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Abstract

Human Immunodeficiency Virus (HIV) infection continues to have major adverse pub-

lic health and clinical consequences despite the effectiveness of combination Antiretro-

viral Therapy (cART) in reducing HIV viral load and improving immune function. As

successfully treated individuals with HIV infection age, their cognition declines faster

than reported for normal aging. This phenomenon underlines the importance of im-

proving long-term care, which requires better understanding of the impact of HIV on

the brain. In this paper, automated identification of patients and brain regions affected

by HIV infection are modeled as a classification problem, whose solution is determined

in two steps within our proposed Chained-Regularization framework. The first step fo-

cuses on selecting the HIV pattern (i.e., the most informative constellation of brain

region measurements for distinguishing HIV infected subjects from healthy controls)

by constraining the search for the optimal parameter setting of the classifier via group

sparsity (`2,1-norm). The second step improves classification accuracy by constraining

the parameterization with respect to the selected measurements and the Euclidean reg-

ularization (`2-norm). When applied to the cortical and subcortical structural Magnetic

Resonance Images (MRI) measurements of 65 controls and 65 HIV infected individu-

als, this approach is more accurate in distinguishing the two cohorts than more common

models. Finally, the brain regions of the identified HIV pattern concur with the HIV

literature that uses traditional group analysis models.
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1. Introduction

Despite the success of highly active antiretroviral therapy (HAART) and combina-

tion antiretroviral therapy (cART) in extending longevity of individuals infected with

the Human Immunodeficiency Virus (HIV), neurocognitive impairments still com-

monly occur [1, 2, 3]. Structural Magnetic Resonance Imaging (MRI) has often been5

used to determine the neural correlates of cognitive and motor deficits in HIV infection,

indicating, for example, specific relationships between regional brain volume deficits

[4, 5], memory compromise [6], and accelerated brain aging in HIV infected adults [7].

Neurocognitive and motor impairments in HIV infection, however, are similar to those

reported in other age-related diagnoses [8]. To improve diagnostic specificity of MRI10

in HIV, this manuscript proposes a novel machine learning method and applies it to the

morphometric measurements extracted from structural MRI scans collected from HIV

infected and healthy control (CTRL) participants.

Conventional HIV MRI studies typically test for group differences (with respect to

the CTRL cohort) by separately analyzing each image measurement for the impact of15

HIV [4, 9, 6, 10, 2, 1]. Separate analysis of measurements may lead to contradicting

or inconclusive findings [11]. By contrast, our proposed analysis is a type of machine

learning framework that considers all image measurements together to identify the sub-

set of measurements (called patterns) specific to HIV and then relates the significance

of the pattern to its accuracy in distinguishing individuals with HIV from CTRLs. A20

popular approach for identifying patterns uses sparse classifiers [12, 13, 14, 15, 16, 8],

which assume that only a few measurements are informative for distinguishing co-

horts. After identifying a pattern, the corresponding measures are often applied to

a second (non-sparse) approach, which focuses only on improving classification ac-

curacy [17, 18, 19, 20, 21, 22]. This two-step regularization procedure assumes that25

measurements selected by the sparse classifier define the unique, optimal pattern for

distinguishing the two cohorts [23, 24, 17, 25]. This assumption, however, is gener-
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ally not true because the redundancy in information across image measurements allows

for multiple solutions [19]. As the two steps are based on different classification ap-

proaches, the pattern identified by the sparse classifier of the first step are generally not30

optimal for the non-sparse approach of the second step.

Herein, we propose an approach (denoted as Chained-Regularization) that uses

the same classifier first to identify a pattern and then, using the pattern, to distinguish in-

dividuals; however, different constraints guide the parameterization of the classifier in

each step. Our proposed algorithm models the selection of the most informative image35

measurements in the first step by confining parameterization of the classifier through

group sparsity (`2,1-norm) regularization [26, 8]. Group sparsity extends the concept

of the `1-norm [27, 28, 16] of identifying a few informative measurements for com-

bining measurements into groups and then identifying a small number of groups [27].

The grouping can be used for explicit modeling of relationships between measurements40

[29]. In this work, each measurement from the regions of interest (ROIs) is grouped

with its counterpart in the other brain hemisphere given our assumption that HIV in-

fection affects the brain bilaterally. In the second step of Chained-Regularization, the

classifier is trained on just the selected individual measurements with the search for

the optimal parameter setting being constrained via Euclidean (`2-norm) regulariza-45

tion. The logic of this approach is that the `2,1 regularization generally improves the

accuracy of classifiers in the presence of a large number of uninformative or redun-

dant image measurements (as it is often the case of neuroimaging studies), while the

`2 regularization improves the accuracy of classifiers in the event that all provided im-

age measurements are informative [17, 18]. Our chained-regularization scheme, which50

uses a sequential dependency approach to identify a pattern to be applied for deter-

mining group membership of individuals, is different from chain-regularization [30],

a concept used in physics to describe group of objects interacting with each other in a

chain.

We implement Chained-Regularization within a multiple kernel learning (MKL)55

framework [31, 18]. MKL is based on the assumption that samples (i.e., individual

participants) that are similar to each other should be assigned to the same cohort (e.g.,

HIV). Similarity between two samples is measured through a pairwise comparison of
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Figure 1: Training of the Chained-Regularization approach: The �rst step (top, denoted asSelection Step)

selects the image measurements informative for distinguishing HIV from controls, while the second step

(bottom, denoted asReweighing Step) focuses on improving the accuracy by reweighing the selected mea-

sures for classifying the samples. Note, both steps are based on the same classi�er but differ in regularizing

(or constraining) its parameterization.

the corresponding image measurements. This comparison is de�ned by a set of met-

rics (i.e., linear and nonlinear kernel functions), each capturing a unique characteristic60

across image measurements. The MKL algorithm now determines the combination of

metrics and image measurements [18] that lead to the highest classi�cation accuracy

(see Figure 1). It thus omits the simplifying assumption of most other classi�ers that

the discriminating characteristics of all image measurements are best captured by a

single metric (as in [18, 32, 33, 31, 34]).65

In summary, our analysis makes two novel contributions: (1) We propose Chained-

Regularization within the MKL framework, which, in our experiments, is signi�cantly

more accurate than single-step and other two-step approaches. (2) To the best of our

knowledge, this is the �rst study to examine both linear and non-linear supervised

learning approaches to identify patterns that discriminate HIV infected from healthy70

control brains.

The rest of the paper is organized as follows: Section 2 introduces the materials

(the data set), preprocessing, the proposed chained regularization and the experimen-

tal setup. Appendix A provides additional technical details of the proposed method.
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Table 1: Demographic information (`svol' = supratentorial volume).

Total
sex

Age (years) svol (� 106)
F M

HIV 65 20 45 51.81� 8.44 1:26� 0:12

Matched CTRL 65 20 45 51.76� 8.44 1:26� 0:13

CF CTRL 180 102 78 43.36� 18.92 1:26� 0:13

Section 3 compares our approach to other implementations on the HIV data set and re-75

ports on its identi�ed pattern speci�c to HIV. Section 4 provides an in depth discussion

about the �ndings of the previous section and their relevance with respect to the HIV

literature. The paper concludes with Section 5.

2. Materials and Methods

2.1. Participant Information80

Data used in this study are from 65 HIV infected individuals and 245 CTRL sub-

jects. For classi�cation, we match 65 CTRLs to the 65 HIV cohort. Speci�cally, for

each HIV subject, one subject is selected from the CTRL cohort, such that they have

the same sex and a minimal difference in their ages. We refer to the matched samples as

`matched CTRL group'. The remaining 180 CTRL subjects, referred to as Confound-85

ing Factors CTRL group (CF CTRL group), are used for analysis of the confounding

factors and minimizing their effects. Table 1 shows the demographic information of

participants in all groups, and Figure 2 plots their age distributions. All 310 partici-

pants are tested for HIV, viral load, and CD4 T-cell count. HIV infected individuals

had a CD4 count> 100 cells
�L and a Karnofsky score> 70[35]. Data from these subjects90

were used in previous studies [10, 4, 9].

2.2. Structural MRI Data Acquisition

Imaging data are acquired from each participant on a 3T General Electric (GE)

SIGNA HDx system using an 8-channel Array Spatial Sensitivity Encoding Technique
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Figure 2: Age distribution of the participants:HIV (left), Matched CTRL (middle), andCF CTRL (right).

(ASSET) coil for parallel and accelerated imaging. Furthermore, Inversion Recovery-95

SPoiled Gradient Recalled (IR-SPGR) echo sequence (TR=7:068ms, TI=300ms, TE

= 2:208ms, �ip angle=15� , matrix=256 � 256, slice dimensions=1:2 � 0:9375 �

0:9375mm, 124slices) are collected in the sagittal plane.

2.3. MRI Data Preprocessing and Feature Extraction

Preprocessing of the T1-weighted (T1w) MR images involves noise removal [36],100

computing signal-to-noise ratio (SNR) [37] and correcting �eld inhomogeneity via

N4ITK (Version 2.1.0) [38]. Next, the brain mask is segmented by majority voting [39]

across maps extracted by FSL BET (Version 5.0.6) [40], AFNI 3dSkullStrip (Version

AFNI 201112 21 1014) [41], FreeSurfer mri-gcut (Version 5.3.0) [42], and the Ro-

bust Brain Extraction (ROBEX) method (Version 1.2) [43], applied to bias and non-bias105

corrected T1w images. The re�ned mask is then used to repeat image inhomogeneity

correction.

We further apply the cross-sectional approach of FreeSurfer (Version 5.3.0) [44, 45]

to the skull-stripped T1w MRI of each subject in order to measure themean curva-

ture (MeanCurv), surface area (SurfArea), gray matter volume (GrayVol), andaverage110

thickness (ThickAvg)of 34 bilateral cortical Regions Of Interest (ROIs) [2 hemispheres

� 4 measurement types� 34 ROIs = 272], the volumes of 8 bilateral sub-cortical

ROIs (i.e., thalamus, caudate, putamen, pallidum, hippocampus, amygdala, accum-

bens, cerebellar cortex) [2 � 8 = 16], the volumes of 5 subregions of the corpus cal-

losum (posterior, mid-posterior, central, mid-central and anterior), and the combined115

volume of all white matter hypointensities [5 + 1 = 6 ]. White matter hypointensities
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are de�ned according to Freesurfer as voxels inside the white matter with signal inten-

sities lower than a threshold level [46]. Finally, volumes of the left and right lateral and

third ventricles [2 � 2 = 4] are measured by non-rigidly aligning the SRI24 atlas [47]

to the T1w MRI of the subject via ANTS (Version: 2.1.0) [48]. This procedure thus120

extracts 298 measures from each brain MRI.

For the entire matched data set, each of these 298 brain measures are normalized

using their z-scores [49]. To avoid using any data for testing the model, the z-scores are

parameterized by computing the mean and standard deviations of measurements across

the CF CTRL cohort. Based on this distribution, the z-scores are then computed for125

each subject of the matched CTRL and HIV groups. Furthermore, the segmentations

are used to compute the supratentorial volume (svol) for each subject. As in [50], svol

is used to approximate brain size.

2.4. Confounding Factors

For each of the 298 measures, we compute the Pearson correlation between the

corresponding z-scores of the 180 subjects of the CF CTRL group and the factors,i.e.,

age, sex, svol, race, and SNR. Some of the measures are signi�cantly correlated with

age, sex, andsvol (p-value< 0:05). For each measurement, a general linear model

(GLM) [51] is parameterized with respect to corresponding z-scores to omit the effect

of the confounding factors. Speci�cally, for each image measurem 2 f 1; : : : ; 298g,

the following GLM is �t across the subjectsi 2 f 1; : : : ; 180g of the CF CTRL group

with the corresponding z-scorevm
i as the observation and age (f age

i ), sex (f sex
i ), and

svol (f svol
i ) as the confounding factors:

vm
i � � m; 0 + � m; 1f age

i + � m; 2f sex
i + � m; 3f svol

i : (1)

130

After obtaining the optimal regression coef�cients(�̂ m; 0; �̂ m; 1; �̂ m; 2; �̂ m; 3) across

all subjects, the model is applied to the HIV and matched CTRL dataset. Speci�cally,

the residual explained by each subject's individual confounding factors multiplied by

the regression coef�cients is removed from the initial observation,i.e., the residual
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scoresxm
i is de�ned as

xm
i := vm

i � (�̂ m; 0 + �̂ m; 1f age
i + �̂ m; 2f sex

i + �̂ m; 3f svol
i ): (2)

2.5. Pattern Extraction and Classi�cation

In this section, the proposed Chained-Regularization technique is outlined. For

the interested reader, Appendix A derives the Chained-Regularization approach in de-

tail. Based on the residual scores of the matched data set, the accuracy of the pro-135

posed Chained-Regularization framework (denoted as`2;1-`2-reg; see also Figure 1)

in correctly labeling HIV infected and health control subjects is measured via 10-fold

(nested) cross-validation (see Figure 4). With respect to each (testing) fold, the training

of `2;1-`2-reg on the remaining data starts with theSelection Step, i.e., extract the infor-

mative pattern for classifying samples. The training then proceeds with theReweighing140

Step, i.e., �nding the optimal parameterization of the classi�er based on that pattern.

On the testing fold, we record the labeling of subjects according to the trained`2;1-`2-

reg. This procedure between training and testing is repeated until the labeling across

all 10 testing folds are generated. Based on those labelings, we compute the Accuracy

of prediction (i.e., the percentage of the testing subjects that are classi�ed correctly145

into their respective classes), speci�city (SPE), sensitivity (SEN) and area under the

receiver operating characteristic (ROC) curve (AUC). Note, our MKL-based mapping

function outputs a continuous value (more details in Appendix A) from which a binary

class label is derived via thresholding. By changing the threshold, we can create the

ROC curve and hence calculate the AUCs. In addition, we apply the Fisher's exact test150

[52] to ensure that implementation is signi�cantly better than chance (p-value< 0:01).

The remainder of this section provides further details about training of`2;1-`2-reg.

Inspired by [18, 13], the HIV speci�c pattern, identi�ed in the Selection Step dur-

ing training, is de�ned by the optimal `weight' vector specifying a linear multivariate

model de�ned by image measurements that correctly label subjects according to the155

MKL model. MKL classi�es samples by learning the optimal pairings between kernels

and image measurements. Finding the optimal pairing is described as a minimization
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problem with respect to a weight vector, sparsity of which speci�es the importance of

pairings for class separation. We use 7 different kernels to build our multiple kernel

learning model, including 3 kernel types [linear, histogram intersection kernel (HIK),160

and redial basis function kernel (RBF)] with different settings of their hyperparameters.

These 7 kernels are de�ned in detail in Appendix A. Speci�c to our implementation,

the optimal weight vector minimizes a cost function measuring classi�cation accuracy

and `group-sparsity` associated with those weights. As also shown in Figure 3, group-

sparsity is measured by �rst transforming the weight vector into a matrix so that each165

column represents a group and each group combines the weights associated with mea-

surements from the same type and region (regardless of hemisphere).`2;1-norm is then

applied to the matrix,i.e., the`2-norm is applied to each column resulting in the column

being reduced to a scalar value and then the`1-norm is applied to the vector of those

scalar values resulting in the entire matrix being reduced to a scalar value. Note, this170

computation generally penalizes weight vectors that select a larger number of groups,

i.e., are not sparse on a group level.

The optimal `weight' vector now depends on the weightC of the term measuring

classi�cation accuracy and the weight� of the term measuring group sparsity within

the MKL cost function (refer to Appendix A for more details). As in [13, 53], the175

search space for those two hyperparameters isf 10� 3; 10� 2; 10� 1; 1; 101; 102; 103g.

To identify the best hyperparameter setting, we perform 5-fold inner cross-validation

10 times. Each time, we randomly divide the training data into 5 validation folds.

For each validation fold, we �rst train our implementation of MKL with respect to a

speci�c hyperparameter setting on the remaining training data. For that setting, we180

then record the accuracy of the implementation on the validation fold and the identi�ed

pattern,i.e., regional scores associated with non-zero weights. We repeat this process

for each hyperparameter setting and then only keep the pattern that is associated with

the highest validation accuracy across all parameter settings. Repeating this process

for the remaining 4 validation folds and 9 more inner-cross validations then results in185

a total of 50 `trials'. The Selection Step then de�nes the HIV speci�c pattern as the

set of residual scores that were part of all 50 trial patterns. This multi-trial selection

process is considered more robust than only relying on single run of a sparse classi�er
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Figure 3: Illustration of feature grouping for group sparsity. (a) Regular sparsity (`1 -norm) operates on a

vector that concatenates the measurements from the left and right hemispheres. (b) Group sparsity operates

on the matrix formed by putting the features from the same ROIs of the left and right hemispheres in its

columns.

[18, 23].

The Reweighing Stepfocuses on improving MKL's classi�cation accuracy when190

only relying on the residual scores of the HIV speci�c pattern. As training of the clas-

si�er is now con�ned to only informative image measurements, classi�cation accuracy

is generally improved by replacing the`2;1-norm with thè 2-norm in the cost function

of the MKL implementation. TheReweighing Stepthen performs parameter explo-

ration of this MKL implementation via 5 fold inner cross-validation,i.e., it records the195

hyperparameter setting that leads to the highest average validation accuracy across the 5

inner folds. The training of̀2;1-`2-reg is completed by training MKL with the selected

hyperparameter setting on the complete training data. Note, choosing the optimal hy-

perparameters without including any data from the testing fold yields more reliable and

reproducible results [54] than tuning the hyperparameters without any inner validation200

folds.

The group sparsity (in the Selection Step) guarantees `bilateral selection' of each

type of ROI-speci�c measurement (i.e., measurements on both left and right hemi-

spheres are selected or neither one of them). The Reweighing Step then builds the �nal

classi�er relying on all selected individual measurements and the`2-norm, which gen-205

erates non-sparse classi�ers that generalize well to unseen testing data [17, 55]. For

the interested reader, Appendix A derives the Chained-Regularization approach in de-

tail. Speci�cally, we �rst generalize the MKL approach of [13], which was speci�c to

`1-norm regularization, to regularizers that are convex and differentiable inR� 0. We

then embed that approach into the proposed Chained-Regularization framework.210
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Figure 4: Illustration of the nested cross-validation strategy used in Chained-Regularization (`2;1 -`2 -reg).

On thei th training iteration, the Selection Step selects the most informative measurements (i.e., the pattern)

using `2;1 -regularization, and then the Reweighing Step uses that pattern to build the classi�er with`2 -

regularization. In the second step, inner cross-validation is used to choose the model hyperparameters. Next,

the built classi�er is used to calculate the accuracy scores on the corresponding testing fold (say Acci ). The

average accuracy for all folds is then reported (i.e., Acc = 1
10

P 10
i =1 Acci ).
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2.6. Alternative Implementations

To motivate the speci�c implementation of the Chained-Regularization approach,

the nested cross-validation of Chained-Regularization is repeated with different com-

binations of regularizers,i.e., using`1-norm in the Selection Step and`2-norm in the

Reweighing Step (denoted by`1-`2-reg), using̀ 2;1-norm in the Selection Step and`1-215

norm in the Reweighing Step (denoted by`2;1-`1-reg), and using̀2-norm in both steps

(denoted bỳ 2-`2-reg). In addition, the comparison includes an implicit model for the

grouping of the ROI measurements by computing the average value of each group and

then using thè1-norm in the Selection Step and`2-norm in the Reweighing Step (de-

noted as Avg̀ 1-`2-reg). To demonstrate the advantages of Chained-Regularization,220

only the MKL approach is cross-validated,i.e., omitting the Reweighing Step as well

as the repeated selection procedure. The correspondingSingle-Step Regularization

approaches are denoted as`1-reg,`2-reg and̀ 2;1-reg. Note, we omitted certain alter-

native implementations from the experimental setup to keep the comparison concise

and informative. For example, one could implement Chained-Regularization using the225

`1-norm in both steps. While this implementation produces similar accuracy score as

`2;1-`1-reg, the approach most likely underestimates the impact of the disease on a

small number of brain regions; a risk generally associated with sparse classi�ers based

on the`1-norm [56]. Furthermore, note that training a MKL without regularization,

constraint or a penalty term (in the reweighing step) is not feasible as the underlying230

minimization problem is then underdetermined [18],i.e., results in an unstable classi-

�er.

In addition to variations of Chained-Regularization, the comparison includes con-

ventional support vector machine (SVM) classi�ers widely used in neuroimaging ap-

plications to highlight the bene�ts of Chained-Regularization in the context of MKL.235

The class of alternative SVM classi�ers include linear SVM, SparseSVM [57], and

sparse feature selection [20] followed by a linear SVM (SFS+SVM). In addition, t-test

[20], elastic-net [24], and the mutual information based feature selector minimum-

redundancy maximum-relevancy (mRMR) [58] are coupled with a linear SVM classi-

�er to further evaluate the performance of the proposed feature selection technique.240

For each implementation, the accuracy scores of the previous section are computed.
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We also apply the DeLong test [59] to mark implementations that are signi�cantly

worse (p-value< 0:01) than the proposed̀2;1-`2-reg.

3. Results

3.1. Comparison245

Classi�cation results of the proposed and alternative methods are summarized in

Table 2. The proposed Chained-Regularization technique (`2;1-`2-reg) achieves the

highest Accuracy (82:3%), SEN (0:84), and AUC (0:87). The SPE (0:82) is equiva-

lent to `̀ 1-`2-reg' and `Avg`1-`2-reg'. All other implementations of the comparison

(including`2-`2-reg and̀ 2;1-`1-reg) not only received lower scores, but were also sig-250

ni�cantly worse than the proposed chained`2;1-`2 regularization. The single step regu-

larizers received higher scores in all four performance measures than the conventional

approaches with the exception of SFS+SVM. The performance scores of SFS+SVM

(Accuracy: 0:69%, SPE:0:69, SEN:0:70 and AUC:0:73) were higher than those of

`2-reg and`2;1-reg but lower thaǹ 1-reg (Accuracy:70:3%, SPE:0:70, SEN: 0:70,255

AUC: 0:73), the single step regularization with the highest Accuracy and AUC. Fi-

nally, only conventional methods (i.e., t-test+SVM, mRMR+SVM, SparseSVM and

SVM) produced classi�cation results that were not signi�cantly better than chance.

3.2. The HIV Pattern

For `2;1-`2-reg (the most accurate approach in the comparison), Figure 5 shows the260

frequencies (normalized in the range[0; 1]) of the 298 image measurements selected

by the Selection Step across the 10 runs of cross-validation on the whole matched data

set considered for identifying the pattern. This �gure shows the measurements with

a selection frequency of 1 (selected all times),i.e., those that are actually used in the

Reweighing Step of our method, with colors based on their measurement types. Note,265

the ordering of measurement types is arbitrary. We refer to this set of measurements as

the HIV pattern. The remaining measurements are displayed in gray regardless of the

type of measurement. Approximately 39% of all image measurements are selected in

all runs. These measures de�ne the HIV pattern.
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Table 2: Classi�cation results of different approaches summarized by Accuracy, speci�city (SPE), sensitivity

(SEN) and area under the ROC curve (AUC). The best score in each category is in bold. Methods are marked

with y , if they were signi�cantly worse than the proposed approach (p < 0:01 according to Delong's Test

[59]). Methods marked withz are signi�cantly better than chance (p < 0:01 according to the Fisher exact

test [52]).

Method
Accuracy

(%)
SPE SEN AUC

Proposed `2;1-`2-regz 82.3 0.82 0.84 0.87

C
ha

in
ed

(B
as

el
in

e)

`1-`2-regz 81.9 0.82 0.79 0.86

Avg `1-`2-regz 79.7 0.82 0.77 0.85

`2-`2-regyz 73.1 0.74 0.73 0.76

`2;1-`1-regyz 72.5 0.72 0.73 0.76

S
in

gl
e

S
te

p

R
eg

ul
ar

iz
at

io
n

`1–regyz 70.3 0.70 0.70 0.75

`2;1-regyz 69.7 0.70 0.68 0.73

`2–regyz 68.7 0.64 0.70 0.71

C
on

ve
nt

io
na

l

M
et

ho
ds

SFS [20]+SVMyz 69.9 0.69 0.70 0.73

elastic-net [24]+SVMyz 65.1 0.64 0.64 0.69

t-test [20]+SVMy 59.1 0.61 0.56 0.65

mRMR [58]+SVMy 59.6 0.56 0.61 0.64

SparseSVM [57]y 57.9 0.55 0.60 0.64

SVMy 56.7 0.57 0.56 0.60

To analyze the signi�cance of each type of measurement (Mean Curvature, Surface270

Area, Gray Matter Volume, Average Thickness, and Subcortical ROI Volumes), we

�rst create a baseline for comparison by performing 10-fold cross validation just on

the Reweighing Step with the scores being con�ned to the HIV pattern, recording the

testing accuracy for each fold, and then computing the mean and standard deviation in

the accuracy score across all 10 folds. The results in an accuracy of87:69%� 1:69275

(mean� standard deviation), which we refer to as `All Measurements' in Table 3.

For each measurement type, we then omit the corresponding measures from the data,
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Figure 5: Frequencies of selection for each of the 298 features. Colors encode measurement types. The

measurements in gray are those ignored in the Reweighing step.

perform 10-fold cross-validation of the Selection Step on this subset of data, record the

pattern, and repeat the previous cross-validation of the Reweighing Step with respect

to that pattern.280

With respect to using subsets of the measurements, omitting Average Thickness

from the data resulted in the pattern with the highest mean accuracy score (79:6% �

1:96). Omitting Mean Curvature, Surface Area, or Volume from the HIV pattern re-

sulted in accuracy scores that were signi�cantly lower than those produced by All Mea-

surements (or the HIV pattern). The same was true when con�ning classi�cation to285

cortical gray matter volumes.

Beyond the type of measurements, Table 4 lists and Figure 6 visualizes the selected

cortical regions. 35% of all cortical measurements are selected by our method. Fur-

thermore, a total of 52% of the subcortical measurements are selected. Figure 7 shows

the selected subcortical regions (i.e., hippocampus, amygdala, accumbens and cere-290

bellar cortex) along with the white matter structures (i.e., corpus callosum posterior

and mid-posterior) selected by our approach. In addition to these ROIs, hypointensity

lesion volumes are also selected. Note, as also argued in [8], the coef�cients com-

puted by sparse classi�ers simply parameterize a linear multivariate model (explained
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