Joint Diagnosis and Conversion Time Prediction
of Progressive Mild Cognitive Impairment (pMCI)
Using Low-Rank Subspace Clustering and Matrix

Completion

Kim-Han Thung, Pew-Thian Yap, Ehsan Adeli-M., and Dinggang Shen

Department of Radiology and BRIC,
University of North Carolina at Chapel Hill, USA
dgshen@med.unc.edu

Abstract. Identifying progressive mild cognitive impairment (pMCI) patients
and predicting when they will convert to Alzheimer’s disease (AD) are impor-
tant for early medical intervention. Multi-modality and longitudinal data provide
a great amount of information for improving diagnosis and prognosis. But these
data are often incomplete and noisy. To improve the utility of these data for pre-
diction purposes, we propose an approach to denoise the data, impute missing
values, and cluster the data into low-dimensional subspaces for pMCI prediction.
We assume that the data reside in a space formed by a union of several low-
dimensional subspaces and that similar MCI conditions reside in similar sub-
spaces. Therefore, we first use incomplete low-rank representation (ILRR) and
spectral clustering to cluster the data according to their representative low-rank
subspaces. At the same time, we denoise the data and impute missing values.
Then we utilize a low-rank matrix completion (LRMC) framework to identify
pMCI patients and their time of conversion. Evaluations using the ADNI dataset
indicate that our method outperforms conventional LRMC method.

1 Introduction

Alzheimer’s disease (AD) is the most prevalent dementia that is commonly associated
with progressive memory loss and cognitive decline. It is incurable and requires atten-
tive care, thus imposing significant socio-economic burden on many nations. It is thus
vital to detect AD at its earliest stage or even before its onset, for possible therapeutic
treatment. AD could be traced starting from its prodromal stage, called mild cognitive
impairment (MCI), where there is mild but measurable memory and cognitive decline.
Studies show that some MCI patients will recover over time, but more than half will
progress to dementia within five years [2]. In this paper, we focus on distinguishing
progressive MCI (pMCI) patients who will progress to AD from stable MCI (sMCI)
patients who will not. We will at the same time predict when the conversion to AD will
occur.

Biomarkers based on different modalities, such as magnetic resonance imaging
(MRYI), positron emission topography (PET), and cerebrospinal fluid (CSF), have been
proposed to predict AD progression [15,4,12,14]. The Alzheimer’s disease neuroimag-
ing initiative (ADNI) collects these data longitudinally from subjects ranging from
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cognitively normal elders to AD patients in an effort to use all these information to
accurately predict AD progression. However, these data are incomplete because of
dropouts and unavailability of a certain modality. The easiest and most popular way to
deal with missing data is by discarding the samples with missing values [15]. But this
will decrease the number of samples as well as the statistical power of analyses. One
alternative is to impute the missing data, via methods like k-nearest neighbour (KNN),
expectation maximization (EM), or low-rank matrix completion (LRMC) [10,16,1]. But
these imputation methods do not often perform well on datasets with a large amount of
values missing in blocks [9,13]. To avoid the need for imputation, Yuan et al. [13] di-
vides the data into subsets of complete data, and then jointly learn the sparse classifiers
for these subsets. Through joint feature learning, [13] enforces each subset classifier
to use the same set of features for each modality. However, this will restrain samples
with certain modality missing to use more features in available modality for prediction.
Goldberg et al. [3], on the other hand, imputes the missing features and unknown targets
simultaneously using a low-rank assumption. Thus, all the features are involved in the
prediction of the target through rank minimization, while the propagation of the missing
feature’s imputation errors to the target outputs is largely averted, as the target outputs
are predicted directly and simultaneously. Thung et al. [9] improves the efficiency and
effectiveness of [3] by performing feature and sample selection before matrix comple-
tion. However, by applying matrix completion on all the samples, the authors implicitly
assumes that the data are from a single low-dimensional subspace. This assumption
hardly holds for real and complex data.

To capture the complexity and heterogeneity of the pathology of AD progression, we
assume that the longitudinal multi-modality data reside in a space that is formed by a
union of several low-dimensional subspaces. Assuming that the data is low-rank as a
whole is too optimistic, and missing values might not be imputed correctly. A better ap-
proach is to first cluster the data and then perform matrix completion on each cluster. In
this paper, we propose a method, called low-rank subspace clustering and matrix com-
pletion (LRSC-MC), which will cluster the data into subspaces for improving prediction
performance. More specifically, we first use incomplete low rank representation (ILRR)
[5,8] to simultaneously determine a low-rank affinity matrix, which gives us an indication
of the similarity between any pair of samples, estimate the noise, and obtain the denoised
data. We then use spectral clustering [6] to split the data into several clusters and impute
the output targets (status labels and conversion times) using low-rank matrix completion
(LRMC) algorithm for each cluster. We tested our framework using longitudinal MRI
data (and cross-sectional multi-modality data) for both pMCI identification and conver-
sion time prediction, and found that the LRSC-MC outperforms LRMC. In addition, we
also found that using denoised data will improve the performance of LRMC.

2 Materials and Preprocessing

2.1 Materials

We used both longitudinal and cross-sectional data from ADNI! for our study. We used
MRI data of MCI subjects that were scanned at baseline, 6th, 12th and 18th months

! http://adni.loni.ucla.edu
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Table 1. Demographic information of subjects involved in this study. (Edu.: Education; std.:
Standard Deviation)

No. of subjects Gender (M/F) Age (years) Edu. (years)

pMCI 65 49/16 753+£6.7 15.6+3.0
sMCI 53 37/16 76.0+79 155+3.0
Total 118 86/32 - -

to predict who progressed to AD in the monitoring period from 18th to 60th month.
MCI subjects that progressed to AD within this monitoring period were retrospectively
labeled as pMCI, whereas those that remained stable were labeled as sMCI. MCI sub-
jects that progressed to AD on and before 18th month were not used in this study. There
are two target outputs in this study — class label and conversion month. For estimating
these outputs, we used the MRI data, PET data, and clinical scores (e.g., Mini-Mental
State Exam (MMSE), Clinical Dementia Rating (CDR), and Alzheimer’s Disease As-
sessment Scale (ADAS)). Table 1 shows the demographic information of the subjects
used in this study.

2.2 Preprocessing and Feature Extraction

We use region-of-interest (ROI)-based features from the MRI and PET images in this
study. The processing steps involved, for each MRI image, are described as follows.
Each MRI image was AC-PC corrected using MIPAV?, corrected for intensity inhomo-
geneity using the N3 algorithm, skull stripped, tissue segmented, and registered to a
common space [11,7]. Gray matter (GM) volumes, normalized by the total intracranial
volume, were extracted as features from 93 ROIs [11]. We also linearly aligned each
PET image to its corresponding MRI image, and used the mean intensity value at each
ROI as feature.

3 Method

Figure 1 shows an overview of the proposed low-dimensional subspace clustering and
matrix completion framework. The three main components in this framework are 1)
incomplete low-rank representation, which computes the low-rank affinity matrix, 2)
spectral clustering, which clusters data using the affinity matrix acquired from the pre-
vious step, and 3) low-rank matrix completion, which predicts the target outputs using
the clustered data. In the following subsections, each of these steps will be explained in
detail.

3.1 Notation

We use X € R"*™ to denote the feature matrix with n samples of m features. n de-
pends on the number of time points and the number of modalities used. Each sample

2 http://mipav.cit.nih.gov
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Fig. 1. Low-rank subspace clustering and matrix completion for pMCI diagnosis and prognosis.

(i.e., row) in X is a concatenation of features from different time points and different
modalities (MRI, PET and clinical scores). Note that X can be incomplete due to miss-
ing data. The corresponding target matrix is denoted as Y € R™*2, where the first
column is a vector of labels (1 for pMCI, —1 for sMCI), and the second column is a
vector of conversion times (e.g., the number of months to AD conversion). The con-
version times associated with the SMCI samples should ideally be set to infinity. But to
make the problem feasible, we set the conversion times to a large value computed as 12
months in addition to the maximum time of conversion computed for all pMCI samples.
For any matrix M, M, denotes its element indexed by (j, k), whereas M . and M. j,
denote its j-th row and k-th column, respectively. We denote ||M]|. = > 0;(M) as
the nuclear norm (i.e., sum of the singular values {o; } of M), | M||; = > | M, x| as s
norm, and M’ as transpose of M. I is the identity matrix.

3.2 Low-Rank Matrix Completion (LRMC)

Assuming linear relationship between X and Y, we let for the k-th target Y. ., = Xay, +
b = [X 1] X [a; bk, where 1 is a column vector of 1’s, ay, is the weight vector, and
by, is the offset. Assuming a low rank X, then the concatenated matrix M = [X 1 Y] is
also low-rank [3], i.e., each column of M can be linearly represented by other columns,
or each row of M can be linearly represented by other rows. Based on this assumption,
low-rank matrix completion (LRMC) can be applied on M to impute the missing feature
values and the output target simultaneously by solving mzln{ |Z]|«| Mg = Zg}, where

{2 is the index set of known values in M. In the presence of noise, the problem can be
relaxed as [3]

mzin MHZH* + \()3\1|LI(Z!217M!?:) + \éS\LS(ZQSaMQS)’ (D)

where L;(-,-) and L(-, -) are the logistic loss function and mean square loss function,
respectively. {2; and {2, are the index sets of the known target labels and conversion
times, respectively. The nuclear norm || - ||. in Eq. (1) is used as a convex surrogate
for matrix rank. Parameters p and A are the tuning parameters that control the effect of
each term.
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If the samples come from different low-dimensional subspaces instead of one single
subspace, applying (1) to the whole dataset is inappropriate and might cause inaccurate
imputation of missing data. We thus propose instead to apply LRMC to the subspaces,
where samples are more similar and hence the low-rank constraint is more reasonable.
The problem now becomes

. c
min 3y pllQZ + 5 Li(Za, May) + g Ls(Za,, Ma,), 2

where Q. € R™*" is a diagonal matrix with values {0, 1}, C is the number of clusters,
and Zle Q. = I The effect of Q.Z is to select from the rows of Z the samples
that are associated with each cluster. For example, if the value of Q(%,4) is one, the
i-th sample (i.e., the i-th row) in Z will be selected. Q. is estimated from the feature
matrix X by performing low-rank representation subspace clustering [5] and spectral
clustering [6], which will be discussed next.

3.3 Incomplete Low-Rank Representation (ILRR)

Low-rank representation (LRR) [5] is widely used for subspace clustering. LRR as-
sumes that data samples are approximately (i.e., the data are noisy) drawn from a union
of multiple subspaces and aims to cluster the samples into their respective subspaces and
at the same time remove possible outliers. However, LRR cannot be applied directly to
our data because they are incomplete. We therefore apply instead the method reported
in [8], which is called incomplete low-rank representation (ILRR). For an incomplete
matrix X, the ILRR problem is given by

nin Al + o||E|; st. X =AX +E, X, =X (3)

where X is the completed version of X, which is self-represented by AX, A € R"*"
is the low-rank affinity matrix, E is the error matrix, and « is the regularizing parameter.
Each element of A indexed by (4, 7) is an indicator of the similarity between the i-
th sample and the j-th sample. Eq. (3) is solved using inexact augmented Lagragrian
multiplier (ALM), as described in [8]. ILRR 1) denoises the data through prediction of
E, providing us with clean data D = A X, and 2) predicts the affinity matrix A, which
is used next to cluster the data.

3.4 Spectral Clustering

After acquiring the affinity matrix A between all the subjects, we perform spectral
clustering [6] on X (or D). The clustering procedures are:

1. Symmetrize the affinity matrix, A < A + A’ and set diag(A) = 0.

2. Compute Laplacian matrix, L = S~'/2AS8~1/2 where S is a diagonal matrix
consisting of the row sums of A.

. Find k largest eigenvectors of L and stack them as columns of matrix V € R"*%,

4. Renormalize each row of V to have unit length.

W



532 K.-H. Thung et al.

5. Treat each row of V as a point in R* and cluster them into k clusters using the
k-means algorithm.

Based on the clustering indices, we now have clustered data X(¢) (or D(®)), which
together with the corresponding target Y (¢), can be used for classification. As can be
seen in Fig. 1, we now have multiple classification problems, one for each subspace.
Thus, in practice, we implement (2) by completing concatenated matrix [X(9)1Y (%]
(or [D1Y(9)]) using LRMC, and combine the outputs predicted in all subspaces to
obtain a single classification or regression outcome.

4 Results and Discussions

We evaluated the proposed method, LRSC-MC, using both longitudinal and multi-
modality data. In both Fig. 3 and Fig. 2, the baseline method — LRMC using original
data, is denoted by light blue bar, while the rests either using part(s) or full version of
the proposed method — LRMC using the denoised data, and LRSC-MC using the orig-
inal and the denoised data. Two clusters (C' = 2) were used for LRSC-MC. Parameter
a = 0.005 is used for LRSC, and parameters ; and A of LRMC are searched through
the range {10™",n = 6,...,3} and {1073 — 0.5}, respectively. All reported results are
the average of the 10 repetitions of a 10-fold cross validation.

Fig. 2 shows the comparison result between the conventional LRMC and LRSC-MC,
using different combinations of MRI, PET, and clinical scores, at first time point. The
result shows that LRSC-MC always outperforms the conventional LRMC, using either
original or denoised data, both in terms of pMCI identification and conversion time
prediction (i.e., red bar is higher than light blue bar). This confirms the effectiveness of
our method for heterogeneous data that exhibit multiple low dimensional subspaces. In
addition, we also found that LRMC is improved using the denoised data from the first
component of our method (ILRR) (i.e., dark blue bar is higher than light blue bar). This
is probably because denoising the data using ILRR is similar to smoothing the data to a
low-dimensional subspace, (when affinity matrix A is low rank, AX is also low rank),
which fulfills the assumption of LRMC. Sometimes, the improvement due to the use
of denoised data is more than the use of clustering. Thus, there are 2 ways to improve
LRMC on data that consists of multiple subspaces, i.e., by first denoise/smooth the data,
or by clustering the data. Nevertheless, the best pMCI classification is still achieved by
LRSC-MC using modality combination of MRI+Cli, at around 81%, using the original
data.

In Fig. 3, we show the results of using only MRI data at 1 to 4 time points for
pMCl identification and conversion time prediction. The results indicate that LRSC-MC
outperforms LRMC using either data from 1, 2 and 3 time points. The improvement of
the LRSC-MC is more significant for the case of 1 time point (at 18th month), where
the pMCI identification is close to 80% of accuracy using the denoised data, while
LRMC on the original data is only about 72%. In general, when using the original
data, LRSC-MC outperforms LRMC, while when using the denoised data, LRSC-MC
is either better or on par with LRMC. This is probably because the denoised data is
closer to the assumption of single low-dimensional subspace, opposing the assumption
made by the LRSC-MC - the data is a union of several low-dimensional subspaces.
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Fig. 2. Average pMCI/sMCI classification accuracy and the correlation of conversion month pre-
dictions using multi-modality data.
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Fig. 3. Average pMCI/sMCI classification accuracy and the correlation of conversion month pre-
dictions, using data from different number of time points.

Table 2. Comparison with other methods.

ITP Data [13] [9] LRSC-MC  MRI data [13] [9] LRSC-MC

MRI 70.0 72.8  76.0 2TPs 57.055.0 723
MRIPET 71.0 74.8  74.2 3TPs - 632 737
MRICli 81.6 - 81.4 4TPs - 720 728

The only case where LRSC-MC performs worse than LRMC is when data from 4 time
points are used. This is probably because when 2 or more TPs are used, the earlier data
(e.g., 12th, 6th month) are added. These added data is farther away from the conversion
time and could be noisier and less reliable for prediction. Since in our current model,
we assume equal reliability of features, when the noisy features started to dominate the
feature matrix using 4 TPs, LRSC is unable to give us a good affinity matrix and thus
poorer performance.

In addition, we also compare our method with [9,13] in Table 2. However, since both
methods rely on the subset of complete data for feature selection and learning, they fail
in cases when the subset contains too little samples for training (those cases are left
blank in the table). The results show that the proposed method outperforms or on par
with these state-of-the-art methods.
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5 Conclusion

We have demonstrated that the proposed method, LRSC-MC, outperforms conventional
LRMC using longitudinal and multi-modality data in many situations. This is in line
with our hypothesis that, for data that reside in a union of low-dimensional subspaces,
subspace low-rank imputation is better than whole-space low-rank imputation.
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