An Optimization and Monte Carlo Planning Approach for High Penetrations of Intermittent Renewables

Elaine K. Hart and Mark Z. Jacobson INFORMS Annual Meeting, Austin, TX November 8, 2010

Atmosphere/Energy Program

Dept. of Civil and Environmental Engineering

Stanford University

The Challenge

CAISO, 2007: "Integration of Renewable Resources," California ISO, November 2007.

How can the grid accommodate the intermittency of wind and solar to **significantly** reduce carbon emissions?

Hart and Jacobson 1/15

Low Carbon Portfolio Planning Model

Hart and Jacobson 2/15

Problem Formulations

Objective Functions

- Cost (including annualized capital, fixed and variable O&M, fuel, and cost of carbon (in 2050 scenario)
- Approximate Emissions linear function of natural gas generation and spinning capacity

Linear Constraints

- System-wide power balance
- Generator governing equations (affine w.r.t. capacity, fuel)
- Thermal plant ramp rates
- Energy (integrated power) constraints

Hart and Jacobson 3/15

Generator Technology Models

Intermittent Generators

(Image: NREL 2008)

Conventional Generators

(Image: CEC 2009a)

Hart and Jacobson 4/15

Generator Technology Models

Intermittent Generators

Wind Power -Curtailment

Photovoltaics -No controls

(Image: NREL 2008)

Conventional Generators

Natural Gas -Load balancing -Dispatchable

5/15 Hart and Jacobson

Realization Models

- System Load, Irradiance (GHI => DNI, DHI), Wind Speed
- Linear statistical models of the form:

$$f(t) = A(t)\vec{x} + \vec{b}$$
 where $A(t) = \begin{bmatrix} a_1(t) & a_2(t) & \dots \end{bmatrix}$ is comprised of functions like:
$$a_i(t) = \hat{f}(t) \qquad \qquad \text{(a forecast)}$$

$$a_i(t) = \hat{f}(t-1) - f(t-1) \qquad \qquad \text{(prior forecast error)}$$

$$a_i(t) = \gamma(t) \qquad \qquad \text{(diurnal or seasonal bias)}$$

$$a_i(t) = 1 \qquad \qquad \text{(constant bias)}$$

Use linear regression to find \vec{x} and characterize b distribution

Hart and Jacobson 6/15

Realization Production

$$f(t) = A(t)\vec{x} + \tilde{b}$$
 and $\tilde{b} \sim \mathcal{N} \big(0, \sigma_{model} \big)$ is a random variable

To create each realization, at each time step:

- -Apply linear model
- -Sample the model error distribution
 - -Impose site-site correlations where appropriate
- -Apply additional models where necessary

Ensuring System Reliability

- Dispatch optimization includes expensive deficit in case of extreme forecast error.
- Deficit signal is used with LOLE to determine necessary spinning reserve capacity and schedule

Hart and Jacobson 8/15

Case Studies

- Load scenarios:
 - 2005-2006 load data, 2050-2051 load projection
- Renewable Portfolios produced by minimizing:
 - Cost, Emissions
- Data:
 - Wind: Western Wind Integration Datasets (NREL, 3TIER)
 - Irradiance: NSRDB (NREL)
 - Load: California ISO OASIS Database
- Solve using CVX (Grant and Boyd, 2010)
 [17,520 time steps with 20 realizations each]

Hart and Jacobson 9/15

Solved Generator Portfolios

Capacity

Generation

Hart and Jacobson, 2011. [In Review]

Hart and Jacobson 10/15

Carbon Emissions Characteristics

Carbon-Free Generation

Carbon Emissions

Hart and Jacobson, 2011. [In Review]

Hart and Jacobson 11/15

Example Realizations (2050 Low-CO₂)

Stochastic vs. Deterministic

Portfolios produced by scaling 2005 low-carbon capacities uniformly

Stochastic simulations:

Monte Carlo simulation with forecast error

Deterministic assumption:

Simulate single realization where forecast = actual data

Conclusions

- We can provide >99% of generation from noncarbon based generators while meeting an LOLE requirement of I day in I0 years
- With conservative assumptions regarding thermal plant operation, can still achieve significant reductions in carbon emissions from base case levels
- Stochastic analyses are needed in system planning
- Low capacity factors will require enhanced capacity markets for thermal plants

Hart and Jacobson 14/15

Next Steps

- Include hour-ahead forecasts
- Improve forecast error characterization
 - Include phase errors
- Improve flexibility of hydroelectric generators
- Build participating load and storage models
 - EV's, Batteries, Fuel Cells, CAES

Hart and Jacobson 15/15

Questions?

Thanks to:

- Gil Masters, Nick Jenkins
- Precourt Institute for Energy Efficiency, Stanford Graduate Fellowship, NSF Graduate Research Fellowship
- Bethany Corcoran, Mike Dvorak, Graeme Hoste, Eric Stoutenburg, John Ten Hoeve

For more information (and a copy of this presentation): www.stanford.edu/~ehart/

