

Section 5: Probabilities, decision theory and game theory
I. Probabilities

Monty Hall problem:

Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say C, and the host, who knows what's behind the doors, opens another door, say A, which has a goat. He then says to you, "Do you want to pick door B?" Is it to your advantage to stick to your choice or to switch?

[image: image1.wmf]
What would you do?

* The player originally picked the door hiding the car. The game host has shown one of the two goats. 

( if you switch you lose

* The player originally picked the door hiding Goat A. The game host has shown the other goat.
( if you switch you win
* The player originally picked the door hiding Goat B. The game host has shown the other goat.
( if you switch, you win
Conditional probabilities and Bayes’ theorem are useful here!

· Initially, the probability of choosing a car is 1/3, let’s say that the probability of having a car behind any door is P(A) = P(B) =P(C) = 1/3
This is also the overall probability of getting the car if you stick to your choice.
· Let’s say that you chose door C, and the host opens door A. The question then is: should I switch GIVEN THAT the host has opened door A (let’s call this event O). The Monty Hall problem can be restated by

P(C|O) = P(B|O) ?

· P(O): probability of the host opening door A

· P(A): probability of the car being behind door A

· From Bayes’ theorem we have:

P(C|O) = P(C) P(O|C) / P(O)

P(B|O) = P(B) P(O|B) / P(O)

· The probability of O depends on where the car is:

P(O|A) = 0 (the host is not going to open the door with the car)

P(O|B) =  1  if the car is behind B, the host can only open door A  since you chose door C

P(O|C) = 1/2 if the car is behind C, the host can open door A or door B

· We need to calculate P(O):

· P(S or T) when S and T are mutually exclusive events: P(S) + P(T)

· P(S and T)
= P(S) x P(T)
when S and T are independent

= P(S) x P(T|S) when S and T are not independent

· P(O) 
= P(O and A) + P(O and B) + P(O and C)
(mutually exclusive events)

= P(A) x P(O|A) + P(B) x P(O|B) + P(C) x P(O|C)

= 1/3 x 0 + 1/3 x 1 + 1/3 x 1/2

= 1/2

· We can now compute

P(C|O) = 1/3 x 1/2 / 1/2 = 1/3

P(B|O) = 1/3 x 1 / 1/2 = 2/3

So it’s best to switch!
II. Decision theory
The anniversary problem: to buy or not to buy, that’s the question!

The decision maker needs to assign monetary values to the possible outcomes of the decision tree. He also needs to decide what are the chances of today being his anniversary.
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Expected value decision maker (linear utility curve):

Buy flowers:

0.2 x $100 + 0.8 x $42 = $53.60

Don’t buy:

0.2 x $0     + 0.8 x $80 = $64

Using the following utility curve:


Buy flowers

0.2 x u($100)
+ 0.8 x u($42)
=





0.2 x 1

+ 0.8 x 0.667
= 0.734

Don’t buy flowers
0.2 x u($0)
+ 0.8 x u($80)
= 





0.2 x 0

+ 0.8 x 0.91
= 0.728
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Is this the utility curve of a risk-taker or a risk-averse person?

III. Game theory

Prisoner’s dilemma:
	
	B silent
	B confess

	A silent
	Each 1 year prison
	A goes to prison

B goes free

	A confess
	A goes free

B goes to prison
	Each serves 8 years


	
	B silent
	B confess

	A silent
	(3,3)
	(0, 5)

	A confess
	(5,0)
	(1,1)


Dominant strategy

S strictly dominates T: choosing strategy S always gives a better outcome than choosing strategy T, no matter what the other player(s) do.

S weakly dominates T: there is at least one set of opponents' action for which S is superior, and all other sets of opponents' actions give T at least the same payoff as S.
Here, confessing (C) strictly dominates remaining silent (S). Whatever the other prisoner does, it’s better to confess.
Nash equilibrium
If each player has chosen a strategy and no player can benefit by changing his strategy while the other players keep theirs unchanged, then the current set of strategy choices and the corresponding payoffs constitute a Nash equilibrium.
What is the Nash equilibrium in the prisoner’s dilemma?

Calculate the different possibilities for each player:

If A is silent, B chooses to confess
(S, C)

If A confesses, B chooses to confess 
(C, C)

If B is silent, A chooses to confess (C,S)

If B confesses, A chooses to confess (C,C)

Take the common strategy: (C,C)

We see that Nash equilibrium doesn’t guarantee the best pay-off. Here, it would be better that the prisoners remain silent.

A Beautiful Mind
This movie is about Nash’s life. The example of Nash’ equilibrium in the movie is actually wrong!! The example in the movie is the following:

4 guys are in a bar, and 5 girls came in (4 brunettes, and a blonde). The preferences of the guys are

Blonde (10) > Brunette (5) > Nothing (0) (Yep, the girls do not count in this game ;-)

Of course, if they go first to the blonde, and are rejected, they will not score with the brunettes either. The brunettes will not be happy to be the second choice!

If all the guys go for the blonde, that will not work. So the movie shows the 4 guys going towards the 4 brunettes, and leaving the blonde alone. That’s not a Nash equilibrium!

See more at 

http://netwar.wordpress.com/2007/08/26/the-real-nash-equilibrium/
What about real life examples of the Prisoner’s dilemma?

· Problem of two states engaged in an arms race:

Two options, either to increase military expenditure or to make an agreement to reduce weapons. Neither state can be certain that the other one will keep to such an agreement; therefore, they both incline towards military expansion. The paradox is that both states are acting rationally, but producing an apparently irrational result.

· Cyclist race:
Consider two cyclists halfway in a race, with the peloton at great distance behind them. The two cyclists often work together (mutual cooperation) by sharing the tough load of the front position, where there is no shelter from the wind. If neither of the cyclists makes an effort to stay ahead, the peloton will soon catch up (mutual defection). An often-seen scenario is one cyclist doing the hard work alone (cooperating), keeping the two ahead of the peloton. In the end, this will likely lead to a victory for the second cyclist (defecting) who has an easy ride in the first cyclist's slipstream.

Evolutionary stable strategy (over time)
Strategy such that over time it can beat any other strategy that one might invent for this game.

Different strategies for the Prisoner’s dilemma:

1. RANDOM. This strategy is unpredictable, so your opponent cannot guess when you will keep silent. Because of this, this strategy loses to the next strategy, so you should always confess.
2. ALWAYS CONFESS. This strategy can score big if your opponent doesn't adjust, as you are never a loser and sometimes (whenever your opponent keeps silent) you are a winner. If your opponent always confesses, then neither of you do well.

3. ALWAYS KEEP SILENT. You lose to any strategy in which your opponent confesses.
4. TIT FOR TAT. As long as your opponent keeps silent, so do you. When your opponent confesses, then you punish your opponent on the next turn. Once you and your opponent have figured out each other's strategies, Tit for tat is the best strategy, as it leads to cooperation (you both keep silent).

5. LAST MOVE. If you know its your last move, then confess. After the last move, your opponent has no way of retaliating. This is an effective strategy in a limited set of circumstances.
IV. Pascal's wager

We cannot trust reason to decide whether God exists or not. But it is a better bet to believe in God, since we have nothing to lose if we do:

	
	God exists
	God doesn’t exist

	Believe in God
	We win
	Status quo

	No belief in God
	We lose
	Status quo


V. Some ideas from Skyrm’s lecture
Complex behavior can emerge through interaction and recurring behavior
· Group patterns emerge from individual behavior patterns
Against the categorical distinction between human-animal-machine
· When viewed as signal transmission, the same can happen in humans, animals and machines
