
Function Names:Quantifying the Relationship Between
Identifiers and Their Functionality to Improve Them
Charis Charitsis
charis@stanford.edu
Stanford University
Stanford, CA, USA

Chris Piech
piech@cs.stanford.edu
Stanford University
Stanford, CA, USA

John C. Mitchell
jcm@stanford.edu
Stanford University
Stanford, CA, USA

ABSTRACT
When students first learn to program, they often focus on function-
ality: does a program work? In an era where software volume and
complexity increase exponentially, it is equally important that they
learn to write programs with style so that they are readable and
extendable. Writing quality code starts with the building blocks
for any program, its functions. A carefully chosen name is vital for
program maintainability and manageability. The identifier is the
most portable and concise way to summarize what the function
does. What makes for the right choice? And can we automatically
assess the quality of function names? Using natural language pro-
cessing, we were able to create a probabilistic model to evaluate
their clarity. Using functionality encodings, we attempt to learn the
relationship between functions in different programs to improve
their names. We analyzed a total of 5,400 programs tackling five
novice programming tasks submitted by over 1,000 students in CS1.
We developed a software system to automate labor-intensive tasks,
detect poor function names and recommend replacements. Our
findings suggest that less than 2.5% of name substitutions have an
adverse outcome, and in most cases, more than 50% result in an
improvement.

CCS CONCEPTS
• Software and its engineering→ Student assessment; • Social
and professional topics → CS1.

KEYWORDS
CS1, common functionality detection, probabilistic model, function
name assessment

ACM Reference Format:
Charis Charitsis, Chris Piech, and John C. Mitchell. 2022. Function Names:
Quantifying the Relationship Between Identifiers and Their Functionality
to Improve Them. In Proceedings of the Ninth ACM Conference on Learning
@ Scale (L@S ’22), June 1–3, 2022, New York City, NY, USA. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3491140.3528269

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
L@S ’22, June 1–3, 2022, New York City, NY, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9158-0/22/06. . . $15.00
https://doi.org/10.1145/3491140.3528269

1 INTRODUCTION
Writing programs with style is an essential skill that often gets
overlooked in CS1. In an era where software complexity increases
exponentially [35], the technology industry looks for programmers
who can write code that is readable and resilient to modifications.
The new code a professional programmer writes per year is a small
fraction of the production volume [21]. On most occasions, devel-
opers navigate through existing software rather than introduce
new functionality. Developing the ability to write quality programs
is a long process. The instructors take a lot of effort and time to
provide helpful feedback. On the other hand, enrollment in CS1
courses keeps increasing and limits the available human resources
per student.

Readable software originates in its building block, the function.
A clear description of the performed task is vital to maintainability
and manageability. Good comments explain the expected outcome
concisely and highlight details or hidden corner cases. Thus, they
save time to review andmake the program error-resilient. Documen-
tation begins with identifier selection. A comment that describes
a function appears in a single place, its declaration. However, this
function can be called from anywhere in the code. Ambiguous
names in those calls can cause confusion, introduce bugs and inter-
rupt the thought process. Replicating a comment in function calls
entails the risk of outdated documentation. On the other hand, a
name that captures with clarity the intended task makes the code
readable. Therefore, a function identifier is the most concise and
the most important form of documentation in the code. In our work,
we address the following research question:
How can we automatically identify poor function names and
improve them at scale?

Our paper proceeds as follows: We begin with a summary of
past work on automated feedback in CS1 (Section 2). We collect a
corpus of student code submissions for five particular programming
challenges (Section 3). We then manually label a subset of functions
with a score from 1 to 4 based on a human judgment of ’function
name quality’ and use machine learning to train a classifier to au-
tomatically label the rest of the corpus of functions with a score
(Section 4.1). We analyze its performance and compare it with the
base case and other machine learning algorithms that we consid-
ered. We proceed with a semantic comparison to identify common
behavior among functions in different programs (Section 4.2). In
particular, we automatically instrument all submitted solutions to
print out the in-memory state at every function entrance and exit
point (which represent the pre- and post-states, respectively). Next,
we run a matching algorithm that detects functions in different
programs where the pre- and post-states match. The algorithm
tries to find a function with identical behavior and with a better

Session: CS Education @ Scale L@S ’22, June 1–3, 2022, New York City, NY, USA

93

https://doi.org/10.1145/3491140.3528269
https://doi.org/10.1145/3491140.3528269
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3491140.3528269&domain=pdf&date_stamp=2022-06-01

L@S ’22, June 1–3, 2022, New York City, NY, USA Charitsis, et al.

name score (Section 4.3). We proceed with threats to the validity
of our work (Section 6), insight into issues we discovered while
creating the model, offer our ideas to overcome them and share our
experience from developing a system for automated feedback on
function names (Section 7). Our paper concludes with a summary
and final remarks (Section 8).

This work makes the following contributions:

• It introduces a model for function name assessment.
• It proposes a way to reveal functions with identical function-
ality in different programs.

• It demonstrates how to detect and improve poor function
identifiers at scale.

2 RELATEDWORK
Since the advent of MOOCs[25] and online CS education, there has
been growing research on automated assessment tools [15]. Joy
et al. describe a framework to assess programming assignments
based on three principal components [18]: functionality correctness,
style (well-documented code, clear layout, meaningful selection of
variable and function identifiers, etc.), and authenticity.

There is extensive use of tools in CS1 to identify fraudulent
submissions [24]. Plagiarism detection does not require program
execution. Instead, the source code is compared to detect similarities
between student submissions [28, 33].

Verifying the correctness can also be automated. It relies pri-
marily on a comparison between runtime execution and expected
output. Test-driven learning in CS1 has been studied extensively
[7, 8, 16, 17, 29], and several automated grading tools have been
deployed over the years. Web-CAT [9, 11], Marmoset [34], and
ComTest [20] run automatic tests on student programs before sub-
mission to provide feedback. However, this approach requires prior
knowledge of the assignment and human effort to generate unit
tests. Artificial intelligence can help to lift this barrier. Piech et al.
created linear mappings from an embedded precondition space to
an embedded postcondition space and used them as features in a
neural network to provide feedback at scale [26, 27].

The reality regarding qualitative assessment (i.e., evaluating the
coding style and the program design) is quite different. On the one
hand, its significance in CS education was well established early on
[2, 22], and a large number of articles try to teach coding style prin-
ciples using examples [14]. On the other hand, the number of tools
and techniques designed to assist in coding style is undoubtedly lim-
ited. Breuker et al. tracked code properties to measure static quality
in an educational setting [3]. Choudhury et al. analyzed similarities
among code submissions to provide auto-generated syntactic hints
to students and help them produce better-quality solutions [31].
Edwards et al. used static-analysis tools to identify problems in pro-
grams [10]. Although these tools are primarily designed to prevent
bugs, they can also detect cases where the code does not comply
with the programming language conventions. Regarding identifiers,
they can detect names that violate capitalization conventions and
are too short or auto-generated by an IDE tool.

Glassman et al. introduced a user interface for giving feedback
on student variable names [13]. Foobaz is not an automatic as-
sessment tool. It presents a scrollable list of normalized solutions
accompanied by the variables occurring in the solution. Allamanis

et al. developed a model that learns which function and class names
are semantically similar by assigning them to locations in a high-
dimensional continuous space [1]. It does that by analyzing the
tokens but does not look into the actual behavior of the function.
This idea works well for clustering. However, it does not guarantee
that two names in close proximity correspond to functions that
perform the same task.

Code style evaluation requires qualitative skills, and as such, it
is commonly considered a human task. In this paper, we attempt to
reverse roles. Instead of answering how machines can help humans
provide feedback at scale, we try to answer how humans can teach
machines to take this heavy burden away. While checking function
names automatically is not a comprehensive evaluation of coding
style, it is an effective automated process that provides meaningful
style feedback to students. This paper builds on early-stage work
that was restricted to minimalistic programming languages [4].
To examine the generality of the research method, it also consid-
ers code written in full-blown programming languages such as
Java that are widely used in CS1 courses. Moreover, it delves into
subtle concepts, addresses potential threats to the method valid-
ity, discusses alternative approaches, and provides insight into the
challenges presented in this research work.

3 DATA COLLECTION
In this study, we gathered 5,400 programs from students who at-
tended CS1 in four different course offerings. Of the submitted
programs, 3,900 were for the initial assignment in Karel the Robot,
a minimalistic programming language backed up by Java [30]. It
uses a limited number of instructions (Table 1) that make Karel
navigate in a world (grid) consisting of streets (rows) and avenues
(columns). Karel can also place or remove beepers (diamond-shaped
objects) in any given spot (corner) of the world. The remaining 1,500
programs were for two assignment challenges written in Java.

Table 1: Karel programming language commands and condi-
tion names

Built-in Karel commands
move() putBeeper() pickBeeper()
turnLeft() turnRight() turnAround()
paintCorner(color)
Karel condition names
frontIsClear() frontIsBlocked() leftIsClear()
leftIsBlocked() rightIsClear() rightIsBlocked()
facingNorth() notFacingNorth() facingEast()
notFacingEast() facingWest() notFacingWest()
facingSouth() notFacingSouth() beepersPresent()
noBeepersPresent() beepersInBag() noBeepersInBag()

In the first and most trivial problem, dubbed "Collect Newspaper
Karel," Karel the Robot leaves its house to collect the beeper from
outside and returns home [36]. The second program, dubbed "Stone
Mason Karel," asks the students to have Karel repair a set of arches
where some of the stones (represented by beepers) are missing from
the columns supporting the arches [36]. The third programming
challenge, dubbed "Checkerboard Karel," begins with an M-by-N

Session: CS Education @ Scale L@S ’22, June 1–3, 2022, New York City, NY, USA

94

Function Names: Quantifying the Relationship Between Identifiers and Their Functionality to Improve Them L@S ’22, June 1–3, 2022, New York City, NY, USA

Figure 1:Method overview. Our system consists of two steps. First, it extracts the function names and feeds them to a probabilistic
assessment model. Names with suboptimal scores are considered for replacement. Candidates include functions with the same
functionality as the one whose name we want to replace. The selected one has the highest score among the candidates.

empty grid and asks the students to make Karel place beepers to
create a checkerboard pattern [36]. The solution must work on any
sized grid covering edge cases such as single-column or single-row
grids, making the overall task more challenging. The first of the
two Java programs dubbed "Pyramid" draws a pyramid of bricks
arranged in horizontal rows centered at the bottom of the graphical
window [37]. The second Java program dubbed "Yahtzee" creates a
computer version of the Yahtzee game [38].

4 METHOD
Figure 1 summarizes our method. Improving function names is a
two-step process: identify names with room for improvement and
then find a suitable replacement for them. Thus, we need to eval-
uate the identifiers and recommend replacements for suboptimal
scores. A candidate name needs to meet two conditions. It needs
to have a higher score than the one it tries to replace, and it must
perform the same task. In the following subsections, we present
our assessment model (Section 4.1), explain our method to identify
code with common functionality (Section 4.2), and show how to
combine those two to improve function names.

4.1 Function Name Assessment
Evaluating the quality of the code is a time-consuming human task.
We developed software that extracts the function names from the
student submissions [5]. We ignored outliers that appeared only
once and graded them manually on a scale of 1 to 4 1. Examples
are provided in Table 2. Functions follow naming conventions in
most programming languages [6, 39]. In Java, they are lowercased,
and for names with multiple words, the first letter of each internal
word is capitalized (e.g., run, runProgram, etc.) [23]. Our collected
data shows that more than 99.6% of the students follow this camel
case rule. The software applies the rule to tokenize the function
names and ignores stop words that add noise [32, 41].

1A score of 4 means that the name is clear, a score of 3 means that it is somewhat clear
with an element of ambiguity, a score of 2 means that it is unclear, and a score of 1
means that it is very ambiguous or irrelevant to the performed task.

Table 2: Examples of function names for Karel problems and
their scores based on how clear they describe what to expect.

Function Name Score What to expect
goToWall 4 Karel moves to a location in

front of a wall.
moveToTopRow 4 Karel moves to the top row.
nextRow 3 When the action verb is missing

in Karel, it usually implies mo-
tion (move to next row), but we
don’t know for sure.

goBackToStart 3 Karel moves to the beginning of
the current row or column. We
don’t know which of the two.

turn 2 Ambiguous. Turn left, right, up,
down, or around? Hard to guess.

goKarel 1 Very ambiguous.

Figure 2: Classification results for different programs. The
vertical axis accounts for distinct function names used by
two or more students.

The remaining tokens were used to develop a probabilistic model
based on the Naïve Bayes machine learning algorithm. We parti-
tioned the data into a training and a test set (80:20 split ratio). We

Session: CS Education @ Scale L@S ’22, June 1–3, 2022, New York City, NY, USA

95

L@S ’22, June 1–3, 2022, New York City, NY, USA Charitsis, et al.

Figure 3: Correctly classified instances in our Naïve Bayes based model, other models we considered initially and the baseline.

used the scores of the function names to divide them into buckets.
The prior probability that an identifier has a given score equals the
bucket size for that score divided by the total number of identifiers.
Approximately a third of the names got a score of 4, a third got a
score of 3, and a third got a score of 1 or 2. Then, we calculated for
every score the probability that a token belongs to a name of that
score. After training the model, we used the test set to predict the
score for unseen identifiers and compared it with the actual score.
We tokenized every function name in the test data set and then
multiplied the prior probability with the individual token probabili-
ties. We calculated this product for each score (1 to 4). The one that
maximizes the product is the score that our model predicts. Our
software system automates the steps described in this paragraph.
The only manual step is grading the function names to train the
model.

In all programming challenges, the model’s accuracy exceeds
75%. In the first program (Collect Newspaper Karel), each function
completes a simple task. Thus, most students made good selections,
and the number of distinct names was relatively low. The model
correctly predicts 89.36% of the time. The next two Karel challenges
are more complicated. Moreover, the solution does not target a
specific setting. It needs to be generalized on any sized grid, adding
an extra layer of complexity. As a result, the number of distinct
names is higher by a factor of 1.6 in the second and 1.8 in the third
challenge, and the model is correct 79.61% and 76.16% of the time,
respectively. In the first Java program (Pyramid), the number of
distinct names is low. The problem is relatively simple, and most
students choose meaningful names. Nonetheless, the second Java
program (Yahtzee) requires many helper functions, and learners
seem to struggle more to select proper identifiers. The model is
correct 77.78% and 75.46% of the time, respectively (Figure 2).

The first idea that comes to one’s mind, which we used as the
baseline, is to consider the identifier popularity as the sole assess-
ment criterion. Intuitively, the more students choose the same func-
tion name, the higher the probability of satisfactory selection. On

the other hand, students should rarely share poor names. Figure 3
shows how our model compares to the baseline that predicts the
clarity score linearly from the name popularity.

In our early attempts, we considered additional attributes be-
yond the name popularity, such as the ratio of functions with a
common name and behavior over the functions with a common
name, the number of tokens in a name, etc. To find out if there is
a strong relationship between them (or some of them) and clarity,
we experimented with machine learning algorithms (J48 decision
tree and random forest). We tried different options (bag size, itera-
tions, pruning criteria such as confidence threshold and a minimum
number of instances per leaf) to find a combination of predictors
with optimum results. Similarly, we considered a neural network
model, and we varied the learning rate for the backpropagation
algorithm and the number of epochs to train through. Figure 3 also
shows how our Naïve Bayes-based solution compares to these early
approaches.

4.2 Functions With Identical Behavior
The foundation in our approach to detect code with common func-
tionality is that a program can be considered a sequence of transi-
tions between program states. Every computer application stores
data in variables. Their contents at any given point in the execution
determine the program state [19]. Almost every CS1 follows this
paradigm, even if some unimportant variable values can be omitted.
In the Karel programming language, the program state consists of
Karel’s world (i.e., beeper locations, etc.), the position (i.e., exact
square in the grid), and the direction Karel is facing. In Pyramid,
the number and position of the drawn bricks describe the current
state. In Yahtzee, the scorecard and the player’s turn determine the
program state.

We developed software that parses the student programs and
injects code to capture those states. A similar concept is used by
Ernst et al. to discover invariants from execution traces [12]. Code

Session: CS Education @ Scale L@S ’22, June 1–3, 2022, New York City, NY, USA

96

Function Names: Quantifying the Relationship Between Identifiers and Their Functionality to Improve Them L@S ’22, June 1–3, 2022, New York City, NY, USA

Figure 4: Code instrumentation to capture the pre/post-state pairs in nested functions. Each pair is tagged and then entered
into a lookup table.

instrumentation takes place at the function level. The state is cap-
tured and pushed to a stack upon entering a function. When we exit
the function, the injected code captures the state again (i.e., post-
state) and pairs it with the pre-state that it pulls from the stack. The
stack-oriented approach facilitates handling complicated structures
such as nested functions (Figure 4). Although there is a single entry
point, there can be multiple exit points (i.e., return statements),
including events that disrupt the normal flow of instructions (i.e.,
exceptions).

The pair of pre- and post-states is inserted into a list in a lookup
table with the function signature as key. The list is needed because
a function can be called more than once. Figure 5 shows how to
utilize the lookup table to compare functions in different programs.
A matching pre/post-state pair means that the functions potentially
exhibit the same behavior. However, they are functionally equiv-
alent only if they are interchangeable. Thus, we must swap them
and ensure that both programs produce the same output as before.

Session: CS Education @ Scale L@S ’22, June 1–3, 2022, New York City, NY, USA

97

L@S ’22, June 1–3, 2022, New York City, NY, USA Charitsis, et al.

Figure 5: We create a lookup table for every program exe-
cution and then compare the stored pre/post-state pairs for
potential matches. A match is a necessary but not sufficient
condition for functionality equivalence. To find out if two
functions are interchangeable, we must swap them and ver-
ify if both programs still produce the same output.

Figure 6: Source-code transformation. Pulling functionY()
from Program 2 to replace functionB() in Program 1. We use
name mangling to resolve function name collisions.

Pulling code from one program and putting it in another can be
tricky. First, one must update all function calls. Second, the pulled
function may call other functions in its original program, which
means that one must pull them as well. If one of them happens
to have the same name as a function in the destination program,
the program does not compile. To prevent collisions, we use name
mangling, a mechanism used by compilers to ensure unique names
for functions and variables [40]. We transform the source code by
appending a unique suffix to every pulled function (Figure 6).

4.3 Function Name Replacement
After assigning scores to the function names that are extracted
from the student submissions (Section 4.1), we classified the names
into two groups: ones with perfect scores (i.e., 4) and ones with

Table 3: Examples of function name replacements

Function Name Replacement
Karel (Programs 1-3)

back moveBackOnce
toNewspaper moveToNewspaper
firstRow fillFirstRow
turn faceNextRow
returnBack returnToStartOfRow
repair repairColumn

Java (Programs 4 and 5)
brick addBrick
setRow createRowOfBricks
sumAll sumDice
score updateCategoryScore
turn playOneTurn
diceArray rollDice

non-perfect scores (i.e., 1, 2, or 3) that we can further improve. To
find a suitable replacement for the latter, we first need to identify
candidate functions with the same behavior (Section 4.1). Finally,
we can utilize our assessment model (Section 4.1) to pick the best
among them. If two or more share the highest score, the most
popular is selected. Table 3 provides examples of function name
replacements.

5 RESULTS
Our assessment model, which classifies the function names as per-
fect and non-perfect, predicts that a name can improve with high
accuracy, precision, and F1 score (Table 4).

To evaluate the performance, we used a 10-fold (80:20 split ratio)
and a leave-one-out cross-validation. The results account for cases
where an identifier with a non-perfect predicted score was replaced
by one with a higher predicted score, and their respective functions
have the same behavior. Table 5 and Table 6 summarize the 10-fold
and the leave-one-out cross-validation results.

The 10-fold cross-validation is more pessimistic because of the
smaller training set. Larger training sets result in more accurate

Table 4: Statistical measures for the five programs

P 1 P 2 P 3 P 4 P 5
non-perfect score (score < 4)

Accuracy 0.926 0.882 0.967 0.852 0.852
Precision 0.939 0.844 0.973 0.875 0.969
F1 0.898 0.667 0.863 0.700 0.854
TPR 0.861 0.551 0.775 0.583 0.764
FPR 0.034 0.049 0.026 0.035 0.032

perfect score (score = 4)
Accuracy 0.926 0.882 0.967 0.852 0.852
Precision 0.918 0.817 0.768 0.846 0.756
F1 0.941 0.879 0.859 0.902 0.849
TPR 0.966 0.951 0.974 0.965 0.968
FPR 0.139 0.049 0.245 0.417 0.236

Session: CS Education @ Scale L@S ’22, June 1–3, 2022, New York City, NY, USA

98

Function Names: Quantifying the Relationship Between Identifiers and Their Functionality to Improve Them L@S ’22, June 1–3, 2022, New York City, NY, USA

Table 5: 10-fold cross-validation results for the five programs

P 1 P 2 P 3 P 4 P 5
Replaced names 560 118 268 221 342
Improvement 29.46% 77.12% 89.93% 49.34% 81.57%
No impact 70.54% 22.88% 8.58% 50.66% 17.31%
Negative impact 0% 0% 1.49% 0% 1.12%

Table 6: Leave-one-out cross-validation results for the five
programs

P 1 P 2 P 3 P 4 P 5
Replaced names 635 208 485 321 602
Improvement 33.23% 83.17% 87.63% 52.86% 80.89%
No impact 66.77% 16.83% 9.90% 47.14% 17.08%
Negative impact 0% 0% 2.47% 0% 2.03%

model predictions. Moreover, there is a larger pool of candidates
with common functionality to choose from when looking for re-
placements. For the same reason, the 10-fold has lower accuracy
and F1 score (on average, 89.6% and 0.84 respectively) than the
leave-one-out cross-validation (on average, 92.8% and 0.86 respec-
tively).

Name substitutions rarely have an adverse outcome (less than
2.5% in the worst case). There is a limited number of distinct func-
tion names for the first Karel (Collect Newspaper) and Java (Pyramid)
programs. Thus, the improvement was approximately 30% and 50%,
respectively. However, for the other programs, the improvement
reached 80% or higher.

6 THREATS TO VALIDITY
In our study, we analyzed a handful of programming challenges.
What are the threats to the generalizability of the approaches to
other programming settings than those considered? Are there potential
limitations?

Comparing the Karel and Java programs (Section 5) suggests that
the programming language selection can affect the results. However,
a deeper analysis reveals that the problem nature has a twofold,
more significant impact. First, open-ended challenges typically use
more functions to decompose the main task into subtasks. Second,
the problem-related vocabulary affects the word popularity and,
subsequently, the individual token probabilities used in the name
assessment.

The Naïve Bayes machine learning algorithm does not consider
the position of the tokens in the function names. Thus, the product
of probabilities is equal for two identifiers with the same tokens
regardless of the order of appearance. NLP generally attempts to
extract a meaning representation from raw plain text. Typically the
corpus consists of full sentences that are grammatically structured.
Therefore the word order matters. Does ignoring the order pose
a limitation in our case? Function names are not grammatically
structured. Thus, two names with the same tokens in different order
convey almost always the same information about the performed
task, and they should receive the same score. For example, even if

the name playOneTurn reads better than oneTurnPlay, both reveal
that the user plays one turn.

In our analysis, the scores vary between 1 and 4. It is reasonable
to assume that a broader range can affect the results. We opted
for a scale of 1 to 4 because of grading consistency. For example,
the difference between a score of 3 and 4 is more apparent than
between 9 and 10 on a scale of 1 to 10.

7 DISCUSSION
In this section, we summarize experiences and lessons learned in
our investigation.What ideas did we try? What issues did we face,
and what did we do to fix them? Which tasks require more effort, and
what are the future steps?

We initially looked into the popularity of function names. Intu-
itively, if many students make the same selection, it must be proper
and vice versa. This assumption is incorrect for two reasons. First,
single-word names (usually a verb such as build, check, etc.) have
a high probability because they frequently appear in student pro-
grams. However, single-word names should be accompanied by one
or more words to describe the task with clarity (e.g., buildAllRows,
checkForWall, etc.). Second, names with lower probability are not
necessarily bad. Two identifiers with the same meaning may have
quite different probabilities. For example, createRow has a higher
probability product (Section 4.1) than constructRow because create
is more a popular verb than construct, although they are synonyms.

Individual token probabilities make the assessment model more
robust against underpredicting. Even if a token is not as popular as
another with the same meaning, the remaining words can compen-
sate for the discrepancy. However, we discovered that this logic falls
short if an identifier is one word. In this case, the model overpre-
dicts the score. To solve this issue, we penalized single-word names
(i.e., point deduction from the predicted score). Another lesson was
that stop words add noise, and we must ignore them. For example,
pickNewspaper and pickTheNewspaper are essentially identical but
produce different results because stop words skew the probabilities.
Finally, we encountered a practical issue: compiling, executing, and
comparing thousands of programs takes time. In-memory compila-
tion and bytecode execution are substantially faster than operating
on files in the disk. Hashing the program states increases efficiency
as well.

After these adjustments, we found that the model predicts the
correct score more than 75% of the time. To improve the accuracy,
one can use NLP to cluster synonyms (e.g., create, build, construct,
make, etc.). A downside to this approach is that many words have
more than one meaning (e.g., check can mean examine, but can also
meanmark into squares). Choosing the correct interpretation makes
the model context-aware. There is a trade-off between generality
and complexity one has to balance.

Most tasks are labor-intensive and practically impossible to com-
plete without software support. We developed a system to parse
the code, detect functions, tokenize identifiers, instrument the pro-
gram to capture and compare its states, swap functions between
programs to verify if they are interchangeable, assign clarity scores
and recommend replacements for poor choices, etc. We spent more
time on detecting equivalent functionality than name assessment.
The only manual job is grading the names in the training set.

Session: CS Education @ Scale L@S ’22, June 1–3, 2022, New York City, NY, USA

99

L@S ’22, June 1–3, 2022, New York City, NY, USA Charitsis, et al.

In the future, we plan to explore tool applications in CS1 courses.
A logical next step is a built-in plugin for software development
editors. The plugin will warn students about ambiguous identifiers
in their code. We plan to study its impact on the adoption of good
programming habits.

8 CONCLUSION
In CS1, writing code with style is a time-consuming human task
that tends to be overlooked. Selecting meaningful identifiers is a
fundamental skill that a programmer needs to develop early. In
this paper, we presented a method for semi-automating feedback
on function name quality. A proper function name has to convey
with clarity the intended task. To assess the clarity of a function
identifier, we introduced a probabilistic model around its tokens.
To improve the names for those with non-perfect scores, we search
for functions with identical behavior and better name. This paper
shares the issues we discovered while developing the model and
explains our ideas to overcome them. The proposed solution is
context-agnostic and can be widely used. We compared the model
to the baseline and other machine learning algorithms.

More than five thousand student submissions and five different
programming challenges were considered in our evaluation. For our
classification needs (i.e., perfect and non-perfect scores), the model
exhibits consistently high accuracy, precision, and F1 score (Table 4).
We developed a software system to automate labor-intensive tasks,
detect poor function names and recommend replacements. Our
results show that the substitutions rarely have an adverse outcome
(less than 2.5% in the worst case), and they usually improve the
function names.

Every CS1 course acknowledges the importance of writing clean
code and tries to instill best practices. Documentation plays an
essential role in software maintainability and manageability. The
shortest and arguably most effective form of self-documenting
code is the identifier. Yet, evaluating function names remains a
human task. We hope that our work will encourage educators to
incorporate some of the ideas presented in this paper in ways that
fit their needs.

REFERENCES
[1] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. 2015. Sug-

gesting Accurate Method and Class Names. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering (Bergamo, Italy) (ESEC/FSE 2015).
Association for Computing Machinery, New York, NY, USA, 38–49. https:
//doi.org/10.1145/2786805.2786849

[2] R E. Berry and B A.E. Meekings. 1985. A Style Analysis of C Programs. Commun.
ACM 28, 1 (Jan 1985), 80–88. https://doi.org/10.1145/2465.2469

[3] Dennis M. Breuker, Jan Derriks, and Jacob Brunekreef. 2011. Measuring Static
Quality of Student Code. In Proceedings of the 16th Annual Joint Conference on
Innovation and Technology in Computer Science Education (Darmstadt, Germany)
(ITiCSE ’11). Association for Computing Machinery, New York, NY, USA, 13–17.
https://doi.org/10.1145/1999747.1999754

[4] Charis Charitsis, Chris Piech, and John Mitchell. 2021. Assessing Function Names
and Quantifying the Relationship Between Identifiers and Their Functionality to
Improve Them. In Proceedings of the Eighth ACM Conference on Learning @ Scale
(Virtual Event, Germany) (L@S ’21). Association for Computing Machinery, New
York, NY, USA, 291–294. https://doi.org/10.1145/3430895.3460161

[5] Charis Charitsis, Chris Piech, and John Mitchell. 2022. Using NLP to Quantify
Program Decomposition in CS1. In Proceedings of the Ninth ACM Conference on
Learning @ Scale (New York City, NY, USA) (L@S ’22). Association for Computing
Machinery, NewYork, NY, USA, 8 pages. https://doi.org/10.1145/3491140.3528272

[6] Wikipedia contributors. 2022. Naming convention (programming) — Wikipedia,
The Free Encyclopedia. https://en.wikipedia.org/wiki/Naming_convention_
(programming)#Language-specific_conventions

[7] Chetan Desai, David S. Janzen, and John Clements. 2009. Implications of Inte-
grating Test-Driven Development into CS1/CS2 Curricula. In Proceedings of the
40th ACM Technical Symposium on Computer Science Education (Chattanooga,
TN, USA) (SIGCSE ’09). Association for Computing Machinery, New York, NY,
USA, 148–152. https://doi.org/10.1145/1508865.1508921

[8] Stephen H. Edwards. 2004. Using Software Testing to Move Students from Trial-
and-Error to Reflection-in-Action. In Proceedings of the 35th SIGCSE Technical
Symposium on Computer Science Education (Norfolk, Virginia, USA) (SIGCSE
’04). Association for Computing Machinery, New York, NY, USA, 26–30. https:
//doi.org/10.1145/971300.971312

[9] Stephen H. Edwards. 2014. Work-in-Progress: Program Grading and Feedback
Generation withWeb-CAT. In Proceedings of the First ACMConference on Learning
@ Scale Conference (Atlanta, Georgia, USA) (L@S ’14). Association for Comput-
ing Machinery, New York, NY, USA, 215–216. https://doi.org/10.1145/2556325.
2567888

[10] Stephen H. Edwards, Nischel Kandru, and Mukund B.M. Rajagopal. 2017. Inves-
tigating Static Analysis Errors in Student Java Programs. In Proceedings of the
2017 ACM Conference on International Computing Education Research (Tacoma,
Washington, USA) (ICER ’17). Association for Computing Machinery, New York,
NY, USA, 65–73. https://doi.org/10.1145/3105726.3106182

[11] Stephen H. Edwards and Manuel A. Perez-Quinones. 2008. Web-CAT: Automat-
ically Grading Programming Assignments. SIGCSE Bull. 40, 3 (Jun 2008), 328.
https://doi.org/10.1145/1597849.1384371

[12] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 1999.
Dynamically Discovering Likely Program Invariants to Support Program Evolu-
tion. In Proceedings of the 21st International Conference on Software Engineering
(Los Angeles, California, USA) (ICSE ’99). Association for Computing Machinery,
New York, NY, USA, 213–224. https://doi.org/10.1145/302405.302467

[13] Elena L. Glassman, Lyla Fischer, Jeremy Scott, and Robert C. Miller. 2015. Foobaz:
Variable Name Feedback for Student Code at Scale. In Proceedings of the 28th
Annual ACM Symposium on User Interface Software & Technology (Charlotte,
North Carolina, USA) (UIST ’15). Association for Computing Machinery, New
York, NY, USA, 609–617. https://doi.org/10.1145/2807442.2807495

[14] Robert Green and Henry Ledgard. 2011. Coding Guidelines: Finding the Art in the
Science. Queue 9, 11 (Nov 2011), 10–22. https://doi.org/10.1145/2063166.2063168

[15] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. 2010. Review
of Recent Systems for Automatic Assessment of Programming Assignments.
In Proceedings of the 10th Koli Calling International Conference on Computing
Education Research (Koli, Finland) (Koli Calling ’10). Association for Computing
Machinery, New York, NY, USA, 86–93. https://doi.org/10.1145/1930464.1930480

[16] David Janzen and Hossein Saiedian. 2008. Test-Driven Learning in Early Pro-
gramming Courses. In Proceedings of the 39th SIGCSE Technical Symposium on
Computer Science Education (Portland, OR, USA) (SIGCSE ’08). Association for
Computing Machinery, New York, NY, USA, 532–536. https://doi.org/10.1145/
1352135.1352315

[17] David S. Janzen and Hossein Saiedian. 2006. Test-Driven Learning: Intrinsic
Integration of Testing into the CS/SE Curriculum. In Proceedings of the 37th
SIGCSE Technical Symposium on Computer Science Education (Houston, Texas,
USA) (SIGCSE ’06). Association for Computing Machinery, New York, NY, USA,
254–258. https://doi.org/10.1145/1121341.1121419

[18] Mike Joy, Nathan Griffiths, and Russell Boyatt. 2005. The Boss Online Submission
and Assessment System. J. Educ. Resour. Comput. 5, 3 (Sep 2005), 2–es. https:
//doi.org/10.1145/1163405.1163407

[19] Phillip A. Laplante. 2000. Dictionary of Computer Science Engineering and Tech-
nology. CRC Press, Inc., USA.

[20] Vesa Lappalainen, Jonne Itkonen, Ville Isomöttönen, and Sami Kollanus. 2010.
ComTest: A Tool to Impart TDD and Unit Testing to Introductory Level Pro-
gramming. In Proceedings of the Fifteenth Annual Conference on Innovation and
Technology in Computer Science Education (Bilkent, Ankara, Turkey) (ITiCSE
’10). Association for Computing Machinery, New York, NY, USA, 63–67. https:
//doi.org/10.1145/1822090.1822110

[21] Ruchika Malhotra and Anuradha Chug. 2016. Software Maintainability: Sys-
tematic Literature Review and Current Trends. International Journal of Soft-
ware Engineering and Knowledge Engineering 26 (10 2016), 1221–1253. https:
//doi.org/10.1142/S0218194016500431

[22] Susan A.Mengel and Vinay Yerramilli. 1999. A Case Study of the Static Analysis of
the Quality of Novice Student Programs. In The Proceedings of the Thirtieth SIGCSE
Technical Symposium on Computer Science Education (New Orleans, Louisiana,
USA) (SIGCSE ’99). Association for Computing Machinery, New York, NY, USA,
78–82. https://doi.org/10.1145/299649.299689

[23] Sun Developer Network. 1999. Code Conventions for the Java Programming
Language. https://www.oracle.com/java/technologies/javase/codeconventions-
namingconventions.html

[24] Matija Novak, Mike Joy, and Dragutin Kermek. 2019. Source-Code Similarity
Detection and Detection Tools Used in Academia: A Systematic Review. ACM
Trans. Comput. Educ. 19, 3, Article 27 (May 2019), 37 pages. https://doi.org/10.
1145/3313290

Session: CS Education @ Scale L@S ’22, June 1–3, 2022, New York City, NY, USA

100

https://doi.org/10.1145/2786805.2786849
https://doi.org/10.1145/2786805.2786849
https://doi.org/10.1145/2465.2469
https://doi.org/10.1145/1999747.1999754
https://doi.org/10.1145/3430895.3460161
https://doi.org/10.1145/3491140.3528272
https://en.wikipedia.org/wiki/Naming_convention_(programming)#Language-specific_conventions
https://en.wikipedia.org/wiki/Naming_convention_(programming)#Language-specific_conventions
https://doi.org/10.1145/1508865.1508921
https://doi.org/10.1145/971300.971312
https://doi.org/10.1145/971300.971312
https://doi.org/10.1145/2556325.2567888
https://doi.org/10.1145/2556325.2567888
https://doi.org/10.1145/3105726.3106182
https://doi.org/10.1145/1597849.1384371
https://doi.org/10.1145/302405.302467
https://doi.org/10.1145/2807442.2807495
https://doi.org/10.1145/2063166.2063168
https://doi.org/10.1145/1930464.1930480
https://doi.org/10.1145/1352135.1352315
https://doi.org/10.1145/1352135.1352315
https://doi.org/10.1145/1121341.1121419
https://doi.org/10.1145/1163405.1163407
https://doi.org/10.1145/1163405.1163407
https://doi.org/10.1145/1822090.1822110
https://doi.org/10.1145/1822090.1822110
https://doi.org/10.1142/S0218194016500431
https://doi.org/10.1142/S0218194016500431
https://doi.org/10.1145/299649.299689
https://www.oracle.com/java/technologies/javase/codeconventions-namingconventions.html
https://www.oracle.com/java/technologies/javase/codeconventions-namingconventions.html
https://doi.org/10.1145/3313290
https://doi.org/10.1145/3313290

Function Names: Quantifying the Relationship Between Identifiers and Their Functionality to Improve Them L@S ’22, June 1–3, 2022, New York City, NY, USA

[25] Eunjung Grace Oh, Yunjeong Chang, and Seung Won Park. 2019. Design review
of MOOCs: application of e-learning design principles. J. Comput. High. Educ.
(Nov 2019). https://doi.org/10.1007/s12528-019-09243-w

[26] Chris Piech, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami,
Leonidas J Guibas, and Jascha Sohl-Dickstein. 2015. Deep Knowledge Tracing. In
Advances in Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett (Eds.). Curran Associates, Inc., 505–513.
http://papers.nips.cc/paper/5654-deep-knowledge-tracing.pdf

[27] Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati, Mehran
Sahami, and Leonidas Guibas. 2015. Learning Program Embeddings to Propagate
Feedback on Student Code. In Proceedings of the 32nd International Conference
on Machine Learning (Lille, France) (Proceedings of Machine Learning Research,
Vol. 37), Francis Bach and David Blei (Eds.). JMLR, Lille, France, 1093–1102.
http://proceedings.mlr.press/v37/piech15.html

[28] Lutz Prechelt, Guido Malpohl, and Michael Philippsen. 2002. Finding Plagiarisms
among a Set of Programs with JPlag. Journal of Universal Computer Science 8,
11 (Nov 2002), 1016–1038. http://www.jucs.org/jucs_8_11/finding_plagiarisms_
among_a

[29] Viera K. Proulx. 2009. Test-Driven Design for Introductory OO Programming. In
Proceedings of the 40th ACM Technical Symposium on Computer Science Education
(Chattanooga, TN, USA) (SIGCSE ’09). Association for Computing Machinery,
New York, NY, USA, 138–142. https://doi.org/10.1145/1508865.1508919

[30] Eric Roberts. 2005. Karel the Robot Learns Java. https://cs.stanford.edu/people/
eroberts/karel-the-robot-learns-java.pdf

[31] Rohan Roy Choudhury, Hezheng Yin, and Armando Fox. 2016. Scale-Driven Au-
tomatic Hint Generation for Coding Style. In Proceedings of the 13th International
Conference on Intelligent Tutoring Systems - Volume 9684 (Zagreb, Croatia) (ITS
2016). Springer-Verlag, Berlin, Heidelberg, 122–132. https://doi.org/10.1007/978-
3-319-39583-8_12

[32] Serhad Sarica and Jianxi Luo. 2020. Stopwords in Technical Language Processing.
https://arxiv.org/pdf/2006.02633.pdf

[33] Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. 2003. Winnowing: Local
Algorithms for Document Fingerprinting. In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data (San Diego, California) (SIGMOD
’03). Association for Computing Machinery, New York, NY, USA, 76–85. https:
//doi.org/10.1145/872757.872770

[34] Jaime Spacco, David Hovemeyer, William Pugh, Fawzi Emad, Jeffrey K.
Hollingsworth, and Nelson Padua-Perez. 2006. Experiences with Marmoset:
Designing and Using an Advanced Submission and Testing System for Pro-
gramming Courses. In Proceedings of the 11th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education (Bologna, Italy) (ITICSE
’06). Association for Computing Machinery, New York, NY, USA, 13–17. https:
//doi.org/10.1145/1140124.1140131

[35] Steve Suh and Iulian Neamtiu. 2010. Studying Software Evolution for Taming
Software Complexity. In 2010 21st Australian Software Engineering Conference
(Auckland, New Zealand). IEEE, 3–12. https://doi.org/10.1109/ASWEC.2010.26

[36] Stanford University. CS1. Assignment 1. https://web.stanford.edu/class/archive/
cs/cs106a/cs106a.1194/assn/Assignment%201.pdf

[37] Stanford University. CS1. Assignment 2. https://web.stanford.edu/class/archive/
cs/cs106a/cs106a.1194/handouts/Assignment%202.pdf

[38] Stanford University. CS1. Assignment 5. https://web.stanford.edu/class/archive/
cs/cs106a/cs106a.1192/handouts/36-assignment-5.pdf

[39] Guido van Rossum, Barry Warsaw, and Nick Coghlan. 2001. Style Guide for
Python Code. https://www.python.org/dev/peps/pep-0008//#function-and-
variable-names

[40] Wikipedia contributors. 2021. Name mangling — Wikipedia, The Free Encyclo-
pedia. https://en.wikipedia.org/wiki/Name_mangling

[41] Yiming Yang. 1995. Noise Reduction in a Statistical Approach to Text Categoriza-
tion. In Proceedings of the 18th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (Seattle, Washington, USA)
(SIGIR ’95). Association for Computing Machinery, New York, NY, USA, 256–263.
https://doi.org/10.1145/215206.215367

Session: CS Education @ Scale L@S ’22, June 1–3, 2022, New York City, NY, USA

101

https://doi.org/10.1007/s12528-019-09243-w
http://papers.nips.cc/paper/5654-deep-knowledge-tracing.pdf
http://proceedings.mlr.press/v37/piech15.html
http://www.jucs.org/jucs_8_11/finding_plagiarisms_among_a
http://www.jucs.org/jucs_8_11/finding_plagiarisms_among_a
https://doi.org/10.1145/1508865.1508919
https://cs.stanford.edu/people/eroberts/karel-the-robot-learns-java.pdf
https://cs.stanford.edu/people/eroberts/karel-the-robot-learns-java.pdf
https://doi.org/10.1007/978-3-319-39583-8_12
https://doi.org/10.1007/978-3-319-39583-8_12
https://arxiv.org/pdf/2006.02633.pdf
https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/1140124.1140131
https://doi.org/10.1145/1140124.1140131
https://doi.org/10.1109/ASWEC.2010.26
https://web.stanford.edu/class/archive/cs/cs106a/cs106a.1194/assn/Assignment%201.pdf
https://web.stanford.edu/class/archive/cs/cs106a/cs106a.1194/assn/Assignment%201.pdf
https://web.stanford.edu/class/archive/cs/cs106a/cs106a.1194/handouts/Assignment%202.pdf
https://web.stanford.edu/class/archive/cs/cs106a/cs106a.1194/handouts/Assignment%202.pdf
https://web.stanford.edu/class/archive/cs/cs106a/cs106a.1192/handouts/36-assignment-5.pdf
https://web.stanford.edu/class/archive/cs/cs106a/cs106a.1192/handouts/36-assignment-5.pdf
https://www.python.org/dev/peps/pep-0008//#function-and-variable-names
https://www.python.org/dev/peps/pep-0008//#function-and-variable-names
https://en.wikipedia.org/wiki/Name_mangling
https://doi.org/10.1145/215206.215367

	Abstract
	1 Introduction
	2 Related Work
	3 Data Collection
	4 Method
	4.1 Function Name Assessment
	4.2 Functions With Identical Behavior
	4.3 Function Name Replacement

	5 Results
	6 Threats to Validity
	7 Discussion
	8 Conclusion
	References

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 47.31, 720.16 Width 514.28 Height 15.77 points
 Origin: bottom left

 1
 0
 BL

 1
 AllDoc
 1

 CurrentAVDoc

 47.3102 720.1586 514.2793 15.77

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 9
 8
 9

 1

 HistoryList_V1
 qi2base

