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Abstract

In a point-to-point wireless fading channel, multiple transmit and receive antennas
can be used to improve the reliability of reception (diversity gain) or increase the rate
of communication for a fixed reliability level (multiplexing gain). In a multiple access
situation, multiple receive antennas can also be used to spatially separate signals from
different users (multiple access gain). Recent work has characterized the fundamental
tradeoff between diversity and multiplexing gains in the point-to-point scenario. In
this paper, we extend the results to a multiple access fading channel. Our results
characterize the fundamental tradeoff between the three types of gain and provide
insights on the capabilities of multiple antennas in a network context.

1 Introduction

The role of multiple antennas in communication over a wireless channel have been well
studied in the point-to-point scenario. The antennas can be used to boost the reliability of
reception for a given data rate (providing diversity gain) or boost the data rate for a given
reliability of reception (providing multiplexing or degrees of freedom gain). In a scenario with
several users communicating to a common receiver, multiple receive antennas also allows the
spatial separation of the signals of different users, thus providing a multiple access gain. This
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use of multiple antennas is also called space-division multiple access (SDMA). Recent work
[12] has characterized the fundamental tradeoff between the diversity and multiplexing gain
in the point-to-point context. The objective of this paper is to extend the results to the
many-to-one context, thus providing a complete picture on the tradeoff between the three
type of gains. This leads to insights on the capabilities of multiple antennas in a network
context.

Consider point-to-point wireless communication over a block length of l symbols during which
the channel from the m transmit to the n receive antennas is random but not changing over
the duration of communication (slow fading scenario). We focus our interest on the high
SNR scenario and assume that the receiver has full and accurate knowledge of the fading
channel. Recognizing that log SNR is the capacity of an AWGN channel at high SNR, we
define r := R/ log SNR as the multiplexing gain of a code with data rate R. Consider the
behavior of its ML error probability: if Pe decays as SNR−d for large SNR, then we say that
this code has a diversity gain of d. The best decay rate for a given multiplexing gain r is
denoted by d∗m,n(r). A complete characterization of this function for i.i.d. Rayleigh fading
has been recently done in [12]: provided that the block length l ≥ m + n− 1,

d∗m,n(r) = (m− r)(n− r)

for every integer r ≤ min(m, n) and the entire curve is piecewise linear joining these points.
The inverse of this function r∗m,n(d) is the largest achievable multiplexing gain for a given
diversity gain d. The maximal diversity gain is mn, attained when r → 0. The maximal
multiplexing gain is min(m,n), the number of degrees of freedom in the channel, attained
when d → 0.

Now consider the i.i.d. Rayleigh fading multiple access channel with K users, with each
user having m transmit antennas and the single receiver having n receive antennas. Each
user i has a multiplexing gain ri, i.e., its data rate Ri = ri log SNR. The optimal decoder
that minimizes the error probability for each user i is the (individual) ML decoder. We
require this minimal error probability to decay at least as fast as SNR−d, i.e., each user has a
diversity gain of d. In this paper, we characterize exactly the set of multiplexing gain tuples
(r1, . . . , rK) that still allow each user to have a diversity gain of d.

In the symmetric situation, i.e., the multiplexing gains of all the users are equal (to say r),
our characterization takes on a particularly simple form. We show that the largest achievable
diversity gain is equal to

• d∗m,n(r), the diversity gain attained when only one user is in the system, for r ≤
min

(
m, n

K+1

)
.

• d∗Km,n(Kr), the diversity gain when the K users pool up their transmit antennas to-

gether, for r ≥ min
(
m, n

K+1

)
.

In particular we note that when the number of transmit antennas m is no more than n
K+1

,
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the diversity of each user is the same as if the other users were not transmitting at all, i.e.
single-user performance.

These results are rather surprising: in [11], the authors have showed that under a linear
decorrelating receiver, with each additional receive antenna we can either increase the di-
versity of each user by one, or add an extra user at the same diversity level, but not both.
Our results show that this tradeoff is not fundamental and is due to the limitation of a
sub-optimal receiver structure. Indeed, if we use the ML receiver and we are in the regime
m ≤ n

K+1
, one can add an extra user and simultaneously increase the diversity of each user if

there is an additional receive antennas. We will also see that other strategies such as succes-
sive cancellation and rate-splitting do not significantly close this performance gap between
the linear and ML receivers.

Our result also sheds insight into the typical way error occurs in the multiple access fading
channel under optimal decoding. We show that error typically happens to only one of the
user’s messages or all the user messages are wrongly decoded. More precisely, we show:

• For r ≤ min
(
m, n

K+1

)
, the typical way for error to occur is that just one of the user’s

message is decoded wrongly.

• For r ≥ min
(
m, n

K+1

)
, the typical way for error to occur is that all the user messages

are decoded wrongly.

This result sheds insight into designing packet retransmit protocols for the fading uplink
channel (in a cellular wireless system).

The paper is summarized as follow. We begin in Section 2 with notations and the formal
statement of the model and problem studied. Our main results, characterization of the
multiplexing rate tuples of the users as a function of the common diversity gain for each user
is in Section 3. In Section 4, we go through a few examples to show how the results can be
applied. Sections 5 6 contain the proofs of the main results. Section 7 discusses the typical
ways in which errors can occur. Section 8 deals with the performance of various suboptimal
decoders: successive cancellation, time-sharing, and rate splitting.

2 System Model and Problem Formulation

2.1 Channel Model

Consider the multiple access channel in Figure 1. K non-cooperating transmitters commu-
nicate independent messages to a single receiver. Each of the transmitters has an array of m
transmit antennas and the receiver has an array of n receive antennas. Over a block length
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of time equal to l symbols, the received signal (an element of Cn×l) is

Y =

√
SNR

m

K∑
i=1

HiXi + W. (1)

Here W ∈ Cn×l represents additive noise at the receiver. The noise at each of the receive
antennas at each time is i.i.d. CN (0, 1); the notation of CN (0, a) denotes a complex Gaussian
random variable with i.i.d. zero mean, variance 1/2, Gaussian random variables as its real
and imaginary parts.

User K
Tx

User 2
Tx

User 1
Tx

m Tx Antenna

m Tx Antenna

n Rx Antenna

Rx

Figure 1: A multiple access system with K users each with m transmit antennas and a single
receiver with n antennas.

The channel between transmitter i and the receiver is represented by the n×m matrix Hi.
We assume that the channel stays constant over the entire block length of time l and is
known by the receiver, i.e. the slow fading scenario. The transmitter only has a statistical
characterization of the channels and is unaware of the actual realizations. We statistically
model {Hi}i=1...K to be i.i.d. with CN (0, 1) entries, the richly scattered Rayleigh fading
environment.

Our focus is on communication by the users over the fixed block of l symbols. A codebook of
user i (denoted by Ci) comprises of d2Rile codewords, with Ri denoting its rate of communica-
tion. We denote the codewords, each an element of Cm×l, as

{
Xi(j), j = 1 . . . 2dRile}. There

is a constraint on the average unit energy per transmit antenna per symbol per codeword:

1

ml | Ci |
|Ci|∑
j=1

‖Xi(j)‖2
F ≤ 1. (2)
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Here ‖ · ‖F is the Frobenius norm on matrices:

‖A‖2
F =

∑
i,j

| Aij |2

2.2 Diversity and Multiplexing Tradeoff

The receiver makes a decision for each of the user based jointly on the received matrix Y and
knowledge of the channel realization. The performance is given by average error probabilities
P

(i)
e , i = 1, 2 . . . , K, averaged over the equally likely messages and the channel realizations.

Multiple antennas provide two different types of benefits in a fading channel: diversity
gain and multiplexing gain. These gains are well studied in the context of point-to-point
communication, i.e. when there is only one transmitting user, and we briefly describe this.

For a fixed rate of transmission R, the error probability can decay with SNR as fast as

Pe ∼ 1

SNRmn ,

The factor mn is called the maximal diversity gain, obtained by averaging over the mn
independent channels gains between all the antenna pairs. In this context, multiple antennas
provide additional reliability over single antenna systems to compensate for the randomness
due to fading.

On the other hand, the randomness due to fading can be taken advantage of by creating
parallel spatial channels. This concept is best motivated by a capacity result: [9, 2] showed
that the ergodic capacity of the multiple antenna channel scales like

C(SNR) ∼ min(m,n) log SNR (b/s/Hz)

at high SNR. The parameter min(m,n) is the number of degrees of freedom in the channel
and yields the maximum amount of spatial multiplexing gain possible.

The ergodic capacity is achieved by averaging over the variation of the channel over time.
In the slow fading scenario, no such averaging is possible and one cannot communicate at
the capacity C(SNR) reliably. On the other hand, to achieve the maximal diversity gain
mn, one needs to communicate at a fixed rate R, which becomes very small compared to the
capacity at high SNR. This suggests a more interesting formulation of asking what is the
largest diversity gain that can be achieved if one wants to communicate at a fixed fraction
of the capacity. It leads to a formulation of the tradeoff between diversity and multiplexing
gains , which we formalize below.

We think of a scheme {C(SNR)} as a family of codes, coding over one single coherence block,
one at each SNR level. Let R(SNR) and Pe(SNR) denote their data rate (in bits per symbol
period) and the probability of detection error, respectively.
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Definition 1. A scheme {C(SNR)} is said to achieve spatial multiplexing gain r and diversity
gain d if the data rate

lim
SNR→∞

R(SNR)

log SNR
≥ r, (3)

and the average error probability

lim
SNR→∞

log Pe(SNR)

log SNR
≤ −d. (4)

For each r, define d∗m,n(r) to be the supremum of the diversity gain achieved over all schemes.
Equivalently, for each d, define r∗m,n(d) to be the supremum of the multiplexing gain achieved
over all schemes.

For notational simplicity, we shorten (4) as Pe(SNR)
.≤ SNR−d; similarly we say that

Pe(SNR)
.
= SNR−d if equality holds in the limit.

The fundamental tradeoff between these two types of gains is the subject of [12], where a
simple characterization of the diversity-multiplexing tradeoff curve d∗m,n(r) is obtained:

Theorem 1. [12] For block length l ≥ m+n−1, the diversity-multiplexing tradeoff curve for
the point-to-point channel is piecewise linear joining the integer points (k, (m−k)(n−k)), k =
0, . . . , min (m,n).

The diversity gain decreases from the maximal value mn to zero as the multiplexing gain
increases from 0 to the degrees of freedom min(m,n).

This formulation naturally generalizes to the multiple access channel. Given a common
diversity requirement d for the users, i.e.,

P (i)
e

.≤ SNR−d, i = 1, . . . , K,

we want to characterize the set of the K-tuple multiplexing gains (r1, . . . , rK), i.e.,

Ri ∼ ri log SNR, , i = 1, . . . , K,

that can be achieved. This set of multiplexing gains is denoted by R(d).

In this paper, we focus on the role of antenna arrays in delivering improved diversity and
multiplexing gains in multiple access fading channels. One way to think about a coding
scheme for the multiple access channel is as a point-to-point coding scheme for Km transmit
antennas but the signals on the K groups of m antennas each cannot be jointly coded
together; independent messages are communicated from the these K groups of transmit
antennas. Seen this way, our study here brings to sharp focus the role of joint coding across
the transmit antennas in a point-to-point channel.
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3 Optimal Tradeoff

3.1 Basic Result

Our first result is an explicit characterization of R(d) when the block length is large enough:

Theorem 2. If the block length l ≥ Km + n− 1,

R(d) =

{
(r1, . . . , rK) :

∑
s∈S

rs ≤ r∗|S|m,n (d) , ∀S ⊆ {1, . . . K}
}

. (5)

where r∗|S|m,n(·) is the multiplexing-diversity tradeoff curve for a point-to-point channel with

|S| ·m transmit and n receive antennas.

The proof of this result sheds light on the typical way error occurs . We show that for block
length l ≥ Km + n − 1, the typical way the error occurs is not by the additive noise being
too large but by the channel being bad, i.e. in outage when the target rate tuple does not
lie in the multiple access region defined by the realized channel matrix {Hi}i. This is a
natural generalization of the concept of outage in point-to-point channel [6, 9]. Our proof
technique crucially uses this observation: we calculate the probability of this outage event
and conditioned on no-outage show that the error probability is no worse than the probability
of outage. Thus, the characterization of R(d) boils down to calculating the probability of
outage for a given rate vector. This is easy: there are 2K−1 constraints in the multiple
access capacity region for a given realization of the channel and for each constraint there is a
probability of not meeting it. At the scale of interest, the probability of outage is the worst
among all these probabilities. Thus ensuring that we meet the diversity requirement results
in the 2K − 1 constraints in (5). Details of the proof of Theorem 2 is described in Section 5.

3.2 Symmetric Tradeoff

It turns out that due to the special structure of the functions r∗m,n(·), the tradeoff region can
be further simplified. Let us first focus on the largest symmetric multiplexing gain (r, . . . , r)
that can be achieved for a given diversity gain d. From Theorem 2, this symmetric rate is
constrained by

kr ≤ r∗km,n(d), k = 1, . . . K. (6)

and hence the largest symmetric multiplexing gain is given by:

min
k=1,...,K

1

k
r∗km,n(d), (7)

Equivalently, the largest achievable symmetric diversity gain for fixed symmetric multiplexing
gains is given by:

d∗sym(r) = min
k=1...K

d∗km,n(kr).
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Spatial Multiplexing Gain:   r=R/log SNR
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(min{m,n},0) 

(0,mn) 

(r, (m−r)(n−r)) 

(2, (m−2)(n−2)) 

(1,(m−1)(n−1)) 

Figure 2: Symmetric diversity-multiplexing tradeoff for m ≤ n
K+1

. Same as the single-user
curve.

We have the following result:

Theorem 3.

d∗sym(r) =

{
d∗m,n(r) r ≤ min(m, n

K+1
)

d∗Km,n(Kr) r ≥ min(m, n
K+1

)
(8)

Proof. See Section 6.

In the multiple access channel, it is clear that the tradeoff curve cannot be better than the
point-to-point single user tradeoff curve with all but one users absent, namely d∗m,n(r). The
above result says that if the load of the system is sufficiently “light” (r small), the single-
user tradeoff can be achieved for every user simultaneously. In particular, if the receiver has
enough antennas such that m ≤ n

K+1
, then min(m, n

K+1
) = min(m, n

K
) = m and single-user

performance is achieved for all r: the system is always lightly loaded. See Figure 2.

On the other hand, if m ≥ n
K+1

, then single user performance is achieved as long as the users
are all transmitting a low enough data rate: r ≤ n

K+1
. See Figure 3. Moreover, as long as

the system operates within the light-loaded regime, admitting one more user into the system
does not degrade the performance of other users, a very desirable property. In this regime,
the system provides multiple access capability without compromising the performance of
individual users.

In the heavy-loaded regime, i.e. r > n
K+1

, the symmetric diversity gain is d∗Km,n(Kr).
Hence, the tradeoff is as though the K users are pooled together into a single user with Km
antennas and multiplexing gain Kr. In this regime, the performance of each user is affected
by the presence of other users. Note that the total number of degrees of freedom in the
resulting point-to-point channel is min(Km, n), and hence d∗sym(r) = d∗Km,n(Kr) = 0 for
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Spatial Multiplexing Gain : r = R/log SNR
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(min(m,n/K))

*
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Figure 3: Symmetric diversity-multiplexing tradeoff for m > n
K+1

. Same as single-user curve
up for r ≤ n

K+1
, and switched to the antenna pooled curve for r > n

K+1
. For r > min(m, n

K
),

zero diversity gain is achieved. When α = n
K

is large, these two thresholds coincide and the
multiple access tradeoff curve is the same as the single-user curve but truncated at r = α.

r ≥ min(m,n/K). This parameter can be thought of as the number of degrees of freedom
per user.

Eqn. (7) says that the symmetric diversity-multiplexing curve is the minimum of K curves.
For values of r arbitrarily close to zero, the curve d∗1,n(r) is clearly the smallest one, since
d∗km,n(0) = kmn is smallest for k = 1. Hence the single-user curve must determine d∗sym for r
sufficiently small. What Theorem 3 says is that no other curve can determine d∗m,n(r) except
for d∗Km,n(Kr), and this happens when r > n/(K + 1).

In the scenario when the number of users K is much larger than the number of receive
antennas n, a particularly simple picture emerges. In this case, n

K+1
≈ n

K
and min(m, n

K
) =

n
K

def
= α is the degrees of freedom per user. When r > α, d∗sym(r) = 0: the multiplexing

gain cannot exceed the degrees of freedom per user. When r < α, d∗sym(r) = d∗m,n(r), the
single-user diversity-multiplexing performance. Thus, the presence of multiple users has the
effect of truncating the single-user tradeoff curve at r = α. See Figure 3.

3.3 Optimal Tradeoff Region Revisited

The structure of d∗sym suggests it is possible to obtain a simpler representation for R(d) than
given in Theorem 2. Indeed, we have the following result.
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Theorem 4. Suppose d1 = 0 and d2, . . . , dK are defined by:

dk
def
= d∗m,n(

n

k + 1
), k = 2, . . . , K. (9)

Then for d ≥ dk,

R(d) = {(r1, . . . , rK) : ri ≤ r∗m,n(d), i = 1, . . . , K} (10)

and for d ∈ [dl−1, dl]:

R(d) =

{
(r1, . . . , rK) :

∑
s∈S

rs ≤ d∗(|S|m,n) (d) , ∀S ⊆ {1, . . . K} , | S |∈ {1, l, l + 1, . . . K}
}

,

(11)

Proof. See Section 6.

For large enough desired diversity gain d ≥ dK , the region of multiplexing gains is a square,
i.e. each user achieves single-user performance. This is a direct consequence of the earlier
result on the symmetric tradeoff. For smaller diversity gain requirements, other constraints
start coming into play. When the diversity gain requirement is small enough, all 2K − 1
constraints become relevant.

Furthermore, the tradeoff region has an interesting combinatorial structure.

A polymatroid with rank function f (mapping subsets of {1, . . . , K} to nonnegative reals)
is the following polyhedron:

{
(x1, . . . , xK) ∈ RK

+ :
∑
i∈S

xi ≤ f(S), ∀S ⊆ {1, . . . , K}
}

. (12)

The rank function should be nonnegative (mapping the null set to zero) and

f(S ∪ {t}) ≥ f(S), (13)

f(S ∪ T ) + f(S ∩ T ) ≤ f(S) + F (T ). (14)

An important property of polymatroids is a simple characterization of its vertices. In par-
ticular, for every permutation π on the set {1, . . . , K} the point xπ

xπ
πi

def
= f({π1, . . . , πi})− f({π1, . . . πi−1}), i = 1 . . . K, (15)

meets the constraints in (12) and furthermore is a vertex. In fact, this can also be taken
as a definition of a polymatroid. If points defined in (15) satisfy the constraints in (12) for
every permutation π, then the function f must have the properties in (13) and (14) and the
polyhedron in (12) is a polyhedron. Since the vertices are fully characterized, maximizing
linear functions over a polymatroid is easy.
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Theorem 5. Given a diversity requirement d, let l satisfy d ∈ [dl−1, dl]. The tradeoff region
R(d) is a polymatroid, with rank function f(·) given by:

f(S) =

{ | S | r∗m,n(d) 0 ≤| S |≤ l − 1,
r∗|S|m,n(d) l ≤| S |≤ K.

.

Proof. See Section 6.

4 Examples

In this section we will go through a few examples to explore some implications of the results.

4.1 Example 1: Adding a Transmit Antenna

Consider a system with a receiver having n antennas and K users each with a single transmit
antenna. What is the performance gain from adding an extra transmit antenna for each user?
We focus on the symmetric operating point. Consider two cases:

Case 1: K < n
2
− 1:

Here the number of users in the system is relatively few, the system is lightly loaded, and
each user attains single-user performance even after adding the extra transmit antenna. The
improvement in performance is seen in Figure 4. In particular, the number of degrees of
freedom per user is increased from 1 to 2 and the maximal diversity gain increases from n
to 2n.

Spatial Multiplexing Gain: r=R/log(SNR) 

D
iv

er
si

ty
 G

ai
n:

 d
* (r

)

(2,0) 

(0,n) 

(1,0) 

(2n,0) 

(1, n−1) 

1 Tx Antenna 

2 Tx Antenna 

Figure 4: Improvement in (symmetric) performance by adding a transmit antenna when
system is lightly loaded. Increase in both degrees of freedom and diversity is seen.
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Case 2: K ≥ n:

The effect of adding a transmit antenna is seen in Figure 5. In this case, there is no increase
in degrees of freedom per user: it remains at n

K
. The degrees of freedom is already limited by

the number of receive antennas. Nevertheless, the diversity gain d∗sym(r) increases for each
r < n

K
.

K+1
n

Spatial Multiplexing Gain : r = R/log SNR

D
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ty
 G
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: d
 (

r)

* 2 Tx antenna

2n

Optimal tradeoff

n

1 Tx antenna

Figure 5: Improvement in performance by adding a transmit antenna when system is heavily
loaded. No increase in degrees of freedom but the tradeoff curve improves.

This example shows the importance of viewing the multiple access system as a whole rather
than a set of K separate point-to-point links. While the latter view is accurate in the lightly
loaded regime where each user attains single-user performance, it can be very misleading in
general.

4.2 Example 2: Adding a Receive Antenna

What is the system wide benefit of adding a receive antenna at the base station?

This question was asked in [11] in a specific context. The authors considered a multiple
access system with K users, each having one transmit antenna, and a receiver equipped with
n antennas, with n > K. A simple linear receiver is used to demonstrate the performance
improvement due to the use of multiple antennas at the receiver. To receive the message
from an individual user, the receiver treats the signals from all other users as interference,
and uses a decorrelator (Chapter 5 of [10]) to null them out. The authors showed that even
with this simple receiver, significant performance gain can be obtained by using multiple
antennas at the receiver. In particular, for QPSK modulation, the error probability is of the
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order

Pe
.
= SNR−(n−K+1).

This means that with n antennas at the receivers, one can null out the interference from
K − 1 users, thus accommodate K users, and provide each of them with interference free
reception with a diversity order n− (K − 1).

Put it another way:

An additional receive antenna can either increase the diversity order of every user by 1, or
accommodate one more user at the same diversity order.

Notice that the “diversity order” in this statement corresponds to the maximum diversity
gain on the tradeoff curve at r = 0. In fact, it is easy to compute the entire diversity-
multiplexing tradeoff curve under the decorrelator: it is given by d(r) = (n−K+1)(1−r).(See
Section 7.2 of [12] for a derivation of this, in the context of V-BLAST.)

We can compare this performance with the optimal diversity-multiplexing studied in this
paper. For this scenario with K users, each having m = 1 transmit antenna, and n receive
antennas, Theorem 3 specifies the optimal tradeoff performance. Provided that n > K, (8)
can be rewritten as

d∗sym(r) = d∗1,n(r) r ∈ [0, 1].

This is in the light-loaded regime: each individual user can have same tradeoff performance
of a point-to-point channel with m = 1 transmit antenna and n receive antennas: a straight
line connecting the maximum diversity gain point (0, n) and the maximum multiplexing gain
point (1, 0). Adding both an extra receiver and an extra user still maintains the light-loaded
regime. Thus we can conclude:

An additional receive antenna can increase the diversity order for each user by 1, and simul-
taneously accommodate one more user with the same tradeoff performance of the existing
users.

Under the decorrelator, the additional receive antenna can either provide extra diversity or
accommodate one more user, but not both. However, our results show that this tradeoff is
not fundamental and is due to the limitation of the decorrelator; with the optimal receiver,
you can in fact bake the cake and eat it too.

More generally, we can compare the diversity-multiplexing tradeoff curve of the decorrelator
with the optimal curve; this is shown in Figure 6

Performance of other receiver structures will be described in Section 8.
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Spatial Multiplexing Gain : r = R/log SNR
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Figure 6: Comparison of tradeoff curve of the decorrelator with the optimal.

4.3 Example 3: Implications on Point-to-Point Optimal Codes

We have been analyzing the multiple access diversity-multiplexing tradeoff in terms of the
point-to-point tradeoff curve. But we can turn the table around and use our multiple access
results to shed some light on the point-to-point problem. Consider the point-to-point channel
with M transmit and n receive antennas. We ask the question: what part of the tradeoff
curve d∗M,n(r) can be achieved without coding across the transmit antennas? This is an
interesting question as it potentially simplifies the point-to-point code design problem.

To this end, consider a multiple access channel with M users and 1 transmit antenna each.
The diversity gain achievable when each user transmits at a multiplexing gain r/M is given
by the symmetric diversity-multiplexing tradeoff in Theorem 3:

d∗sym(
r

M
) =

{
d∗1,n( r

M
) r

M
≤ min(1, n

M+1
)

d∗M,n(r) r
M
≥ min(1, n

M+1
)

(16)

From this, we observe that if r ≥ min(M, nM
M+1

) then d∗M,n(r) = d∗sym(r/M). Since there is no

coding across the users in the multiple access channel, this means that for r ≥ min(M, nM
M+1

),
the tradeoff curve in the point-to-point channel d∗M,n(r) can in fact be achieved by separate

coding at the transmit antennas. On the other hand, if r ≤ min(M, nM
M+1

) then the symmetric
tradeoff is determined by d∗1,n(r/M), which is smaller than or equal to d∗M,n(r). If it is strictly
smaller, this implies that coding across the antennas is necessary to achieve the point-to-point
channel tradeoff curve at those rates.
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More specifically, we can consider three cases:

1. M < n. In this case, nM/(M + 1) is larger than M and further d∗1,n(r/M) < d∗M,n(r)
for all values of r ≤ M , the number of degrees of freedom in the channel. Hence
in this case, without coding across the transmit antennas, one will never achieve the
point-to-point tradeoff curve.

2. M > n. In this case, the point-to-point tradeoff curve d∗M,n(r) for r ≥ nM
M+1

can be
achieved without coding across the antennas. Further, since d∗1,n(r/M) < d∗M,n(r) for

all multiplexing gains r < nM
M+1

, schemes that do not code across transmit antennas for
the point-to-point channel is strictly suboptimal for these rates.

3. M = n. In this case, d∗1,n(r/n) = d∗n,n(r) for r ≥ n− 1 and since (n− 1)/n < n/(n + 1)
the symmetric diversity-multiplexing tradeoff in (16) can be simplified to:

dsym(r/n) = n− r (17)

for r = 0 to r = n.

This means, that in the point-to-point channel with multiplexing gain larger than n−1
the maximal diversity gain can be obtained by coding separately at each of the transmit
antennas. See Figure 7.

Spatial Multiplexing Gain: r=R/log(SNR) 
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Figure 7: The n × n point-to-point tradeoff curve coincides with the multiple access curve
in the high rate region.

5 Proof of Theorem 2

We first prove the lower bound using an outage formulation. Then we prove achievability
using a random coding argument.
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5.1 Individual vs Joint ML Receiver

The receiver that minimizes the error probability for each user i is the individual ML receiver.
This is in general different from the joint ML receiver that jointly detects the messages of
all the users (Section 4.1.1 in [10] has some more discussion on this). But it is easy to
relate the error probabilities of the two receivers. Clearly, the joint ML error probability Pe

(probability that any user is detected incorrectly) is an upper bound to each of the individual

ML error probabilities P
(i)
e . On the other hand, we can consider a joint receiver which uses

the individual ML receivers to make a decision on each user’s codeword; the performance of
this receiver must be an upper bound to Pe. Furthermore, by the union of events bound,
the probability of error of this joint receiver is less than the sum of the individual ML
probabilities of error. Hence, we conclude:

P (k)
e ≤ Pe ≤

K∑
i=1

P (i)
e for all k.

Thus, requiring that each of the P
(i)
e to decay like SNRd is equivalent to requiring the joint

ML error probability Pe to decay like SNRd. Thus, it suffices to work with only the joint ML
receiver for the proof below.

5.2 The Lower Bound: Outage Formulation

In point-to-point channels, the outage is defined as the event that the mutual information
of the channel, as a function of the realization of the channel state, does not support the
target data rate R, i.e.,

O ∆
= {H : I(X;Y | H = H) ≤ R}

where I(X;Y) is the mutual information of a point-to-point link with m transmit and n
receive antennas.

With the input X having i.i.d. CN (0, 1) entries,

I(X;Y | H = H) = log det

(
I +

SNR

m
HH†

)
.

It can be shown (Section 3.B of [12]) that one can restrict to i.i.d. CN inputs and the resulting
outage probability is characterized in Theorem 4 of [12]: at a data rate R = r log SNR
(bps/Hz)

Pout(r log SNR)
.≤ SNR−d∗m,n(r), (18)

with d∗m,n(r) defined as in Theorem 1: for integer r, the diversity gain is (m− r) (n− r) and
a piecewise linear function between these integer points. It is shown in Lemma 5 of [12]
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that this outage probability provides a lower bound of the optimal error probability, up to
the SNR exponent, i.e., for any coding scheme with a data rate R = r log SNR(bps/Hz), the
probability of detection error is lower bounded by

Pe(SNR)
.≥ SNR−d∗m,n(r)

Intuitively, when an outage occurs, there is a high probability of making a detection error, no
matter what coding and decoding techniques are used; therefore, the probability of detection
error is lower bounded by that of outage.

In the multiple access channel, we can define a corresponding outage event, by which we
wish to indicate that the channel is so poor such that the target data rate is not supported,
at least for a subset of the users. The definition of outage is given as follows.

Definition 6. Outage Event
For a multiple access channel with K users, each equipped with m transmit antennas, and a
receiver with n receive antennas, the outage event is

O ∆
=

⋃
S

OS (19)

The union is taken over all subsets S ⊆ {1, . . . , K}, and

OS
∆
=

{
H ∈ Cn×Km : I(XS;Y | XSc ,H = H) <

∑
i∈S

Ri

}

where XS contains the input signals from the users in S.

The significance of this definition is the following: the probability of outage yields a lower
bound to the error probability of any scheme. To see that, suppose OS occurs for a subset S.
Let a genie provide the receiver with the side information of all the correct data symbols XSc

transmitted by users in Sc. But still the sum target rate of the users in S is not supported.
Consequently, a detection error (of the users in set S) occurs with a high probability when
OS occurs.

In the above argument, upon receiving the genie information of the data XSc , the receiver
can without loss of optimality, cancel its contribution from the received signals, after which
the channel can be written as

YS =

√
SNR

m

∑
i∈S

HiXi + W

=

√
SNR

m
HSXS + W

where HS ∈ Cn×|S|m contains the fading coefficients corresponding to the users in S. By
allowing the users in S to cooperate, the problem is reduced into a point-to-point problem
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with |S|m transmit antennas and n receive antennas, and a fading coefficient matrix HS.
Now we can choose the input X to have the i.i.d. Gaussian distribution, such that the P (OS)
is minimized for all S simultaneously. Let the target data rate of user i be Ri = ri log SNR
(bps/Hz) for i ∈ {1, . . . , K}, from (18), we have

P (OS)
.
= SNR−d∗|S|m,n

(
P

i∈S ri)

and

P (O) = P

(⋃
S

OS

)
≤

∑
S

P (OS)
.
= P (OS∗)

where S∗ be the subset of {1, . . . , K} with the slowest decay rate of P (OS), i.e.,

S∗ = arg min
S

d∗|S|m,n

(∑
i∈S

ri

)
.

Combining with the fact that P (O) ≥ P (OS∗), we have

P (O)
.
= P (OS∗)

.
= SNR−minS d∗|S|m,n

(
P

i∈S ri),

and summarized below.

Lemma 7. For a multiple access system with K users, each equipped with m transmit an-
tennas, and a receiver with n receive antennas, let the data rate of user i be Ri = ri log SNR
(bps/Hz), for i = 1, . . . , K. The detection error probability of any coding scheme is lower
bounded

Pe(SNR)
.≥ P (O)

.
= SNR−dout(r1,...,rK)

where

dout(r1, . . . , rK) = min
S

d∗|S|m,n

(∑
i∈S

ri

)

with d∗m,n(r) as given in Theorem 1.

Consequently, to meet a diversity requirement of d for every user, the transmitted data rates
must satisfy

d∗|S|m,n

(∑
i∈S

ri

)
≥ d,

or equivalently,
∑
i∈S

ri ≤ r
∗
|S|m,n(d), (20)

for all S ⊆ {1, . . . , K}.
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5.3 The Upper Bound: Random Coding

Lemma 7 gives a lower bound of the optimal error probability. In this section, we complete
the proof of Theorem 2 by showing that this bound is actually tight, up to the scale of the
SNR exponent, provided that the block length l ≥ Km + n − 1. We show that for any
(r1, . . . , rK) satisfying (20), there exists a coding scheme that achieves the common diversity
d.

To do this, we consider the ensemble of i.i.d. CN random codes. Specifically, each user
generates a codebook C(i) containing SNRri×l codewords, denoted as X

(i)
1 , X

(i)
2 , . . . , X

(i)

SNRril .
Each codeword is a m × l matrix with i.i.d. CN (0, 1) entries. Once picked, the codebooks
are revealed to the receiver. In each block period, the transmitted signals of user i is simply
chosen from the corresponding codebook, C(i), equiprobably according to the message to be
transmitted.

Consider the detection error probability of the joint ML receiver. We first define for each
non-empty set S ⊆ {1, . . . , K} an error event (referred to as a “type S error”)

ES ∆
= {m̂i = mi, ∀i ∈ Sc and m̂i 6= mi, ∀i ∈ S}

where m̂i is the decoded message for user i. Thus ES is the event that the receiver makes
wrong decisions on the messages of all the users in set S, and makes correct decisions for the
rest. Clearly we have

Pe(SNR) = P

(⋃
S

ES

)
≤

∑
S

P (ES)

In the following, we study P (ES), assuming without loss of generality that S = {1, 2, . . . , |S|}.
Let X0 = (X

(1)
0 ,X

(2)
0 , . . . ,X

(K)
0 ) be transmitted, where X

(i)
0 ∈ C(i) is the codeword transmit-

ted by user i. Denote X1 be another codeword which differs from X0 on the symbols
transmitted by all the users in S but coincides on those transmitted by the other users, that
is,

X1 = (X
(1)
1 ,X

(2)
1 , . . . ,X

(|S|)
1 ,X

(|S|+1)
0 , . . . ,X

(K)
0 ),

where X
(i)
1 6= X

(i)
0 .

Now a type S error occurs if the receiver makes a (wrong) decision in favor of one of such
codewords X1. This occurs exactly when

‖W‖2 ≥
∥∥∥∥∥

1

2

√
SNR

m
H(X1 −X0)

∥∥∥∥∥

2

,

=

∥∥∥∥∥
1

2

√
SNR

m
HS(XS

1 −XS
0 )

∥∥∥∥∥

2

. (21)
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Here HS =
[
H1,H2, . . . ,H|S|

]
, the first |S|m columns of H and XS

i =
[
X

(1)
i ,X

(2)
i , . . . ,X

(|S|)
i

]

for i = 0, 1.

Now the computation of P (ES) is reduced to finding the probability, averaged over H and
W, that there exists a codeword XS

1 6= XS
0 such that (21) is satisfied. This is very similar to

the computation of the error probability of a point-to-point link with |S|m transmit and n
receive antennas, with i.i.d. CN (0, 1) random code as the input, and a overall data rate of∑

ri log SNR. The only difference is that in the multiple-access case, each user generate his
codebook separately; while in the point-to-point case, there is only one codebook.

In Section 3.3 of [12], it is shown that for the point-to-point channel described above, provided
that the block length l ≥ |S|m + n − 1, the error probability, averaged over the CN (0, 1)
random code ensemble, has diversity

d∗|S|m,n




|S|∑
i=1

ri


 . (22)

Now the error probability coincides with the lower bound from the outage formulation:

Pe(SNR)
.
= SNR−d∗|S|m,n

(rS)

for d∗m,n(r) defined in Theorem 1.

The proof of this statement is based on the computation of the conditional pairwise error
probability, P (X0 → X1 | H = H) as in (19) in [12], averaged over the ensemble of the
codes. In other words, we only used the pairwise independent property of the codebook, i.e.,
for any pair of distinct codewords, X0 and X1, all the entries are generated independently
from the Gaussian ensemble.

In computing P (ES) for the multiple access channel, we make the key observation that XS
0

and XS
1 in (21) are pairwise independent. Consequently the proof in [12] can be used to

show,

P (ES)
.≤ SNR−d∗|S|m,n

(rs) (23)

where rS =
∑

i∈S ri is the sum multiplexing gain of the users in S.

The overall error probability is

Pe(SNR) ≤
∑

S

P (ES)

.
= P (ES∗)

where S∗ maximizes the SNR exponent of P (ES), i.e.,

S∗ = arg min
S

d∗|S|m,n(rS).

This completes the proof of our main result.
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6 Proofs of Theorems 3, 4, 5

6.1 Proof of Theorem 3

Recall that
d∗sym(r) = min

k=1...K
d∗km,n(kr).

To prove the result we have to show that for r ≤ min(m,n/(K + 1)), d∗m,n(r) is the smallest
and otherwise d∗Km,n(Kr) is the smallest.

Fix 1 ≤ k2 < k1 ≤ K and consider the following key observation.

d∗k1m,n(k1r)− d∗k2m,n(k2r)
≥ 0, r ∈

[
0, min

(
m, n

k1+k2

)]
,

≤ 0, r ∈
[
min

(
m, n

k1+k2

)
,m

]
.

(24)

Suppose this is true. It can be directly seen from the definition of d∗ that

d∗kim,n(0) > d∗k2m,n(0), k1 > k2,

d∗km,n(r1) > d∗km,n(r2), r1 < r2,

d∗km,n(r) = 0, r ≥ min (km, n) .

In the case m ≤ n/(K + 1), we complete the proof by observing from (24) that d∗1,n(r) is
below every other curve. If this is not the case, then d∗1,n(r) is still below every other curve
up to r ≤ n/(K+1) at which point the curve d∗Km,n(r) intersects it. Since the curve d∗Km,n(r)
must have intersected all the other curves by r ≤ n/(K + 1), it is now below all the other
curves for r ∈ [n/(K + 1), n/K]. This completes the proof of the proposition.

We now show (24). Fix 1 ≤ k ≤ K. Consider the following parabola:

gk(r)
def
= k (m− r) (n− kr) r ∈ [0, min (m,n/k)] .

This parabola is below the corresponding single user tradeoff curve d∗km,n(kr) for all values
of r (since this tradeoff curve is piecewise linear) and equal only when r is such that kr is
an integer. It follows that the two tradeoff curves d∗kim,n(r), i = 1, 2 cross over if and only if
the corresponding parabolas gki

(r), i = 1, 2 intersect. A simple calculation shows that the
two parabolas intersect at a point r exactly when r satisfies the quadratic equation:

r2 (k1 + k2)− r (n + (k1 + k2) m) + mn = 0.

There are two solutions: m and n/(k1 + k2). The interesting range of intersection of the
parabolas is restricted to r < min (m,n/k1, n/k2) ≤ m; at least one of the tradeoff curves
is identically zero for r above this value. Thus we have now shown (24) for the case m ≤
n/(k1 + k2) and will henceforth assume otherwise. In this regime, we conclude that the
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tradeoff curves cross over exactly once in the range [0, min (m,n/k1, n/k2)) and only need to
determine the cross over point of the tradeoff curves.

While the intersection of the two parabolas occurs at n/ (k1 + k2), this might not be the
same as the cross over point between the tradeoff curves. In general the parabolas are below
the corresponding tradeoff curves, but if nk1/ (k1 + k2) is an integer (observe that in this
case it must be that nk2/ (k1 + k2) is also an integer) then we have found the cross over
point of the tradeoff curves as well to be n/ (k1 + k2). We are hence only left with the case
when m > n/(k1 + k2) and nki/(k1 + k2), i = 1, 2 are not integers. We show that even in
this case, somewhat surprisingly, the crossover point of the tradeoff curves is still the same
as the intersection point between the parabolas.

Since the tradeoff curve is piecewise linear, the cross over point can be found as the inter-
section of the line segments of d∗kim,n(kir) passing through the two points

(ni, (kim− ni) (n− ni)) and (ni + 1, (kim− ni − 1) (n− ni − 1)) ,

for i = 1, 2. Here we have written

ni
def
=

⌊
nki

k1 + k2

⌋
, i = 1, 2.

Hence the intersection point r satisfies the linear equation (k1a1 − k2a2) r + b = 0 where

ai = (kim + n− 2ni − 1) , i = 1, 2,

b = (k2m− n2) (n− n2)− (k1m− n1) (n− n1) + n2a2 − n1a1.

Observe that since nki/ (k1 + k2) , i = 1, 2 are not integers we must have

n1 + n2 = n− 1. (25)

Using (25) it can be verified easily that

k1a1 + k2a2 = (k1 + k2) (m (k1 − k2)− (n1 − n2)) ,

b = n ((n1 − n2)−m (k1 − k2)) .

It now follows that the intersection point between the line segments, and hence that between
the tradeoff curves, is r = n/ (k1 + k2). This completes the proof.

6.2 Proof of Theorem 4

From the proof of Theorem 3 (in particular from (24)), it follows that the single-user tradeoff
curve d∗m,n(r) is below all the other curves d∗km,n(kr) for k = 2, . . . K for r ≤ n/ (K + 1).
Recall that

dK
def
= d∗m,n

(
n

K + 1

)
. (26)
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and r∗m,n(d) is multiplexing-tradeoff curve (inverse of d∗m,n(r)). Since the tradeoff curves are
monotonically decreasing, (24) means that

r∗m,n(d) ≤ 1

k
r∗km,n(d), d ≥ dK .

From the characterization of R(d) in Theorem 2, it now follows that, for d ≥ dK ,

R(d) =
{
(r1, . . . , rK) : 0 ≤ ri ≤ d∗m,n(ri), i = 1 . . . K.

}
,

i.e., the optimal tradeoff region is a cube.

Towards generalizing this observation, define (analogous to (26)):

dk
def
= d∗m,n

(
n

k + 1

)
, k = 2 . . . K. (27)

From (24) it follows that for d ∈ [dl−1, dl],

1

K
r∗Km,n (d) ≤ 1

K − 1
r∗(K−1)m,n (d) ≤ · · · ≤ 1

l
r∗lm,n (d) ≤ r∗m,n (d) , (28)

r∗m,n (d) ≥ 1

k
r∗km,n (d) , k = 2, . . . l − 1. (29)

It follows that the constraint

ri ≤ r∗m,n(d), i = 1 . . . K

implies the constraints ∑
s∈S

rs ≤ r∗|S|m,n(d),

for any subset S with |S| = 2, . . . , l − 1. This proves the simplification of R(d) from (5) to
(11).

6.3 Proof of Theorem 5

Observe that the characterization of (11) can be rewritten as, for d ∈ [dl−1, dl],

R(d) =

{
(r1, . . . , rK) :

∑
s∈S

rs ≤ f(| S |), S ⊆ {1, . . . , K}
}

. (30)

Here we have written the rank function

f :| S |7→
{ | S | r∗m,n(d) 0 ≤| S |≤ l − 1,

r∗|S|m,n(d) l ≤| S |≤ K.
.
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Fix an ordering of the users π, a permutation of {1, . . . , K}. Using (28), it follows that the
multiplexing gain vector (rπ

1 , . . . , rπ
K) with

rπ
π(i)

def
= f(i)− f(i− 1), i = 1, . . . , K,

is contained in the region R(d) in (30). Since this is true for every permutation π, and for
every l, we have shown that R(d) is indeed a polymatroid.

7 Typical Error Events

For a multiple access channel with K users, the detection error event can be decomposed
into a collection of disjoint error events, Ek, k = 1, . . . , K, where Ek is the event that the
message from k users are erroneously decoded, and is referred as a “type-k” error event. An
analysis of these error events for the AWGN multiple access channel is in [4].

Now let us turn to the fading multiple access channel with symmetric multiplexing and
diversity gains for each user. We can lower bound the probability of the type-k error by the
probability of outage of the k users considered. From our calculation in Section 5.2, we know
that the probability of this outage event is of the order

SNR−d∗km,n(kr). (31)

On the other hand, we know from our discussion in Section 5.3 that with a random Gaussian
code the average probability of a type-k error event is no more than the same order in (31).
We can hence conclude that (31) is the exact order of decay of the probability of type-k error
event.

Since the overall error event is the union of the type-k error events we can write

Pe(SNR) =
K∑

k=1

P (Ek)
.
=

K∑

k=1

SNR−d∗km,n(kr) .
= SNR−mink=1...K d∗km,n(kr).

From Theorem 3, we know that for all rates r ≤ min (m,n/K + 1), the type-1 error event
dominates all the others and for larger rates, the type-K error event is dominant. Thus,
depending on the rates of the users, the typical way errors occur is either only one of the
users is in error or all the users are in error.

In practical multiple access systems (such as the uplink of cellular wireless systems), typically
the receiver (base station) uses redundancy in the packet format to check whether it has been
correctly decoded (versions of CRC (cyclic redundancy check) codes are commonly used).
Then, the base station feeds back to the users whether their packet has been successfully
received or was in error. This feedback is called ARQ (automatic repeat request) and allows
the users to retransmit an erroneously received packet.
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Our analysis of the typical way error occurs in the fading uplink channel provides insight into
the ARQ protocol design. In particular, one important issue in ARQ protocol design is how
much bandwidth has to be allocated to transmit the repeat request. A conservative approach
is to reserve enough bandwidth with every packet transmission, to be able to transmit to
all the users whether their packet has been correctly received or not; since this resource
reservation is continuous (i.e., done with every packet transmission and not just one-time),
this design costs quite a bit of the downlink bandwidth. On the other hand, when lesser
bandwidth is allocated for the repeat request then exceptions (when the number of errors is
more than what can be transmitted) will have to be handled separately; if the exceptions
happen rarely then this design is preferable to the conservative one.

For large enough rates, we have identified the dominant error event to be the one where all
the users’ packets are in error. This suggests that we should allocate just enough resources
with every packet transmission to be able to broadcast whether every user has to retransmit
(all user packets are received erroneously) or not. On the other hand, for smaller rates we
know that it is most likely that only one of the users’ packets is in error. In this case, it
makes sense to reserve just enough bandwidth to be able to transmit which of the users’
packet is in error (and handle the exceptions separately). In both the cases, the insight
in the identification of typical error events suggests that we can design the ARQ protocol
with minimum reservation of resources to feed back packet errors, thus improving over the
conservative resource reservation scheme.

8 Performance of other schemes

In Example 2 of Section 4, we have studied the diversity-multiplexing tradeoff performance
of sub-optimal linear receivers. In this section, we will look at the performance of other
receiver structures. The comparison will be restricted to the symmetric scenario where each
user attains the same multiplexing gain.

8.1 Successive Cancellation

The successive cancellation technique is used in multiple access channels to reduce the joint
demodulation of the data from all the users into a sequence of single-user demodulations.

In a system with K users equipped with m transmit antennas each, and n receive antennas,
a successive cancellation receiver demodulates the data in K stages. At each stage, the
receiver demodulates the data from one user, treating the signals from the uncanceled users as
interference. Here, we consider the receiver that nulls out the interference with a decorrelator.
After the data symbols from this user is decoded, its contribution is subtracted from the
received signals before continuing to the next stage.

We start by studying the case m = 1, i.e., each user has only 1 transmit antenna. The
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successive cancellation process reduces the multiple access channel into the following single-
user sub-channels.

Yi =
√

SNRgixi + Wi

where xi ∈ C1×l is the signal transmitted by user i, Yi,Wi ∈ Cn×l are the received signal and
noise for user i, respectively. gi ∈ Cn is the effective channel gain, which is the component
of hi, the fading coefficients for user i, that is perpendicular to the signal space that needs
to be nulled out.

In general, the performance of the successive cancellation receiver depends on the order in
which the users are demodulated. We will start with the simple case that the demodulation
takes a prescribed order, regardless of the realization of Hi’s. Without loss of generality,
assume that the data from user 1 is decoded first, and user 2 second, etc. It is clear that
the performance of this receiver will be limited by that for the first user, and hence does not
provide any improvement over a linear decorrelator without cancellation. The performance
of this receiver has already been analyzed in [12]; For ease of generalization to other scenarios,
we re-derive it here.

Under the decorrelator, gi is the component of hi that is perpendicular to the subspace
spanned by hi+1, . . . ,hk. Now without loss of optimality, the receiver can project each
column vector of Yi into the direction of gi and we can rewrite the sub-channels as:

yi =
√

SNR ‖gi‖xi + wi,

where yi = Yigi/ ‖gi‖ ∈ C1×l. Moreover, for each i = 1, . . . , K, ‖gi‖2 is chi-square dis-
tributed with n − K + i dimensions: ‖gi‖2 ∼ χ2

2(n−K+i). Clearly, this successive cancella-
tion scheme only works for the case that K ≤ n. It is obvious that the first sub-channel,
y1 =

√
SNR ‖g1‖x1 +w1 is the bottleneck and hence P (E1) dominates the error probability:

Pe(SNR) = P

(⋃
i

Ei

)
.
= P (E1).

Now we observe that the first sub-channel is equivalent to a point-to-point link with 1
transmit and n−K + 1 receive antennas, and applying Theorem 1 we have

Pe(SNR)
.
= P (E1)

.
= SNR−(n−K+1)(1−r).

This tradeoff performance is plotted in Figure 8 in comparison to the optimal tradeoff curve
d∗sym(r) given (8). We observe that the tradeoff performance is strictly below the optimal.
Moreover, with the optimal scheme, each user can achieve a single-user performance as long
as the system is not heavily loaded. In the case m = 1, this means the performance of a
particular user is not affected by the total number of users K in the network, as long as
K ≤ n. In contrast, with successive cancellation, adding one user to the network always
degrades the performance of all other users.
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Now if we allow the receiver to decode for the users in an order that depends on the realization
of the channel, the tradeoff performance can be improved. It is shown in [3] that the optimal
ordering is to choose the user to decode in each stage such that the effective channel gain
‖gi‖ is maximized. The tradeoff performance of this scheme is studied in Section 7.2 of [12],
and it is shown that

Pe(SNR)
.≥ SNR−(n−1)(1−r).

It is seen that this scheme is still suboptimal.

Tradeoff Curve for m=1, n≥ k

Mux Gain r

D
iv

er
si

ty
 G

ai
n 

d

1 

(0, n) 

(0, n−1) 

(0, n−k+1) 

Optimal Tradeoff 

Upper bound for SC 
with the optimal order  

Sequential SC 

Figure 8: Tradeoff for successive cancellation schemes with m = 1.

For the case that each user has m > 1 transmit antennas, we can similarly write the single-
user sub-channels as:

Yi =

√
SNR

m
GiXi + Wi for i = 1, . . . , K

where Xi ∈ Cm×l is the signal transmitted by user i. Yi,Wi ∈ Cn×l are the received signal
and noise for user i, respectively. Gi ∈ Cn×m is equivalent channel gain for user i. Again
assuming that the users are decoded sequentially, each column vector of Gi is thus the
component of the corresponding column vector of Hi that is perpendicular to the subspace
spanned by the column vectors of Hi+1, . . . ,Hk. That is, the component of each column
vector of Hi in (K − i)m dimensions is nulled out. Consequently, the sub-channel for user i
is equivalent to a point-to-point channel with m transmit and n−(K− i)m receive antennas,
for i = 1, . . . , K. Similar to the case that m = 1, in order to use successive cancellation, we
need an extra constraint that n ≥ Km 1

1One can actually use less receive antennas. For example, if we have n = 1 + (K − 1)m receive antennas,
after nulling out the other K−1 users, user 1 still one dimension to communicate. However, the performance
of such systems will be severely degraded, since user 1 is the bottleneck of the system. Therefore, we do not
consider such cases.
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Under these assumptions, in decoding the ith user, the signals from user i + 1, . . . , K that
spans a (K − i)m dimensional sub-space, has to be nulled out. Effectively, the sub-channel
for the ith user is a point-to-point link with m transmit and n− (K − i)m receive antennas,
and the detection error probability is

P (Ei)
.
= SNR−d∗

m,n−(K−i)m
(r) (32)

The performance of the system is thus limited by that of the sub-channel for user 1, hence

Pe(SNR)
.
= P (E1)

.
= SNR−d∗

m,n−(K−1)m
(r) (33)

Similar to the case with m = 1, choosing the ordering in which the users are decoded
according to the channel realization helps to improve the performance. The exact tradeoff
performance with the optimal ordering is hard to compute. However, we can show that the
optimal tradeoff performance is still not achieved.

To see that, we give a simple upper bound of the diversity gain at r = 0, and show it is
strictly below the optimal. Consider the case that there are only 2 users, ( or assume there
is a genie reveals the data of user 3, . . . , K to the receiver). Let Ωi be the subspace spanned
by the column vectors of Hi, for i = 1, 2. Ωi’s are independently uniformly distributed
in the Grassmann manifold G(n,m), which is the set of all m-dimensional subspaces in
Cn. The dimensionality of G(n,m) is m(n −m) [8]. Observe that with a high probability,
the successive cancellation receiver will make a detection error, if Ω1 and Ω2 lie in a small
neighborhood of each other, whose size is of the same order as the noise. The probability
for that to happen is SNR−m(n−m). Consequently, the probability of detection error with a
successive cancellation receiver is no less than SNR−m(n−m). In contrast, as discussed in the
previous sections, with the optimal ML receiver, the single-user performance of d∗m,n(0) = mn
is achieved at multiplexing gain r = 0. Therefore, the successive cancellation technique is
strictly sub-optimal. Some examples are plotted in Figure 9.

To summarize, we have shown in this section that successive cancellation, although simplifies
the problem into single-user sub-channels and can achieve the maximum sum rate, is strictly
sub-optimal in terms of the error probability behavior. This is particularly true at low data
rates where joint ML detection is significantly better. The successive cancellation technique
is biased among the users. For example, the first user that is decoded has the worst channel.
In the next two subsections, we study schemes that are symmetric with respect to the users
and still achieve the maximal sum rate.

8.2 Time Sharing

One simple strategy is to time share and average out the bias. By switching between a set
of schemes, we can allow each user to go through the worst channel only for a fraction of
time, therefore potentially improving the average performance.
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Figure 9: Tradeoff for successive cancellation schemes with m > 1: (a) m ≤ n
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case, (b)
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Suppose we time share among ns different schemes. Let the data rate and error probability
for user i in the jth scheme be

R
(i)
j = r

(i)
j log SNR P

(i)
j

.
= SNR−d

(i)
j ,

respectively, for i = 1, . . . , K and j = 1, . . . , ns. Now by time sharing, we use scheme j with
pj ≤ 1 fraction of the time, where

∑ns

j=1 pj = 1. For a fixed choice of pj, j = 1, . . . , ns, the
average data rate and error probability for user i are:

R(i) =
∑

j

pjr
(i)
j log SNR,

P (i) .
=

∑
j

pjSNR−d
(i)
j

.
= SNR−minj d

(i)
j . (34)

That is, by time sharing, we can achieve the average data rate, but still retain the worst case
diversity gain.

Example: rate allocation
We consider ns = K! successive cancellation schemes, one for each of the ordering of the
K users. Suppose we want to provide symmetric rate and diversity requirements to the
users; without loss of generality, we can compute the performance of user 1. Let pj be
the probability that user 1 is the jth decoded user. By symmetry, we have pj = 1/K for
j = 1, . . . , K. Now using (32) the data rate and error probability can be computed as:

R(1) =
1

K

K∑
j=1

r
(1)
j log SNR

P (1) .
= SNR−dmin .
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Here
dmin = min

j
d∗m,n−(K−j)m(rj).

If we want send a data rate of r log SNR and set rj = r for all j, then the performance is
still limited by the fraction of time that user 1 goes through the worst (first) sub-channel.

The probability of error is SNR−d∗
m,n−(K−1)m

(r). In order to maximize the data rate at a given
diversity requirement dmin ≥ dreq, the multiplexing gain that should be used when user
1 is the jth decoded user is r∗j = r∗m,n−(K−j)m(dreq). Intuitively, a lower data rate should
be transmitted when the user is assigned to a worse channel such that the corresponding
diversity is improved.
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Figure 10: An example of the rate allocation for the time sharing scheme: m = 3, K = 3, n =
12. (a) The optimal rate allocation r∗j for a given required diversity gain dreq can be read
from the tradeoff curves. (b) The resulting performance with the optimal rate allocation.
Notice in the low rate region, some transmit antennas need to be shut off (r∗j = 0) to obtain
the optimal diversity gain

In Figure 10, we give an example of the optimal rate allocation and the resulting tradeoff
performance for time sharing schemes. We observe that the tradeoff performance is improved
using the optimal rate allocation, but is still strictly below the optimal tradeoff curve with
joint ML decoding. This again emphasizes the advantage of using optimal ML decoding
in the multiple access system: when the system is light loaded, r ≤ n

K+1
, the effect of

the interference between different users is completely eliminated by the ML receiver. In
comparison, the schemes using a decorrelator to null out interference, as well as the successive
cancellation and time-sharing schemes based on that, are strictly sub-optimal.

8.3 Rate Splitting

Another commonly used multiple access technique is rate splitting [7]. Here, each user is split
into virtual users that transmit at different power levels and are decoded in an appropriate
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order to achieve desired data rates within the capacity region.

In studying rate splitting in multiple antenna fading channels, we start by treating all the
virtual users as independent users, and focus on the power allocation among these users. In
our scale of interests, the diversity and multiplexing gains are not changed when scaling the
transmitted power of a user by a constant factor that does not depend on SNR. It is only
interesting to assign a power of the order SNR−α to the users. (Notice that in our setup, the
transmitted power available for each user is of the order SNR0.)

Example: Single-user rate splitting
Consider the simple case with m = n = 1 and K = 2 users. Let their multiplexing gain be
r1, r2, respectively. Let user 1 transmit at a power of SNR0, and user 2 transmit a power
SNR−α. The receiver can first decode user 1 treating user 2 as noise, and then cancel its
contribution before decoding user 2. Now the effective signal to noise ratio for user 1 is
SNR0/(SNR−α + SNR−1)

.
= SNRα; and the data rate R = r log SNR = r/α log (SNRα), hence

the effective multiplexing gain is r/α. The error probability it achieves is

P (E1)
.
= (SNRα)d∗1,1(r1/α)

.
= SNR−α(1−r1/α)

Similarly, the effective SNR for user 2 is SNR1−α, and the probability of error is

P (E2)
.
= SNR−(1−α)(1−r2/(1−α))

Now we can optimize over α to minimize the maximum of two error probabilities, and the
resulting overall error probability is:

Pe
.
= SNR−1/2(1−r1−r2)

Unlike the successive cancellation schemes discussed above with equal power allocation for
all users, now we can support K > n users.

Suppose now that these two users are virtual users created by splitting one user with mul-
tiplexing gain r = r1 + r2. For any fixed α, we can optimize the rate allocated to each
virtual user, and the resulting optimal choice of r1 = α− (1− r)/2, and error probability is
Pe

.
= SNR−(1−r)/2. Notice that this is strictly below the single-user performance SNR−(1−r).

Intuitively, since a part of the data rate is transmitted at a lower power level SNR−α, although
the maximum sum data rate can be achieved, the error probability is increased.

In general, assume that the users transmit at B different power levels,

SNR−α1 , SNR−α2 , . . . , SNR−αB ,

for 0 = α1 < . . . , αB < 1. Effectively, we have B multiple access sub-channels, with effective
signal-to-noise ratio SNRα2−α1 , SNRα3−α2 , . . . , SNR1−αB . For a user i communicating in a sub-
channels with effective SNR as SNR−β, the diversity-multiplexing tradeoff can be computed
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as in (33), with both the diversity gain and multiplexing gain scaled by β, that is, assuming
user i transmitting a rate ri log SNR, the error probability is

P (Ei)
.
= SNR

−β(d∗
m,n−(Ki−1)m

(ri/β))
,

where Ki is the number of users sharing the same sub-channel.

When a user is split into a number of virtual users, the overall error probability is still
dominated by the worst case among the virtual users. The optimal rate splitting and power
allocation can be solved as a linear optimization problem. Before this calculation, we can
claim that this approach cannot achieve the optimal tradeoff performance. To see this,
observe that at a low data rate, Theorem 2 says that single user tradeoff performance can be
achieved. However, as discussed at the end of Section 8.1, with the successive cancellation
receiver, whenever there is another user sharing the same sub-channel or transmitting at
a power that is higher than the noise level, the single-user performance can not achieved.
Furthermore, as demonstrated in the example of single-user rate splitting, the rate splitting
approach is in general not optimal in terms of error exponent.
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