 + fk−2x
k−2 + · · · + f1x + f0, and all operations

are over binary field F2.
The convolutional encoding function can be represented as

a polynomial product of m(x) with vector polynomial g(x),
which is assumed to be rate-1/n. Each constituent polyno-
mial of g(x) is assumed to have degree v. An alternative
representation for the encoding function for convolutional
codes is via a shift-register with v elements. ZTCCs refer
to convolutional codes in which, during the encoding with
g(x), input a trailing v zeros into the shift-register to return
the encoder to the all zero state. TBCCs refer to convolutional
codes in which the shift-register is instantiated with the v
highest degree bits from m(x). Two different rate-1/2 CC
generator polynomials are used throughout this paper; the
v = 3 CC generator polynomial is (0x13, 0x17) and the v = 6
generator polynomial is (0x133, 0x171).

Because of the termination, all valid codewords are repre-
sented by paths through the trellis that start and end in the
zero-state. For TBCCs, all codewords are the standard trellis
are uniquely represented by paths through the trellis that start
and end in the same state, but not necessarily the all-zero
state. The resulting length of the sequence N from encoding
is n(k +m + v) and n(k +m) for ZTCCs and TBCCs, re-
spectively. Although including the termination bits simplifies
the decoding process, the rate loss due to termination can be
prohibitive at the short blocklengths considered in this paper.

The binary input additive-white Gaussian noise (AWGN)
channel with one-dimensional noise variance N0B

2 is used
throughout this paper assuming QPSK modulation. Each
dimension of the transmitted symbol is assumed to be in
{+1,−1} and the one-dimensional noise variance is rep-
resented by i.i.d. Gaussian random variables with variance
σ2 = N0B

2 resulting in a signal-to-noise power ratio (SNR) of
1
σ2 . Let x be a sequence that denotes the length N modulated
signal over the channel assuming the mapping that 0 is
mapped to +1 and 1 is mapped to −1 and y denote a sequence

which is the length N received signal after the AWGN is
added.

The Viterbi algorithm is implemented using the standard
add-compare-select operations on the natural trellis repre-
sentation of the convolutional code. Cumulative path metric
differences are stored at each trellis state along with the
path metric difference between the two incoming paths. An
important property of the Viterbi algorithm is that it is a
maximum-likelihood sequence detection algorithm, i.e., it
finds the sequence that solves the following optimization
problem:

ĉ(x) = argminc(x) dE(y, x),

where dE(y, x) is the Euclidean distance between the received
vector y and possible x and x is the transmitted symbol
corresponding to ĉ(x). Equivalently, the optimization problem
can be formulated as

ĉ(x) = argmaxc(x) f(y|x)

= argmaxc(x)

N∏
i=1

f(yi|xi)

= argmaxc(x)

N∏
i=1

1√
2πσ2

e−
‖yi−xi‖2

2σ2

= argmaxc(x)

N∏
i=1

e−
‖yi−xi‖2

2σ2

= argmaxc(x)

N∑
i=1

−‖yi − xi‖
2

2σ2

= argminc(x)

N∑
i=1

‖yi − xi‖2 .

B. The serial-list Viterbi algorithm, bit-wise MAP decoding of
convolutional codes, and the wrap-around Viterbi algorithm

In [6], the authors made the observation that a list of
codeword candidates in order of increasing metric path metric
(or decreasing likelihood) could be found serially using the
serial-list Viterbi algorithm (S-LVA). S-LVA operates under
the principle that the 2nd most likely path must be a path
that detours from the maximum-likelihood path computed
using the Viterbi algorithm exactly once. The third most likely
codeword must be a path that detours from any possible valid
state among the first or second paths. In general, the lth most
likely path can be computed by considering all l−1 candidate
paths previously computed by the S-LVA. The outer CRC
is used to check whether a decoded codeword is a valid
codeword of the concatenated code. This process continues
until a pre-determined maximum list size Lmax is reached.
L is the random variable whose value is the total number of
candidate codewords checked against the CRC for one S-LVA
decoding.

There are three possible categories that the output of the
S-LVA can fall under: a successful decoding, an erasure,
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Fig. 1. Shown above is the number of undetected errors vs. the maximum
list size under S-LVA decoding for a concatenated ZTCC with all possible
CRCs of degree m = 4. The solid line indicates the CRC chosen by the
techniques outlined in [7]. Other simulation parameters are v = 6, k = 64,
SNR = 2 dB, and the total number of simulations is 105 per CRC. The
numbers in the legend are represented in octal form from MSB to LSB. For
example, 0x35 corresponds to the polynomial x4 + x3 + x2 + 1.

or an undetected error. If S-LVA finds a possible codeword
before the maximum list size is reached, then the decoding
is successful. If L equals Lmax and a codeword that passes
the CRC has not been identified, an erasure is declared by
the decoder. An undetected error occurs when S-LVA outputs
a codeword that passes the CRC that does not equal the
originally transmitted codeword. Fig. 1 shows that choos-
ing the CRC that maximizes the distance spectrum of the
concatenated CC/CRC code minimizes the undetected error
probability for the specified simulation parameters. In [11],
the authors showed that at the additional complexity of S-
LVA over the standard soft Viterbi algorithm can be small.

The Bahl Cocke Jelinek Raviv (BCJR) algorithm is an
alternative method of decoding a convolutional code and
serves as an important sub-component of turbo codes. The
BCJR algorithm is a soft output, bit-wise MAP decoder which
solves the following optimization problem:

m̂i = argmaxmi P (mi|y),

where mi is the ith message bit and P (mi|y) is the posterior
probability of mi given the received vector y. The logarithmic
a posteriori probability (log-APP) is defined to be

L(mi) = log
P (mi = 0|y)
P (mi = 1|y)

.

To partially verify the correctness of my implementation
of the BCJR algorithm, I simulated the two algorithms for
both SFB and NSFF ZTCCs. Fig. 2 shows the decoding
performance difference between the two Viterbi and BCJR
algorithms as measure by frame error rate (FER) and bit error
rate (BER). Although the FER and BER rate curves appear
indistinguishable for the SFB and NSFF implementations of
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Fig. 2. Performance comparison between the Viterbi algorithm and the BCJR
algorithm using full floating-point precision. The convolutional code used
is a ZTCC and the simulation parameters are k = 64, v = 3, m = 0,
and Lmax = ∞. The noise sequence was generated using a monotonically
increasing random seed to fix ensure both decoders received the same noise
vectors.

the convolutional encoder, the exact simulated tables show
that the Viterbi algorithm results has a lower FER and the
BCJR algorithm has a lower BER as expected. The most
prominent difference between the two decoders is the BER
difference between the SFB and NSFF encoder structure for
the algorithm. This difference arises from the fact that the bit-
to-codeword mapping is more randomized for the SFB CC, so
that nearby codewords (by hamming distance) differ in more
message bits as compared to NSFF CCs on average.

III. LIST DECODING OF TAIL-BITING CONVOLUTIONAL
CODES USING THE WRAP-AROUND VITERBI ALGORITHM

In [11], the authors extended S-LVA to perform maximum
likelihood decoding of TBCCs. For the sake of brevity, the
interested reader can refer to the paper for further informa-
tion about the decoding algorithm. The wrap-around Viterbi
algorithm (WAVA) was introduced in [9] as a near-maximum
likelihood decoding algorithm for TBCCs. Although many
variations of WAVA exist, I will give a high-level overview
of my specific implementation.

WAVA performs the standard add-compare-select opera-
tions along a trellis with all starting states initialized to zero.
When the decoder reaches the last state in the trellis, the
ending state with the lowest cumulative metric is found and
checked for the tail-biting condition, i.e., the decoder checks
if the winning path that ends at the lowest metric end state
has a starting state equal to itself. If this condition is met, the
decoder declares the message corresponding to the winning
path as the decoded message. If the lowest-metric ending state
does not meet this condition, the initial states of the trellis
are initialized with the cumulative-metric values of the final
state and the add-compare-select operations repeat again for
the entire length of the trellis. This process repeats until a
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Fig. 3. FER comparison between WAVA and WA S-LVA for I = 1, 2, and 3
for a tail-biting convolutional code without a CRC. The simulation parameters
are k = 64, v = 6, m = 0, and Lmax = ∞.

maximum number of iterations is reached. Once this happens,
the decoder checks in monotonically increasing order of
cumulative metric whether any end state meets the tail-biting
condition. The decoder terminates when it finds the first end
state to meet this condition and declares an erasure if no end
states meet the tail-biting condition.

Here, I propose a new decoding algorithm that combines
the wrap-around behavior of WAVA with the S-LVA for
TBCCs and is denoted the wrap-around serial-list Viterbi
algorithm (WA S-LVA). The motivation of this work is to
decrease the expected list size of the list decoding algorithm
analyzed in [11] while incurring only a minor penalty in
decoding performance. The algorithm takes as a hyperpa-
rameter a pre-defined number of trellis iterations I and the
received vector y from the channel. The algorithm proceeds
in two distinct stages: (1) the wrap-around stage and (2) the
list-decoding stage. In the wrap-around stage, the algorithm
performs I iterations of add-compare-select along the trellis;
each time the end of the trellis is encountered, the initial
states of the trellis are initialized to the cumulative metrics in
the final states. In stage (2), the algorithm performs the list
decoding on the path metric differences as described in [11].

A. Wrap-around serial-list Viterbi decoding of TBCCs with-
out a CRC

Fig. 3 shows the FER vs. SNR for WAVA and WAVA with
S-LVA for a tail-biting convolutional code without a CRC.
The simulation parameter WAVA with I = 1 corresponds
to the algorithm analyzed in [11]. Although this parameter
setting corresponds to a provably ML decoder for TBCCs,
the variance due to the Monte-Carlo simulation was unable
to demonstrate this. Simulations not included in this report
with fixed noise sequences confirm that WAVA with I = 1
has the lowest frame error rate.

An interesting but counter-intuitive result from Fig. 3 is that
WAVA with I = 2 and I = 3 actually has better performance
than WA S-LVA and I = 2 and I = 3. Before this result,
my intuition suggested that WA S-LVA and I = 2 and I = 3
should only perform better than standard WAVA with the same
I values, but this turns out to be wrong. When analyzing error
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Fig. 4. Top: FER vs. SNR for WA S-LVA for I = 1, 2, and 3 for a TBCC
without a CRC. These curves are identical to the corresponding curves from
Fig. 3 and are repeated here for to highlight the performance degradation
under list-decoding due to using WAVA. Bottom: Expected list size vs. SNR
for list decoding of TBCC without a CRC. The simulation parameters are
k = 64, v = 6, m = 0 and Lmax = ∞.

vectors in which the WA S-LVA algorithm decoded incor-
rectly while the standard WAVA decoder decoded correctly, I
found that the codeword computed by the standard WAVA
algorithm was typically only a few candidate codewords
higher as compared to the codeword computed by standard
WAVA. This suggests that the edge metric distortion due to
re-initialization of the starting states causes WA S-LVA to
perform worse than standard WAVA when no CRC is used.

The top plot in Fig. 4 shows the relative performance of
WA S-LVA for different numbers of WAVA iterations. The
relative performance degradation due to re-initialization is
small on average. The bottom plot depicts the expected list
size vs. SNR for each of the three parameter settings. The
second iteration of WAVA results in a significant decrease
in the expected list size while the third iteration provides
no additional benefit. Additional WAVA iterations reduce the
expected list size of the list decoder because the first v stages
of a tail-biting trellis after only one iteration of WAVA do not
experience the full error protection provided by the memory
of the convolutional code. As a result, WA S-LVA with I = 1
disproportionately checks detour paths along the first v stages
of the trellis.

B. Wrap-around serial-list Viterbi decoding of concatenated
TBCCs with a CRC

WA S-LVA allows a decoder to improve its error correction
capability by performing joint error correction with the CRC.
Fig. 5 adds an m = 6 CRC to the v = 3 convolutional code
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Fig. 5. Top: FER/BER vs. SNR for a TBCC under four different decoding
methods. Bottom: Expected list size vs. SNR for each of the four decoding
methods. The simulation parameters are k = 64, v = 3, m = 6 and
Lmax = ∞.

and performs decoding for four different decoder settings.
WAVA with I = 3 does not utilize the CRC for error correc-
tion whereas WA S-LVA uses the CRC for error correction.
WA S-LVA clearly outperforms WAVA at all SNRs simulated,
due to the improved minimum distance provided by the CRC.
The relative improvement due to list decoding increases with
SNR over WAVA and the expected list size decreases with
increasing SNR. At SNR= 3dB, the expected list size is
below 2. As was observed in 4, I = 3 provides no further
improvement over I = 2 in terms of FER, BER, or E[L].

The FER performance in Fig. 5, in which the TBCC is
concatenated with a CRC, is superior to that of Fig. 4, where
the TBCC is not concatenated with a CRC. The performance
degradation due to using WAVA with I = 2 and I = 3 is
larger for m = 6 than it is for m = 0 but still relatively
small. Further analysis is necessary to conclude whether this
behavior holds for other combinations of k, m, and v. Again
contrasting the two plots, the relative decrease in E[L] due to
using WAVA is much greater in Fig. 4 than it is in Fig. 5. I
conjecture that this is due to the fact that the relative sizes of
v and m are different between the two plots. It is my guess
that, as v increases for constant m, the relative decrease in
E[L] from I = 1 to I = 2 becomes larger.

IV. OPTIMAL CRC DESIGN FOR SYSTEMATIC FEEDBACK
TERMINATED CONVOLUTIONAL CODES

SFB convolutional codes are often necessary to obtain
large coding gains under turbo decoding. Thus, it is likely
that designing a CRC to maximize the concatenated distance
spectrum of the SFB ZTCC with a CRC would provide larger
coding gains than would be obtained with a CRC of the same
degree with a smaller concatenated distance.
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Fig. 6. Top: FER/BER vs. SNR for a ZTCC under S-LVA decoding. ‘Optimal
CRC’ indicates the CRC that was designed using the algorithms described in
[7]. The suboptimal CRC was chosen to have a smaller concatenated distance
than the optimal CRC. The concatenated hamming distance of the CC with
the optimal CRC is 14 whereas the concatenated hamming distance of the
CC with a suboptimal CRC is 10. The simulation parameters are k = 64,
v = 3, m = 8 and Lmax = ∞. The optimal CRC polynomial is 0x405 and
the suboptimal CRC polynomial is 0x431.

The CRC design technique in [7] finds a CRC for a fixed k
and m to maximize the distance spectrum of a concatenated
NSFF CC and CRC code. It is unknown, however, whether
this technique also maximizes the distance spectrum of the
concatenated code when the inner CC encoder is an SFB CC.

Fig. 6 shows the decoding performance under S-LVA under
four CC/CRC designs. In order from top to bottom, the first
code is an SFB ZTCC with the distance-spectrum maximizing
CRC, the second is an NSFF ZTCC with the distance-
spectrum maximizing CRC, the third is an SFB ZTCC with
a suboptimal CRC, and the fourth is an NSFF ZTCC with
a suboptimal CRC. Because the performance of the S-LVA
decoder becomes increasingly dependent on the minimum
distance of the code, the NSFF ZTCC with the optimal CRC
outperforms both CCs with the non-optimal CRC for higher
SNRs. Interestingly, the bottom plot shows little difference
in E[L] for any of the four code structures analyzed despite
differences in decoding performance at higher SNRs.

One surprising result here is that the FER performance
between the NSFF and SFB CCs for both optimal and subop-
timal CRC designs are very similar. However, this simulation
result could easily just have occurred by chance as the design
technique does not guarantee optimal distance properties for
SFB CCs. A possible avenue of future work is to show
whether or not the CRC design from [7] also indirectly yields
the optimal CRC for SFB ZTCCs as well.
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V. LIST DECODING OF PARALLEL CONCATENATED
TURBO CODES

In this section, I first introduce the background and notation
used for the encoder and decoder for turbo codes. I then
review the algorithm and results in two papers which modified
the S-LVA to decode turbo codes. I posit that a CRC designed
to maximize the concatenated distance spectrum of the upper
SFB CC should improve decoding performance both in terms
of the error floor and coding gain. I conclude by explaining
my planned implementation of the weighted S-LVA algorithm.

A. Background and Notation

Because the model and implementation of the turbo code
closely follow [19], I will only introduce these concepts at
a high level. A turbo encoder can be viewed as two parallel
SFB CCs connected by an interleaver. Fig. 7 shows the system
model for a parallel-concatenated turbo code. Because the
systematic bits the output of SFB CC Encoder 1 and SFB CC
Encoder 2 are both fully punctured, p1(x) and p2(x) consist
only of parity bits between generated by these two encoders.
xm, xp1 , and xp2 are the sequences of the transmitted ±1
symbols after further puncturing is applied and the symbols
are modulated onto the channel.

In Fig. 8, ym, yp1 , and yp2 are the symbols received from
the channel after AWGN is added to xm, xp1 , and xp2 ,
respectively. The first BCJR soft-input soft-output (SISO)
decoder takes as input the observed symbols from the chan-
nel and extrinsic information from the second decoder and
produces as output extrinsic information Lext

12(xm) that is
passed to the second decoder. The second BCJR SISO takes
analogous inputs and provides extrinsic information Lext

21(x
′

m)
that is passed to the first decoder. The ′ symbol is used to
indicate whether the sequence corresponds to the original or
interleaved order of the transmitted symbols.

Each BCJR SISO decoder accepts soft information from the
channel and extrinsic information from its counterpart decoder
and compute extrinsic information that is then passed to its
counterpart decoder. The turbo decoder operates in an iterative
fashion, using Lext

12(x
′
m) to compute Lext

21(x
′
m) and then using

Lext
21(xm) to recompute Lext

12(xm). For the sake of consistency,
the turbo decoder terminates when BCJR SISO decoder 1
outputs a decoded sequence that passes the CRC check or a
maximum number M iterations is reached.

B. Prior Work

Serial-list Viterbi decoding of turbo codes was first pro-
posed in [12] and is denoted as tailing list-sequence (LS)
turbo decoding. At a high level, their algorithm performed up
to M iterations of standard iterative BCJR decoding, checking
their decoded sequence without invoking list decoding against
the CRC after each iteration. If the decoder fails to converge
to a decoded sequence that passes a CRC check before M
iterations, BCJR SISO decoder 1 uses Lext

21(xm) as prior
probabilities to perform weighted serial list decoding. The
method of using extrinsic information as prior information
in the S-LVA is denoted here as weighted S-LVA. In [12],
under tailing LS turbo decoding, increasing Lmax from 3 to
64 yielded very small improvements in coding gain.

In [14], the authors made the observation that further
coding gains could be obtained if weighted S-LVA is invoked
after each iteration of BCJR rather than only after the M th

BCJR iteration failed to converge; this method of decoding
is denoted here as repeated LS turbo decoding. Repeated LS
turbo decoding exhibits superior performance over tailing LS
turbo decoding due to the fact that the turbo decoder may have
diverged to a decision region far from the ML codeword after
M iterations of BCJR decoding. The authors limited their
analysis to a maximum list size of Lmax = 3.

The limited coding gain in [12] from increasing Lmax from
3 to 64 is a fundamentally different behavior than observed
in [10], [11]. I conjecture this is due to the fact that the
list decoder was only invoked after M iterations of BCJR
decoding, which greatly distorts the metrics upon which the
list decoder operates. This conjecture is supported by [14], in
which simply invoking weighed S-LVA after each iteration of
BCJR yielded an additional coding gain of approximately 0.7
dB.

As shown in [10], [11] and this paper thus far, designing a
CRC to maximize the concatenated distance of a CC improves
the decoding performance under S-LVA decoding. In addition,
large coding gains are observed for values of Lmax � 3.
By extending the techniques described in [7] to SFB CCs
and decoding the transmitted symbol under repeated LS turbo
decoding for larger values of Lmax, I expect to design a turbo
code that approaches the finite length coding bounds of [18]
for short to moderate blocklengths.

C. Proposed Model

This implementation of weighted S-LVA will leverage the
Euclidean distance based S-LVA decoder implemented for list



decoding of ZTCCs and TBCCs. Lext
21(xm) will be used as

prior information by BCJR SISO decoder 1 to adjust the
metrics on each edge of the trellis prior to performing S-
LVA. The log-APP value Lext

21(xm) can be converted [20] to
linear probability units via

P[xm(i) = ±1] = e±L
ext
21(xm(i))

1 + e±L
ext
21(xm(i))

,

where xm(i) and Lext
21(xm(i)) correspond to the ith transmitted

symbol in the sequences xm and Lext
21(xm), respectively.

Using the extrinsic information, we can solve the following
optimization problem:

ĉ(x) = argmaxc(x) f(x|y)
= argmaxc(x) P[x]f(y|x)

= argmaxc(x)

N∏
i=1

P[xi]f(yi|xi)

= argmaxc(x)

N∏
i=1

P[xi]√
2πσ2

e−
‖yi−xi‖2

2σ2

= argmaxc(x)

N∏
i=1

P[xi]e−
‖yi−xi‖2

2σ2

= argmaxc(x)

N∑
i=1

−

(
‖yi − xi‖2

2σ2
− log(P[xi])

)

= argminc(x)

N∑
i=1

(
‖yi − xi‖2

2σ2
− log(P[xi])

)
.

Notice that Lext
21(xm) provides information only for trans-

mitted symbols xi ∈ xm; if xi 6∈ xm, log(P[xi]) = 0.
For an SFB rate-1/n CC, there is exactly one symbol that
corresponds to a systematic bit per edge in the trellis. There-
fore, weighted S-LVA incorporates the extrinsic information
by adjusting each edge in the trellis by log(P[xi]). Earlier, we
showed that standard S-LVA operates on the linear Euclidean
distance metrics on each branch to produce a list of possible
decoded sequences in order of increasing metric distance
sequentially. Weighted S-LVA also generates a list of possible
decoded sequences but operates on the adjusted edge metrics
instead.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, I extended the work in [10], [11] to perform S-
LVA on a SFB CC. I also proposed a new decoding algorithm
that incorporated WAVA to reduce the expected list size of
S-LVA for TBCCs. I provided numerical simulations that
showed that a CRC designed to maximize the concatenated
distance of an NSFF CC also provided similar decoding
performance when concatenated with the equivalent SFB CC.
I also implemented the BCJR algorithm for NSFF and SFB
CCs, which will serve as the basis for a weighted S-LVA
decoder for turbo codes. Finally, I examined the tailing LS

turbo decoding and repeated LS turbo decoding algorithms,
identified deficiencies in their respective implementations, and
proposed a modified design that should provide additional
coding gains and result in a reduced error floor.

Based on the current results, I propose the following
directions for future work:
• Complete the weighted S-LVA turbo decoder and simu-

late the performance at short to moderate blocklengths
using CRCs designed by the techniques described in [7].

• Extend the work in [7] to SFB CCs.
• Explore different turbo decoder architectures, including

serially concatenated turbo codes with either NSFF and
SFB outer CCs.

• Simulate the performance of S-LVA and weighted S-LVA
on channels other than the AWGN channel.

• Explore whether machine learning techniques can pro-
vide better extrinsic information for use by the weighted
S-LVA algorithm.
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