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Inference Example 3: The Kalman Filter
Question: You would like to build an automatic system to land a spacecraft on the moon. To steer the
spacecraft properly, the system needs to estimate the current location of the spacecraft relative to the moon
surface. Unfortunately, the sensors are noisy. How can the system best estimate the current location given
all the noisy measurements of the past trajectory of the spacecraft?

Comment 1: This is an example of a very common problem in a diverse range of fields, such as control,
signal and image processing, computer vision, finance etc. The general problem is to recover an underlying
signal from noisy observations and perhaps to predict its future trajectory. The signal may be an image, an
audio signal, trajectory of an aircraft, quality of a stock, etc. This class of problem is called filtering, denois-
ing or prediction. The idea is to separate out the underlying signal from the noise. What distinguishes the
signal from the noise is that the signal is often ”smooth”: location of the spacecraft from one measurement
to the next does not change much, values of adjacent pixels of an image are likely to be similar. On the other
hand, the noise is highly random and varies significantly from one measurement to the next.

Comment 2: This problem is yet another example of inference problems. We have considered examples
where the unknown and the observations are discrete (communication over binary symmetric channels),
and now we are considering an example where both the unknown (the underlying signal) and the noisy
observations are continuous.

Comment 3: Historically, this problem first arose in the 1960’s in the Apollo space program to land Ameri-
cans on the moon. The solution of this problem is the celebrated Kalman filter, which we will now describe
(for a very simple model).

Modeling
The situation is shown in Figure 1.

The underlying signal is modeled by a sequence of random variables X0,X1,X2 . . .. The noisy observations
are Y1,Y2, . . ., given by

Yi = Xi +Zi, i = 1, . . .

The Zi’s are i.i.d. N(0,σ 2
Z) r.v.’s and independent of the Xi’s. The signal Xi’s are described by:

X0 ∼ N(µ0,σ2
0 ) (1)

Xi+1 = αXi +Wi, i = 0,1,2, . . . , (2)

where the Wi’s are i.i.d. N(0,σ 2
W ) r.v.’s, independent of X0 and of the Zi’s.

Note that the observation noises Zi’s are independent from measurement to measurement. On the other
hand, the signal values at different times can be strongly dependent (think of the case when α is close to 1
and the perturbation Wi has a small variance.). Thus the signal varies relatively smoothly compared to the
observation noise. Nevertheless, the signal is still random: it starts from a random initial condition X0 and
each perturbation is random as well.
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Figure 1: The system diagram for the filtering problem.

The filtering problem can be posed as follows:

At each time n, given the observations Y1 = y1,Y2 = y2, . . . ,Yn = yn, estimate Xn.

Note that for estimating the signal value Xn at time n, not only the observation Yn = yn at time n but the ob-
servations at previous times 1,2, . . . ,n−1 are also relevant: the previous measurements provide information
on Xn−1 which in turn provide information on Xn. The question is how to combine that information with the
current observation in a systematic fashion.

The extreme case of a smooth signal is one that doesn’t change at all, i.e.

Xi = X ∼ N(µ0,σ2
0 ), i = 0,1,2, . . .

This is a special case of the general model when α = 1 and σ2
W = 0. In these notes, we will focus on

developing a solution for this case. Once you understand this simple case, it should not be very difficult to
work out the general case when the signal is varying.

Single Observation
Let’s first solve a simpler problem when we want to estimate X from a single observation Y . The problem
is: estimate the signal X given the received signal Y = y, where

Y = X +Z

with the signal X ∼ N(µX ,σ 2
X) and the noise Z ∼ N(0,σ2

Z) and X and Z are independent. Note that while
the signal can have an arbitrary mean µX , the noise is naturally modeled as having zero-mean.

Posterior Distribution

As in all the other inference problems, the knowledge about X is captured by the conditional distribution of X
given the observations, i.e. the posterior distribution. Since X is continuous in this problem, this distribution
is represented by the conditional density of X given Y = y. A natural definition for the conditional density,
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in analogy to the discrete case, is:

fX |Y (x|y) :=
fX ,Y (x,y)

fY (y)
,

where fX ,Y is the joint density of X and Y and fY is the (marginal) density) of Y 1. This leads to the analog
of Bayes’ rule for continuous r.v.’s:

fX |Y (x|y) =
fX(x) fY |X(y|x)

fY (y)
. (3)

Now, X ∼ N(µX ,σ2
X), so

fX(x) =
1√

2πσX
exp

[
−(x−µX)2

2σ2
X

]
.

Given X = x, Y ∼ N(x,σ2
Z) so

fY |X(y|x) =
1√

2πσZ
exp

[
−(y− x)2

2σ2
Z

]
.

Substituting into (3):

fX |Y (x|y) =
1

fY (y)
· 1

2πσX σZ
exp

[
−(x−µX)2

2σ2
X

− (y− x)2

2σ2
Z

]
. (4)

Since we are computing the conditional density of X given Y = y, let us look at how the expression (4)
depends on x, treating y as a constant. It can be rewritten in this form:

fX |Y (x|y) = cexp
[
dx2 + ex

]
,

where c,d,e are constants that do not depend on x. You are asked to verify that any density of this form must
be a Normal density, with mean −e/(2d) and variance −1/(2d). From this fact, we come to an interesting
conclusion: not only is X Normal, but conditional on Y = y, X is also Normal! Once we know it is Normal,
all we need to do is to compute its mean, say µ1, and its variance, say σ 2

1 . They can be computed by figuring
out what d and e are from (4):

µ1 = aµX +(1−a)y (5)

σ2
1 =

1
σ−2

X +σ−2
Z

, (6)

where

a :=
σ2

Z

σ2
X +σ2

Z
.

Estimating X

The situation is summarized in Figure 2. Unconditional on the observation, X is Normal with mean µX

and variance σ 2
X . Conditional on the observation Y = y, X is still Normal but with a new mean µ1 and a

new variance σ2
1 . How should we guess the value of X? A natural guess, and one we have used in earlier

1Since there are multiple densities involved, we are using subscripts to distinguish between the various densities and conditional
densities.
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Figure 2: How the prior density is updated to the posterior density based on the observation.

problems, is the MAP estimate: this is the value of x where the peak of the conditional density of X given
Y = y is attained. In this example, this conditional density is Normal, and so the peak is at the mean of this
conditional density, i.e. the conditional mean. So a natural estimate of X given the observation Y = y is:

aµX +(1−a)y. (7)

Bayesian learning is basically a systematic way of updating knowledge based on observations. We see it
very clearly in the above formula. Based on the prior knowledge only, the best estimate of X would be
µX . After the observation Y = y, the estimate is revised to be (7), a weighted combination of µX and y.
The relative weights placed on the prior knowledge and the observation depend on the signal-to-noise ratio
SNR := σ2

X/σ 2
Z . If SNR is small, then more weight is placed on the prior knowledge. This is intuitive since

then the observation is very noisy and not very informative. If SNR is large, then more weight is placed on
the observation.

How do we quantify the residual uncertainty of X after the observation? A natural choice is the variance
σ2

1 of the conditional density. The larger it is, the more the residual uncertainty. Note that the variance
1/(σ−2

X +σ−2
Z ) of the conditional density is always small than σ2

X , the variance of the prior density of X . So
observations always reduce uncertainty (which is good to know!).

Recursive Algorithm
With the above groundwork, it is not too difficult to provide a solution to the original problem. Basically,
after each observation, we update the prior density to get a posterior density, all of which are Normals. Let’s
proceed step by step. Recall that the prior density of X is N(µ0,σ2

0 ). At time 1, we observe Y1 = y1. The
conditional density of X given Y1 = y1 is N(µ1,σ2

1 ) where, by eqns. (5) and (6),

µ1 = a0µ0 +(1−a0)y1

σ2
1 =

1
σ−2

0 +σ−2
Z

,

, where

a0 :=
σ2

Z

σ2
0 +σ2

Z
.
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Now, let us proceed inductively. Suppose at time i, the conditional density of X given the observations
Y1 = y1, . . . ,Yi = yi is N(µi,σ2

i ). Now suppose we are given an additional observation Yi+1 = yi+1, where

Yi+1 = X +Zi+1.

Now, conditional on Y1 = y1, . . . ,Yi = yi, X is N(µi,σ2
i ) and Zi is independent of X . So with the added

observation Yi+1 = yi+1 at time i+1, the problem is identical to the single observation problem except that
the prior density of X is replaced by N(µi,σ2

i ). Hence, conditional on now all the observations up to time
i+1, X ∼ N(µi+1,σ2

i+1), with:

µi+1 = aiµi +(1−ai)yi

σ 2
i+1 =

1
σ−2

i +σ−2
Z

,

where

ai :=
σ2

Z

σ 2
i +σ 2

Z
.

Here, we again use (5) and (6),

Now that we have the conditional densities, we can compute everything. The estimate X at time i (output
of the filter at time i) is simply µi. The variance of that estimate conditional on all the observations seen
so far is σ2

i . The estimate at time i + 1 is a weighted combination of the previous estimate µi and the new
observation yi+1, the weights depending on σ 2

i and σ2
Z . Hence, the outputs of the filter can be computed

recursively, without starting from scratch every time.

Note that the principle we are applying here is identical to the one we used in Homework 10 for the problem
of learning about the identity of a randomly chosen coin: conditional on the previous observations, we are
working in a new sample space with all probabilities calculated based on the conditioning. Using Bayes’
rule, we can compute the posterior distribution. For general Bayesian learning, it is a pain to keep track
of the conditional distributions/densities, but the simplification we get in the present problem is that all the
conditional densities are Normals, so we only have to keep track of two numbers, the mean and the variance.

Exercise: Using the same principles, find a recursive algorithm to solve the problem in the general case
when the signal is time varying, as described by eqns. (1) and (2).
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