
Using NLP toQuantify Program Decomposition in CS1
Charis Charitsis
charis@stanford.edu
Stanford University
Stanford, CA, USA

Chris Piech
piech@cs.stanford.edu
Stanford University
Stanford, CA, USA

John C. Mitchell
jcm@stanford.edu
Stanford University
Stanford, CA, USA

ABSTRACT
Decomposition is a problem-solving technique that is essential to
software development. Nonetheless, it is perceived as the most chal-
lenging programming skill for learners to master [31]. Researchers
have studied decomposition in introductory programming courses
through guided experiments, case studies, and surveys. We believe
that the rapid advancements in scientific fields such as machine
learning and natural language processing (NLP) opened up oppor-
tunities for more scalable approaches.

We study the relationship between problem-related entities and
functional decomposition. We use an automated system to collect
78,500 code snapshots from two CS1 programming assignments
of 250 students and then apply NLP techniques to quantify the
learner’s ability to break down a problem into a series of smaller,
more straightforward tasks. We compare different behaviors and
evaluate at scale the impact of decomposition on the time it takes to
deliver the solution, its complexity, and the student’s performance
in the assignment and the course exams. Finally, we discuss the
implications of our results for teaching and future research.

CCS CONCEPTS
• Software and its engineering→ Software developmentmeth-
ods; • Social and professional topics → CS1.

KEYWORDS
problem decomposition, problem-solving approaches, introductory
programming courses, software development

ACM Reference Format:
Charis Charitsis, Chris Piech, and John C. Mitchell. 2022. Using NLP to
Quantify Program Decomposition in CS1. In Proceedings of the Ninth ACM
Conference on Learning @ Scale (L@S ’22), June 1–3, 2022, New York City, NY,
USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3491140.
3528272

1 INTRODUCTION
One of the fundamental human processes in software development
is problem-solving. It is a cognitive process of the brain that searches
or infers a solution for a given problem in the form of paths to reach
expected goals [34]. Researchers in computer science education

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
L@S ’22, June 1–3, 2022, New York City, NY, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9158-0/22/06. . . $15.00
https://doi.org/10.1145/3491140.3528272

have long been interested in the relationship between problem-
solving skills and programming abilities [25]. The strategies that
novices adopt while solving a problem affect their performance
significantly [17, 32].

Researchers and educators have studied various problem-solving
approaches to software development (Section 2). The two most rec-
ognized design paradigms are top-down and bottom-up program-
ming. The top-down development starts by implementing the most
general modules and works toward those that provide specific func-
tionality. The bottom-up development first implements the modules
that provide specific functionality and then integrates them into
more general modules. Research to evaluate their impact on intro-
ductory programming courses is structured around case studies,
experiments, and tools [20, 23, 30, 36]. Although these scientific
studies are undeniably helpful, they pose limitations. First, they
use practices (i.e., interviews, surveys, etc.) that do not scale. Sec-
ond, they guide students to exhibit prelabeled behaviors, enabling
comparison between those behaviors. Thus, they lack generality.
For example, researchers have a consensus about the connection of
top-down programming with abstraction and problem decomposi-
tion, two of the essential skills in software development. In practice,
there is no pure bottom-up or pure top-down design, even in CS1,
where the programs are simple. A problem solver attempts several
approaches on the path to the final solution [10, 14].

Problem decomposition is not binary. As a higher-layer cognitive
process, it interacts with many other cognitive processes such as
abstraction, decision making, inference, analysis, and synthesis. It
manifests to a different extent among individuals. Similarly, there is
a spectrum for the time it unveils. In some solutions, decomposition
becomes apparent early on, while it is not evident until later in
others. It would be immensely beneficial if we could find where
a student’s solution lies in the spectrum and compare it with the
solutions of other learners. This motivated our study, which tries
to answer two research questions:

(1) How can we quantify the student’s ability to break a
problem into simpler tasks from the source code?

(2) How does this metric relate to the time it takes to de-
liver the solution, its complexity, and the student’s
performance?

Our collected data consists of code snapshots taken for two CS1
programming assignments. We developed a model to apply natural
language processing (NLP) techniques and learn the main entities
associated with the programming challenge under investigation.
We tracked how a student’s program evolved with respect to these
entities. Learners with an early perspective about the end goal de-
compose the program into functions that address the main entities
sooner than learners with a narrower view of the problem. We used
a model to quantify this ability and compare different solutions.
We clustered the students into two groups: i) those who have a

Session: CS Education @ Scale L@S ’22, June 1–3, 2022, New York City, NY, USA

113

https://doi.org/10.1145/3491140.3528272
https://doi.org/10.1145/3491140.3528272
https://doi.org/10.1145/3491140.3528272
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3491140.3528272&domain=pdf&date_stamp=2022-06-01

more abstract view of the problem to solve and ii) those who focus
on specific subtasks of the problem first and then integrate them.
Finally, we analyzed the effect of those behaviors regarding the time
it takes to complete the program, its complexity, and the student
performance in both the programming assignments and the course
exams. The following sections elaborate on our method and our
evaluation results. The primary contributions of this paper are the
following:

• Application of NLP concepts to a new domain
• Conversion of a labor-intense human process to a machine
task

• Gained insights and potential applications in CS education

This work is particularly pertinent to introductory programming
classes with a large audience, lecture-based or online.

2 RELATEDWORK
Researchers consider problem decomposition a critical skill in soft-
ware development. McCracken et al. developed a five-step frame-
work of expectations for learning from CS1 courses: 1) abstract the
problem from its description, 2) generate subproblems, 3) transform
subproblems into sub-solutions, 4) re-compose the sub-solutions
into a working program, and 5) evaluate and iterate [22].

Keen and Mammen detail a term-long course project. Students
are given clear direction on program decomposition at early mile-
stones and progressively less direction at later milestones [13]. They
compare the cyclomatic complexity [21] of final assignment submis-
sions between students in a course with the term-long project and
their cohorts in courses with stand-alone projects. Their analysis
supports that long-term projects are more beneficial. Sooriamurthi
discusses a learning exercise where CS1 students have to break a
large programming assignment into smaller pieces and concludes
that it emphasizes abstraction, decomposition, incremental and iter-
ative development compared to simpler independent programming
problems [33].

Pearce et al. implement a guided inquiry-based learning approach
to teach students strategies for problem decomposition in a CS1
course [26]. They utilize a rubric to measure the student’s ability
to decompose problems. They examine the final projects from two
offerings of the CS1 course: one with and one without explicit in-
struction on problem decomposition. Their findings suggest that
the students in the section with the additional scaffolding were
significantly more adept at breaking down the problem into sub-
problems.

Our method differs in two ways. First, it does not require the for-
mation of two groups, one guided toward problem decomposition
and one not [13, 17, 24, 26, 33]. Instead, we analyze submissions
from the same pool of students and try to identify the ones where
the presence or absence of decomposition relative to their peers
is evident. We believe that this approach is generic and has more
practical implications. Although surveys, think-aloud experiments,
and guided-based research techniques are undeniably insightful,
it takes a lot of effort to apply them at scale. One can argue that
the safest way to reach objectiveness is not to rely primarily on
what the students think but on their actual source code and analyze
the student program structure. Doing so by hand is inefficient and

time-consuming, but we believe we have the tools for a computer-
assisted exploration of programming solutions nowadays.

Natural Language Processing (NLP) is widely integrated with
many educational contexts such as linguistics, e-learning, evalua-
tion systems, etc. [1, 7] However, its use in programming is limited
to extracting useful information from the source code. Matskevich
and Gordon present a method to generate informative comments
from the source code using NLP [19]. Fowler et al. utilize NLP tech-
niques to automatically grade plain-text answers to code reading
questions. Charitsis et al. introduce a method to detect poor func-
tion names and recommend replacements [4]. We apply NLP to a
new domain. We build a system that parses the student code and
uses a model to detect the main problem entities, a key step in our
method to determine how students decompose their programs.

3 METHOD
The foundation of our method is to examine how the novice learner
addresses key problem tasks in the development phase. Figure 1 uses
a program written in Java to demonstrate two opposite approaches.
On the left side, a student uses stub functions to draft an initial
solution (step 1) and then adds the implementation for each function
(steps 2-6). On the right side, a second student implements tasks
with specific functionality first and then integrates those functions
into the final solution. The end product, which may be identical in
both cases, does not reveal the software development path.

In object-oriented programming, objects (entities) are often re-
ferred to as nouns and actions that determine their behavior as
verbs. Function names systematically couple these verbs to the en-
tity associated with the action. The program on the left introduces
all functions in the beginning, and therefore all nouns (i.e., game,
board, cell, player) are present. The program on the right adds the
functions incrementally. The student implements initGame() first
and then moves to the subsequent function, printBoard(). Figure 1
shows at the bottom how nouns are introduced over time in both
programs.

The example made two simplifications to highlight the basic
concept of our method. First, novice programmers do not develop
their programs using either a top-down or a bottom-up approach
but a combination of both. Second, not all functions use nouns,
and if they do, those do not always reflect on key problem tasks
(i.e., the entities are not main entities). Helper functions can also
refer to nouns unrelated to the problem and must be ignored. We
will address both later in this paper. Figure 2 presents our system’s
architecture to quantify program decomposition from the source
code (stages 1-4) and analyze its impact on program complexity
and student performance (stage 5).

3.1 Data Collection
We modified the Integrated Development Environment (IDE) that
CS1 students use to develop their programs to commit a source code
snapshot to a local repository every time a student saves or tries to
run the program. When students submit the assignment solution,
they can opt-in to also submit the repository with the snapshots
taken in their problem-solving journey. For this investigation, we
analyzed the submissions for two assignments by 250 students, a
total of 78,500 code snapshots written in the Java programming

Session: CS Education @ Scale L@S ’22, June 1–3, 2022, New York City, NY, USA

114

Figure 1: The two opposite approaches to write a program that plays Tic Tac Toe: a) The top-down starts by implementing the
general function playGame() and works toward functions that implement specific subtasks. b) The bottom-up implements
helper functions in the beginning (steps 1-5), and in the end, (step 6) calls them in function playGame(). We plot the number of
nouns that appear in the function names in every step in each approach.

language. The assignments are structured such that the deliver-
able tasks are well-defined [2, 3]. The students are given explicit
directions to clarify the expected functionality and ensure that the
problem is well understood. Also, the description order probably
aids the inexperienced student that is often unsure of how to begin.
Nevertheless, the program decomposition is left to the student. The
first stage completes upon extraction of the snapshots and their
timestamps from the local repository.

3.2 Parser
A parser processes every snapshot retrieved from the local repos-
itory. The role of the parser is dual: 1) it creates a list with the
function names in the program, and 2) it captures metrics related
to the program’s complexity to evaluate decomposition (Section
4). There are many code-based software complexity measures [11,
15, 16, 21, 35]. Like Keen and Mammen [13], we used McCabe’s
cyclomatic complexity metric and tracked the software lines of
code (SLOC). Moreover, we identified a potential inconsistency in

Session: CS Education @ Scale L@S ’22, June 1–3, 2022, New York City, NY, USA

115

Figure 2: Simplified pipeline to quantify the student’s ability to identify general concepts and break a problem into simpler
tasks from the source code.

Figure 3: Our software system parses the code, constructs an
AST model, and then applies standard stylistic formatting
conventions to generate output code that does not depend
on the student’s code-style.

how SLOC is measured. The code (formatting) style varies among
programmers, and simply counting lines of code is not enough. Our
parser constructs an abstract syntax tree (AST) from the program
to address this issue. ASTs separate parsing (i.e., how the code is
represented) from implementation (i.e., how the code is written).
Nevertheless, we cannot count the number of lines directly from
ASTs. First, we apply standard stylistic formatting conventions to
every AST (i.e., pretty-printing [5]) and then capture the SLOC
from the output source code (Figure 3).

3.3 Part-of-Speech Tagger/Analyzer
Figure 4 summarizes the next step, detecting the most common
nouns. We begin by processing the final snapshots for all students.
We then split the function names into component words (e.g., play
and game for playGame()). The tokenization rules (i.e., camel case,
snake case, etc.) are subject to the chosen programming language.
Part-of-speech (POS) tagging is a popular NLP process that refers
to marking up words in a corpus1. A POS tagger learns how to
tag unlabeled data from a corpus of pre-annotated data and has
high accuracy (95% or more). Most POS taggers are trained from
treebanks in the newswire domain, such as the Wall Street Journal
corpus of the Penn Treebank [18]. Tagging performance degrades
on out-of-domain data [8]. To make matters worse, the lack of
sentence structure in function names poses further challenges, and
traditional approaches underperform [12].

Our solution takes advantage of domain-specific characteristics.
On average, 66.5% of the function identifiers that we collected from
various CS1 assignments had at least one verb and one noun, and
the verbs were second-person singular 98% of the time. Unlike
nouns, verbs are easily detectable. We considered only three tags
(noun, verb, and other) and created an unsupervised model to locate
the nouns from the position of the verbs. An entity can be singular
or plural (i.e., functions addBall and addBalls refer to the same
assignment-related entity ball). Therefore, our system singularizes
the tokens [9]. Moreover, it ignores stopwords [6].

The model identifies the nouns in function names with 62.6%
accuracy, much lower than the POS tagger performance on full-text
articles. However, the goal is to identify the main entities which are
the most frequently shared nouns among students. We process the

1There are at least eight tags for the main parts of speech: nouns, pronouns, adjectives,
verbs, adverbs, prepositions, conjunctions, and interjections. POS Taggers often use
more than thirty tags.

Session: CS Education @ Scale L@S ’22, June 1–3, 2022, New York City, NY, USA

116

Figure 4: Example that illustrates how the main entities are detected. The part-of-speech tagger/analyzer first tokenizes the
function names that are extracted from the final program snapshot. It then detects and singularizes the nouns. Finally, it
aggregates the nouns from every student and creates a histogram with their total frequencies. The most popular nouns account
for the main entities.

Figure 5: Example that illustrates how to count the main entities in a random program snapshot. The part-of-speech tag-
ger/analyzer performs the same tasks as in Figure 4 to detect the nouns in the snapshot and then uses the histogram to keep
only the popular nouns.

final snapshot for every submitted program and keep the nouns
with popularity at least one standard deviation above the median.
The model converges (i.e., identifies all main entities) as we process
more student submissions (Figure 6). We also tried a supervised
Bigram model (most function names consist of either two or three
words). Although the accuracy increases to 73.4%, it does not make
a difference to our end goal except for small datasets.

Figure 6: Bothmodels converge to the full set ofmain entities.
The supervised biagram model requires fewer submissions
(N=100), but for N>190 the unsupervised model works just as
well. The example is taken from the first assignment (Break-
out) in our study.

3.4 Classifier
Once the main entities are identified, our system analyzes the pro-
gram snapshots for every submission. We count the main entities
found in the function names (Figure 5) and calculate the time spent
on the assignment as an aggregate of relative timing information
between a snapshot and the previous one, excluding breaks. A break
occurs when two consecutive snapshots’ timestamps differ by more
than ten minutes. To quantify the student’s ability to introduce
early the main entities that are found in their final submission, we
define the entity progress ratio (EPR) as the ratio of main entities
in the last snapshot over the main entities in the first snapshot:

𝐸𝑃𝑅 =
𝑀𝑎𝑖𝑛 𝐸𝑛𝑡𝑖𝑡𝑦 𝐶𝑜𝑢𝑛𝑡 𝑙𝑎𝑠𝑡 𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡

𝑀𝑎𝑖𝑛 𝐸𝑛𝑡𝑖𝑡𝑦 𝐶𝑜𝑢𝑛𝑡 𝑓 𝑖𝑟𝑠𝑡 𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡

Both the numerator and denominator use linear regression fitted
values. The mathematical expression for EPR is:

𝐸𝑃𝑅 = 1 +
𝑁

𝑁∑
𝑖=1

(𝐸𝑖 · 𝑡𝑖) −
𝑁∑
𝑖=1

(𝐸𝑖)
𝑁∑
𝑖=1

(𝑡𝑖)

𝑁∑
𝑖=1

(𝐸𝑖)
𝑁∑
𝑖=1

(𝑡2
𝑖
) −

𝑁∑
𝑖=1

(𝑡𝑖)
𝑁∑
𝑖=1

(𝐸𝑖 · 𝑡𝑖)

where N is the number of snapshots, 𝐸𝑖 is the number of main
entities for the i-th snapshot, and 𝑡𝑖 is the total time spent on the
assignment.

Figure 7 uses an example to visualize the relationship between
EPR and problem-solving approaches from different students. Lower
EPR means that the student introduces earlier the main entities
that appear in the final solution (better temporal decomposition).

Session: CS Education @ Scale L@S ’22, June 1–3, 2022, New York City, NY, USA

117

Figure 7: Example that visualizes how our method captures two student approaches for the same programming challenge [2].
We track when amain entity appears in a function name for the first time (Wall appears first in function buildWall() for student
A and checkForWall() for student B). None of them follows a top-down or bottom-up approach but a mix of the two. However,
student A creates a partial skeleton of the solution (i.e., function playGame() calls stub functions buildWall(),buildRow(), and
createRow(), which are implemented later). Student B focuses on one subtask at a time. The respective EPR values suggest that
student A has a broader perspective of the problem. Note: Figure 4 and Figure 5 use student B as an example.

4 EVALUATION
The EPR measurements are used in the last stage (performance anal-
ysis) to compare submissions (Figure 2). Each solution is evaluated
on three criteria: 1) the time to develop it, 2) its complexity, and 3)
the student’s grades. To find the net time that the learner worked
on the problem, we processed the snapshot timestamps. To capture
the problem complexity, we used a) McCabe’s cyclomatic complex-
ity and b) the software lines of code (Section 3.2). For the student
grades, we considered both the assignment grades and the score of
the exam that is closer to the assignment (i.e., midterm for the first
assignment and final exam for the second).

We clustered the students into two groups: i) those with EPR at
least half a standard deviation below the median (𝐸𝑃𝑅 ≤ 𝐸𝑃𝑅 −
1
2𝜎𝐸𝑃𝑅) who exhibit signs of decomposition compared to their peers
and ii) those with EPR at least half a standard deviation above
the median (𝐸𝑃𝑅 ≥ 𝐸𝑃𝑅 + 1

2𝜎𝐸𝑃𝑅) who do the opposite. Table 1
summarizes our results.

The analysis suggests that program decomposition reduces sub-
stantially the time it takes to solve the problem. In both program-
ming assignments, the students with low EPR finished much sooner
than the other group. The difference in time between low EPR and
high EPR is statistically significant (p-value = 0.039 for the assign-
ment before the midterm and and p-value = 0.027 for the assignment
before the final exam). Our findings are in agreement with other
researchers [13, 21] whereas the effect size is moderate. Though
cyclomatic complexity and SLOC are not strictly measures of de-
composition quality, high complexity correlates with opportunities
for further decomposition. Piech et al. observed a higher correlation
of the student development paths with their exam scores than their
assignment grades [28]. They believe the underlying reason for this
phenomenon is that the development path provides rich informa-
tion regarding students’ understanding of concepts beyond simply
their final product. Our investigation backs up their explanation and
also reveals a second reason. A weekly programming assignment

Table 1: How EPR affects the problem-solving time, the pro-
gram complexity, and the student grades. The cyclomatic
complexity (CYC) and the SLOC are per function. The assign-
ment and the exam scores are normalized out of 100.

Student Group 𝑇𝑖𝑚𝑒 𝐶𝑌𝐶 𝑆𝐿𝑂𝐶 𝑆𝑐𝑜𝑟𝑒 𝐸𝑥𝑎𝑚

Assignment before midterm exam
Low EPR 5.37 hrs 3.01 11.07 82 75
High EPR 6.12 hrs 3.35 12.27 80 62
All students 5.95 hrs 3.17 11.84 81 69
Standard Dev 2.64 hrs 0.68 2.55 9 23
P-score 0.039 0.004 0.034 0.049 0.028
Cohen’s d -0.284 -0.500 -0.471 0.222 0.565

Assignment before final exam
Low EPR 2.83 hrs 2.19 10.63 90 80
High EPR 3.75 hrs 2.49 11.03 88 73
All students 3.13 hrs 2.36 10.89 89 74
Standard Dev 1.72 hrs 0.47 2.69 10 14
P-score 0.027 0.018 0.067 0.077 0.049
Cohen’s d -0.535 -0.638 -0.149 0.200 0.500

imposes substantially more relaxed time constraints compared to
a three-hour exam. As mentioned, decomposition helps solve a
problem faster and therefore increases time efficiency leading to
higher exam scores.

5 THREATS TO RELIABILITY
We took a number of precautions to preserve the generality of our
method:

• We emphasized objectivity. Our analysis relies on source
code analysis rather than other, more subjective methods
(e.g., surveys, think-aloud experiments, etc.).

Session: CS Education @ Scale L@S ’22, June 1–3, 2022, New York City, NY, USA

118

• We used an unsupervised learning model to detect the main
entities without prior knowledge of the programming as-
signment specifics.

• The source code parser does not depend on the programmer’s
formatting style.

• The metric to quantify decomposition (i.e., EPR) is normal-
ized to allow comparison between students.

Despite our efforts, there are still threats to the reliability of
our work. First, we observed frequently that the first snapshot
contains only themain function. Therefore, even if the next includes
a complete list of stub functions, the EPR value will be deceptively
high. We found that in most cases, skipping the first 5% of the
snapshots compensates for the early, transient development stage.
Nevertheless, the threshold choice is arbitrary. Similarly for the
threshold for the main entities (i.e., at least one standard deviation
above the median popularity).

Second, we found that students with high EPR perform slightly
better in the programming assignments than those with low EPR
(Table 1). However, it remains unclear if the difference is statistically
significant (i.e., p-score < 0.05). In the first program, the p-score is
barely below 0.05 and in the second is 0.077. On the other hand,
we can draw safer conclusions about the relationship between the
EPR and the course exam score. A greater concern is the effect size.
We used Cohen’s d to calculate the magnitude of the difference
between the two groups (i.e., low and high EPR). The effect size is
moderate for the problem-solving time, the cyclomatic complexity,
and the exam score and low for the lines of code and the assignment
score.

Third, although the sample size (N=250 students) was sufficient
to derive statistically significant results, a larger data set in terms
of sample size and the number of assignments can be helpful for
validation. It is reasonable to expect that the entities increase lin-
early with time. The two programming challenges we analyzed are
quite different, yet the linear regression model fits both. Although
the model selection is not the focal point in our work, considering
more examples can increase our confidence in its generality.

6 DISCUSSION
What are the implications of our results for teaching and future re-
search? The composition of the student body in CS1 is heavily
diversified [27]. Predicting achievement includes many factors such
as math background, programming experience, and previous aca-
demic performance [29]. Mastering program decomposition is no
exception. Nevertheless, the distinction between correct and in-
correct is not as apparent as in other cases (e.g., a program with a
syntax error cannot even execute, an algorithmic mistake results
in unexpected behavior, etc.).

Our findings establish that students who decompose their pro-
grams do not necessarily introduce fewer bugs and do not get
substantially better assignment grades than their peers who do
not. Therefore, many novice programmers with relatively strong
background may still not fully comprehend the significance of
decomposition. On the other hand, it becomes evident from our
analysis that splitting complicated tasks into simpler subtasks acts
as a catalyst for the program development. How can CS1 instructors
convince the learners that decomposition is beneficial for everyone?

One idea is to give out short yet time-constrained programming
challenges in class. Under time pressure, many will jump directly
into coding. On the other hand, one has to break down the challenge
into smaller, simpler tasks to complete it on time.

Building automation tools around EPR can potentially lead to
improved learning at scale. A software development tool (i.e., IDE)
that calculates the EPR from the source code in real-time can notify
the novice programmer to break down the problem into simpler
tasks before the code becomes too complicated to handle. This
is an example of a preventive intervention to keep the program
complexity within reasonable levels. Inexperienced programmers
tend to jump into coding without thinking about how to structure
their programs around a simple design. Reminding the students
to break down complex functions into subtasks is vital to ensure
progress and avoid bugs. The logical next step to understand better
how EPR can affect the programming time, the code complexity and
the overall course performance is a research study with a treatment
group (i.e., students who use the automation tool in an introductory
programming class with a large audience).

7 CONCLUSION
Online courses and MOOC providers opened up learning opportu-
nities to a wide audience and are now trying to keep up with the
steep rise in enrollment. This paper presents a systematic approach
to detect and quantify the student’s ability to identify the main
problem tasks and break them down into subtasks. It evaluates also
its effects on the student’s performance, the time it takes to solve
a programming challenge and the complexity of the solution. Our
findings suggest that the development path to the solution has an
impact beyond the scope of the programming assignment itself.

Educators and researchers agree that program decomposition is
a crucial software development skill that the novice learner must
acquire. Nonetheless, it remains undetectable by the existing au-
tomated assessment tools (AATs), which analyze only the final
product. We believe that the rapid advancements in machine learn-
ing and NLP opened up opportunities and hope that our work can
contribute to more scalable solutions.

REFERENCES
[1] Khaled M. Alhawiti. 2014. Natural Language Processing and its Use in Education.

International Journal of Advanced Computer Science and Applications 5, 12 (2014),
72–76. https://doi.org/10.14569/IJACSA.2014.051210

[2] Programming Assignment. CS1. "Breakout". https://web.stanford.edu/class/
archive/cs/cs106a/cs106a.1194/handouts/Assignment%203.pdf

[3] Programming Assignment. CS1. "Hangman". https://web.stanford.edu/class/
archive/cs/cs106a/cs106a.1194/handouts/Assignment%204.pdf

[4] Charis Charitsis, Chris Piech, and John Mitchell. 2022. Function Names: Quanti-
fying the Relationship Between Identifiers and Their Functionality to Improve
Them. In Proceedings of the Ninth ACM Conference on Learning @ Scale (New
York City, NY, USA) (L@S ’22). Association for Computing Machinery, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3491140.3528269

[5] Wikipedia contributors. 2020. Prettyprint — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/wiki/Prettyprint

[6] Wikipedia contributors. 2021. Stop word — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/wiki/Stop_word

[7] Scott Crossley, Luc Paquette, Mihai Dascalu, Danielle S. McNamara, and Ryan S.
Baker. 2016. Combining Click-Stream Data with NLP Tools to Better Understand
MOOC Completion (LAK ’16). Association for Computing Machinery, New York,
NY, USA, 6–14. https://doi.org/10.1145/2883851.2883931

[8] Jeffrey Ferraro, Hal Daume, Scott Duvall, Wendy Chapman, Henk Harkema,
and Peter Haug. 2013. Improving performance of natural language processing
part-of-speech tagging on clinical narratives through domain adaptation. Journal

Session: CS Education @ Scale L@S ’22, June 1–3, 2022, New York City, NY, USA

119

https://doi.org/10.14569/IJACSA.2014.051210
https://web.stanford.edu/class/archive/cs/cs106a/cs106a.1194/handouts/Assignment%203.pdf
https://web.stanford.edu/class/archive/cs/cs106a/cs106a.1194/handouts/Assignment%203.pdf
https://web.stanford.edu/class/archive/cs/cs106a/cs106a.1194/handouts/Assignment%204.pdf
https://web.stanford.edu/class/archive/cs/cs106a/cs106a.1194/handouts/Assignment%204.pdf
https://doi.org/10.1145/3491140.3528269
https://en.wikipedia.org/wiki/Prettyprint
https://en.wikipedia.org/wiki/Stop_word
https://doi.org/10.1145/2883851.2883931

of the American Medical Informatics Association 20, 5 (Mar 2013), 931–939. https:
//doi.org/10.1136/amiajnl-2012-001453

[9] Daniel Gildea and Daniel Jurafsky. 2002. Automatic Labeling of Semantic
Roles. Comput. Linguist. 28, 3 (Sep 2002), 245–288. https://doi.org/10.1162/
089120102760275983

[10] David Ginat. 2001. Starting Top-down, Refining Bottom-up, Sharpening by Zoom-
In. SIGCSE Bull. 33, 4 (Dec 2001), 28–31. https://doi.org/10.1145/572139.572164

[11] Maurice H. Halstead. 1977. Elements of Software Science (Operating and Program-
ming Systems Series). Elsevier Science Inc., USA.

[12] Suvarna G Kanakaraddi and Suvarna S Nandyal. 2018. Survey on Parts of Speech
Tagger Techniques. In 2018 International Conference on Current Trends towards
Converging Technologies (ICCTCT). 1–6. https://doi.org/10.1109/ICCTCT.2018.
8550884

[13] Aaron Keen and Kurt Mammen. 2015. Program Decomposition and Complexity
in CS1. In Proceedings of the 46th ACM Technical Symposium on Computer Science
Education (Kansas City, Missouri, USA) (SIGCSE ’15). Association for Computing
Machinery, New York, NY, USA, 48–53. https://doi.org/10.1145/2676723.2677219

[14] Ulrich Kiesmueller, Sebastian Sossalla, Torsten Brinda, and Korbinian Riedham-
mer. 2010. Online Identification of Learner Problem Solving Strategies Using
Pattern Recognition Methods. In Proceedings of the Fifteenth Annual Conference
on Innovation and Technology in Computer Science Education (Bilkent, Ankara,
Turkey) (ITiCSE ’10). Association for Computing Machinery, New York, NY, USA,
274–278. https://doi.org/10.1145/1822090.1822167

[15] Tuomas Klemola and Juergen Rilling. 2003. A Cognitive Complexity Metric Based
on Category Learning. In Proceedings of the 2nd IEEE International Conference on
Cognitive Informatics (ICCI ’03). IEEE Computer Society, USA, 106.

[16] Dharmender Singh Kushwaha and A. K. Misra. 2006. A Complexity Measure
Based on Information Contained in the Software. In Proceedings of the 5th WSEAS
International Conference on Software Engineering, Parallel and Distributed Systems
(Madrid, Spain) (SEPADS’06). World Scientific and Engineering Academy and
Society (WSEAS), Stevens Point, Wisconsin, USA, 187–195.

[17] James R. Leonard. 1991. Using a Software Engineering Approach to CS1: A
Comparative Study of Student Performance. SIGCSE Bull. 23, 4 (Nov 1991), 23–26.
https://doi.org/10.1145/122697.122700

[18] Mitchell P. Marcus, Mary AnnMarcinkiewicz, and Beatrice Santorini. 1993. Build-
ing a Large Annotated Corpus of English: The Penn Treebank. Comput. Linguist.
19, 2 (Jun 1993), 313–330.

[19] Sergey Matskevich and Colin S. Gordon. 2018. Generating Comments from
Source Code with CCGs. In Proceedings of the 4th ACM SIGSOFT International
Workshop on NLP for Software Engineering (Lake Buena Vista, FL, USA) (NL4SE
2018). Association for Computing Machinery, New York, NY, USA, 26–29. https:
//doi.org/10.1145/3283812.3283822

[20] Lawrence J. Mazlack. 1983. Introducing Subprograms as the First Control
Structure in an Introductory Course. In Proceedings of the Fourteenth SIGCSE
Technical Symposium on Computer Science Education (Orlando, Florida, USA)
(SIGCSE ’83). Association for ComputingMachinery, New York, NY, USA, 265–270.
https://doi.org/10.1145/800038.801062

[21] T.J. McCabe. 1976. A Complexity Measure. IEEE Transactions on Software Engi-
neering SE-2, 4 (1976), 308–320. https://doi.org/10.1109/TSE.1976.233837

[22] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan,
Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz
Wilusz. 2001. A Multi-National, Multi-Institutional Study of Assessment of
Programming Skills of First-Year CS Students. In Working Group Reports from
ITiCSE on Innovation and Technology in Computer Science Education (Canterbury,
UK) (ITiCSE-WGR ’01). Association for Computing Machinery, New York, NY,
USA, 125–180. https://doi.org/10.1145/572133.572137

[23] Orni Meerbaum-Salant, Michal Armoni, and Mordechai Ben-Ari. 2011. Habits of
Programming in Scratch. In Proceedings of the 16th Annual Joint Conference on
Innovation and Technology in Computer Science Education (Darmstadt, Germany)
(ITiCSE ’11). Association for Computing Machinery, New York, NY, USA, 168–172.
https://doi.org/10.1145/1999747.1999796

[24] Orna Muller, David Ginat, and Bruria Haberman. 2007. Pattern-Oriented In-
struction and Its Influence on Problem Decomposition and Solution Construc-
tion. In Proceedings of the 12th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education (Dundee, Scotland) (ITiCSE ’07). As-
sociation for Computing Machinery, New York, NY, USA, 151–155. https:
//doi.org/10.1145/1268784.1268830

[25] David B. Palumbo. 1990. Programming Language/Problem-Solving
Research: A Review of Relevant Issues. Review of Educational Re-
search 60, 1 (1990), 65–89. https://doi.org/10.3102/00346543060001065
arXiv:https://doi.org/10.3102/00346543060001065

[26] Janice L. Pearce, Mario Nakazawa, and Scott Heggen. 2015. Improving Problem
Decomposition Ability in CS1 through Explicit Guided Inquiry-Based Instruction.
J. Comput. Sci. Coll. 31, 2 (Dec 2015), 135–144.

[27] Michaela Pedroni and Manuel Oriol. 2009. A comparison of CS student back-
grounds at two universities. CTIT technical reports series 613 (2009).

[28] Chris Piech, Mehran Sahami, Daphne Koller, Steve Cooper, and Paulo Blikstein.
2012. Modeling How Students Learn to Program. In Proceedings of the 43rd ACM
Technical Symposium on Computer Science Education (Raleigh, North Carolina,
USA) (SIGCSE ’12). Association for Computing Machinery, New York, NY, USA,
153–160. https://doi.org/10.1145/2157136.2157182

[29] Nathan Rountree, Janet Rountree, Anthony Robins, and Robert Hannah. 2004.
Interacting Factors That Predict Success and Failure in a CS1 Course. In Working
Group Reports from ITiCSE on Innovation and Technology in Computer Science Edu-
cation (Leeds, United Kingdom) (ITiCSE-WGR ’04). Association for ComputingMa-
chinery, New York, NY, USA, 101–104. https://doi.org/10.1145/1044550.1041669

[30] Daisuke Saito and Tsuneo Yamaura. 2014. Applying the top-down approach to
beginners in programming language education. In 2014 International Conference
on Interactive Collaborative Learning (ICL). 311–318. https://doi.org/10.1109/ICL.
2014.7017791

[31] Cynthia C. Selby. 2015. Relationships: Computational Thinking, Pedagogy of
Programming, and Bloom’s Taxonomy. In Proceedings of the Workshop in Primary
and Secondary Computing Education (London, United Kingdom) (WiPSCE ’15).
Association for Computing Machinery, New York, NY, USA, 80–87. https://doi.
org/10.1145/2818314.2818315

[32] Elliot Soloway, Jeffrey Bonar, and Kate Ehrlich. 1983. Cognitive Strategies and
Looping Constructs: An Empirical Study. Commun. ACM 26, 11 (Nov 1983),
853–860. https://doi.org/10.1145/182.358436

[33] Raja Sooriamurthi. 2009. Introducing Abstraction and Decomposition to Novice
Programmers. In Proceedings of the 14th Annual ACM SIGCSE Conference on
Innovation and Technology in Computer Science Education (Paris, France) (ITiCSE
’09). Association for Computing Machinery, New York, NY, USA, 196–200. https:
//doi.org/10.1145/1562877.1562939

[34] Yingxu Wang and Vincent Chiew. 2010. On the cognitive process of human
problem solving. Cognitive Systems Research 11, 1 (2010), 81–92. https://doi.org/
10.1016/j.cogsys.2008.08.003 Brain Informatics.

[35] Yingxu Wang and Jingqiu Shao. 2003. Measurement of the Cognitive Functional
Complexity of Software. In Proceedings of the 2nd IEEE International Conference
on Cognitive Informatics (ICCI ’03). IEEE Computer Society, USA, 67.

[36] Daniela Zehetmeier, Axel Bottcher, Anne Bruggemann-Klein, and Veronika
Thurner. 2019. Defining the Competence of Abstract Thinking and Evaluat-
ing CS-Students’ Level of Abstraction. In Proceedings of the 52nd Hawaii In-
ternational Conference on System Sciences (Honolulu, Hawaii, USA). 7642–7651.
https://doi.org/10.24251/HICSS.2019.921

Session: CS Education @ Scale L@S ’22, June 1–3, 2022, New York City, NY, USA

120

https://doi.org/10.1136/amiajnl-2012-001453
https://doi.org/10.1136/amiajnl-2012-001453
https://doi.org/10.1162/089120102760275983
https://doi.org/10.1162/089120102760275983
https://doi.org/10.1145/572139.572164
https://doi.org/10.1109/ICCTCT.2018.8550884
https://doi.org/10.1109/ICCTCT.2018.8550884
https://doi.org/10.1145/2676723.2677219
https://doi.org/10.1145/1822090.1822167
https://doi.org/10.1145/122697.122700
https://doi.org/10.1145/3283812.3283822
https://doi.org/10.1145/3283812.3283822
https://doi.org/10.1145/800038.801062
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1145/572133.572137
https://doi.org/10.1145/1999747.1999796
https://doi.org/10.1145/1268784.1268830
https://doi.org/10.1145/1268784.1268830
https://doi.org/10.3102/00346543060001065
https://arxiv.org/abs/https://doi.org/10.3102/00346543060001065
https://doi.org/10.1145/2157136.2157182
https://doi.org/10.1145/1044550.1041669
https://doi.org/10.1109/ICL.2014.7017791
https://doi.org/10.1109/ICL.2014.7017791
https://doi.org/10.1145/2818314.2818315
https://doi.org/10.1145/2818314.2818315
https://doi.org/10.1145/182.358436
https://doi.org/10.1145/1562877.1562939
https://doi.org/10.1145/1562877.1562939
https://doi.org/10.1016/j.cogsys.2008.08.003
https://doi.org/10.1016/j.cogsys.2008.08.003
https://doi.org/10.24251/HICSS.2019.921

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Data Collection
	3.2 Parser
	3.3 Part-of-Speech Tagger/Analyzer
	3.4 Classifier

	4 Evaluation
	5 Threats to Reliability
	6 Discussion
	7 Conclusion
	References

