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The Challenge

CAISO Wind Generation
July 2006 Heat Wave
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CAISO, 2007: “Integration of Renewable Resources,” California ISO, November 2007.

How can the grid accommodate the intermittency of wind and
solar to significantly reduce carbon emissions?
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Low Carbon Portfolio Planning Model
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Problem Formulations

* Objective Functions

— Cost (including annualized capital, fixed and variable O&M,
fuel, and cost of carbon (in 2050 scenario)

— Approximate Emissions — linear function of natural gas
generation and spinning capacity

* Linear Constraints
— System-wide power balance
— Generator governing equations (affine w.r.t. capacity, fuel)
— Thermal plant ramp rates

— Energy (integrated power) constraints



Generator Technology Models
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Generator Technology Models
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Realization Models

* System Load, Irradiance (GHI => DNI, DHI),Wind Speed

 Linear statistical models of the form:

f()=A@DX+b

where A(?) = [al(t) a,(t) ] is comprised of functions like:

a(t) = ]Af(t) (a forecast)

a(t) = ]Af(t - - f(t-1) (prior forecast error)
a(t) =y(t) (diurnal or seasonal bias)
a(t)=1 (constant bias)

Use linear regression to find X and characterize b distribution
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Realization Production

f() =A@ +b

and 15~N(Oa ) is a random variable

>~ model

To create each realization, at each time step:

-Apply linear model
-Sample the model error distribution

-Impose site-site correlations where appropriate
-Apply additional models where necessary

-eg. GH| => DNI| => DHI



Ensuring System Reliability

* Dispatch optimization includes expensive deficit
in case of extreme forecast error.

* Deficit signal is used with LOLE to determine
necessary spinning reserve capacity and schedule

| | | |

= Maximum required spinning
reserve capacity

Deficit

Realization 1 ' Realization 2 ' Realization 3 | | Realization N
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Case Studies

Load scenarios:
— 2005-2006 load data, 2050-2051 load projection
Renewable Portfolios produced by minimizing:

— Cost, Emissions

Data:

— Wind:Western Wind Integration Datasets (NREL, 3TIER)
— Irradiance: NSRDB (NREL)

— Load: California ISO OASIS Database

Solve using CV X (Grant and Boyd, 2010)
[17,520 time steps with 20 realizations each]



Solved Generator Portfolios
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Carbon Emissions Characteristics

Carbon-Free Generation Carbon Emissions
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Example Realizations (2050 Low-CO,)
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Stochastic vs. Deterministic

Portfolios produced by > | " m Stochastic Simulations
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Conclusions

* We can provide >99% of generation from non-

carbon based generators while meeting an LOLE
requirement of | day in 10 years

* With conservative assumptions regarding thermal
plant operation, can still achieve significant reductions
in carbon emissions from base case levels

* Stochastic analyses are needed in system planning

* Low capacity factors will require enhanced capacity
markets for thermal plants



Next Steps

Include hour-ahead forecasts

Improve forecast error characterization

— Include phase errors
Improve flexibility of hydroelectric generators

Build participating load and storage models
— EV’s, Batteries, Fuel Cells, CAES



Questions?

Thanks to:
* @Gil Masters, Nick Jenkins

e Precourt Institute for Energy
Efficiency, Stanford Graduate
Fellowship, NSF Graduate
Research Fellowship

* Bethany Corcoran, Mike Dvorak,
Graeme Hoste, Eric
Stoutenburg, John Ten Hoeve

For more information
(and a copy of this presentation):

www.stanford.edu/~ehart/
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