

Discussion of Jones and Liu, "Growth with Capital-Embodied Technical Change"

Chad Jones Stanford GSB

NBER EFG Meeting, Summer 2022

Background: Uzawa's Theorem

Uzawa (1961) on neoclassical growth model:

 $Y_t = F(B_t K_t, A_t L_t)$

• Interior stable factor shares: BK and AL must grow at the same rate — balance

- *K* accumulates endogenously \Rightarrow *K* inherits *AL* trend
- So B_t must stabilize for balanced growth (or Cobb-Douglas)
- Is a new computer a higher *B* or a higher *A*?
- But why would *B* ever be constant?

 $Y_t = F(B_t K_t, A_t L_t)$

- Acemoglu (2003 JEEA)
 - A 2-dimensional Romer model: entrepreneurs can increase A or B
 - Surprise: they endogenously choose to stabilize *B* and only increase *A*
- However, extremely fragile!
 - Breaks if model is semi-endogenous growth instead of fully endogenous
 - \circ Breaks if any asymmetry in the idea production functions of A versus B

• Grossman, Helpman, Oberfield, Sampson (2017 AER)

$$Y_t = F((1 - s_t)^{\alpha} B_t K_t, A_t L_t / (1 - s_t)^{\beta})$$

- Add a third factor "schooling" *s*_t.
- · If it enters production in just the right way, you can get a BGP
 - $\circ \dot{s}_t = \theta(1 s_t)$: schooling rises, but at a decreasing rate
 - ∘ $1 s_t$ falls at a constant exponential rate so $(1 s_t)^{\alpha}B_t$ constant ⇒ satisfies Uzawa
- Aghion-Jones-Jones (2019) and Jones-Liu (2022) have closely-related math, but in a very different economic environment!

Background: Automation

- Acemoglu and Restrepo (2018, 2019, 2020, 2021, 2022)
 - Foundational work in this literature, building on Zeira (1998)
- Aghion, B. Jones, and C. Jones (2019) is the direct predecessor to the present paper
 - Many common ingredients
 - Let me show the similarities and then highlight the point of departure

AJJ Economic Environment

Final good
$$Y_t = \left(\int_0^1 y_{it}^{\frac{\sigma-1}{\sigma}} di\right)^{\frac{\sigma}{\sigma-1}}$$
 where $\sigma < 1$ Tasks $y_{it} = \begin{cases} K_{it} & \text{if automated} \quad i \in [0, \beta_t] \\ L_{it} & \text{if not automated} \quad i \in [\beta_t, 1] \end{cases}$ Capital accumulation $\dot{K}_t = I_t - \delta K_t$ Resource constraint (K) $\int_0^1 K_{it} di = K_t$ Resource constraint (L) $\int_0^1 L_{it} di = L$ Resource constraint (Y) $Y_t = C_t + I_t$ Allocation $I = \bar{s}_K Y$

Combining equations

$$Y_t = \left[\beta_t \left(\frac{K_t}{\beta_t}\right)^{\frac{\sigma-1}{\sigma}} + (1-\beta_t) \left(\frac{L}{1-\beta_t}\right)^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}}$$

- How β interacts with K: two effects
 - β : what fraction of tasks have been automated
 - β : Dilution as $K/\beta \Rightarrow K$ spread over more tasks
- Same for labor: $L/(1 \beta_t)$ means given L concentrated on fewer tasks, raising "effective labor"

Rewriting in classic CES form

• Collecting the β terms into factor-augmenting form:

 $Y_t = F(B_t K_t, A_t L_t)$

where

$$B_t = \left(\frac{1}{\beta_t}\right)^{\frac{1}{1-\sigma}}$$
 and $A_t = \left(\frac{1}{1-\beta_t}\right)^{\frac{1}{1-\sigma}}$

• Effect of automation: $\uparrow \beta_t \Rightarrow \downarrow B_t$ and $\uparrow A_t$

Intuition: dilution effects just get magnified since $\sigma < 1$

Automation

• Suppose a constant fraction of non-automated tasks get automated every period:

 $\dot{\beta}_t = \theta(1 - \beta_t)$ $\Rightarrow \beta_t \to 1$

• What happens to $1 - \beta_t =: m_t$?

$$\frac{\dot{m}_t}{m_t} = -\theta$$

The fraction of labor-tasks falls at a constant exponential rate

Putting it all together

• β_t

$$Y_t = F(B_t K_t, A_t L_t) \text{ where } B_t = \left(\frac{1}{\beta_t}\right)^{\frac{1}{1-\sigma}} \text{ and } A_t = \left(\frac{1}{1-\beta_t}\right)^{\frac{1}{1-\sigma}} \rightarrow 1 \Rightarrow B_t \rightarrow 1$$

• But *A_t* grows at a constant exponential rate!

$$rac{\dot{A}_t}{A_t} = -rac{1}{1-\sigma} \, rac{\dot{m}_t}{m_t} = rac{ heta}{1-\sigma}$$

 When a constant fraction of remaining goods get automated and *σ* < 1, the automation model features an asymptotic BGP that satisfies Uzawa

$$\alpha_{Kt} \equiv \frac{F_K K}{Y} = \beta_t^{\frac{1}{\sigma}} \left(\frac{K_t}{Y_t}\right)^{\frac{\sigma-1}{\sigma}} \to \left(\frac{\bar{s}_K}{g_Y + \delta}\right)^{\frac{\sigma-1}{\sigma}} < 1$$

Intuition for AJJ result

- Why does automation lead to balanced growth and satisfy Uzawa?
 - $\circ \ \beta_t \rightarrow 1$ so the KATC piece "ends" eventually
 - Labor per task: $L/(1 \beta_t)$ rises exponentially over time!
 - Onstant population, but concentrated on an exponentially shrinking set of goods
 ⇒ exponential growth in "effective" labor
- Limitation
 - An asymptotic result
 - \circ Only occurs as $\beta_t \rightarrow 1$, so unclear if relevant for U.S. or other modern economies

Interesting question: What fraction of tasks automated today? β_{2022}

B. Jones and Liu Contribution

- BGP can occur "today" with $\beta_t < 1$, not asymptotically
 - Might describe modern economies like the U.S. / Europe / Japan
- Automation and KATC (Z_t) coexist along the BGP
 - $\circ\,$ The economic environment that achieves this is novel and interesting
- Empirics

Jones-Liu Economic Environment

Final good	$Y_t = \left(\int_0^1 y_{it}^{rac{\sigma-1}{\sigma}} di ight)^{rac{\sigma}{\sigma-1}}$ where $\sigma < 1$
Tasks	$y_{it} = egin{cases} z_{it}^{rac{1}{1-\sigma}}K_{it} & ext{ if automated } i\in[0,eta_t] \ L_{it} & ext{ if not automated } i\in[eta_t,1] \end{cases}$
Familiar	$\dot{K}_t = I_t - \delta K_t, \int_0^1 K_{it} di = K_t, \int_0^1 L_{it} di = L$
Resource constraint (Y)	$Y_t = C_t + I_t + \int_0^{eta_t} d^v_{it} di + \int_{eta_t}^1 d^h_{it} di$
Innovation: increasing z_i	Arrival rate $q_{it}^v = \zeta^v \left(rac{z_{it}d_{it}^v}{Y_t} ight)^lpha$, Step size ϕ
Innovation: automation	Arrival rate $q_{it}^h = \zeta^h \left(\frac{z_{it} d_{it}^h}{Y_t} \right)^{lpha}$, $z_{it} = \bar{h} \cdot (1 - \beta_t)$ for $i = \beta_t$

Combining equations

$$Y_t = F(B_t K_t, A_t L_t)$$
 where $B_t = \left(\frac{Z_t}{\beta_t}\right)^{\frac{1}{1-\sigma}}$ and $A_t = \left(\frac{1}{1-\beta_t}\right)^{\frac{1}{1-\sigma}}$
and
 $Z_t \equiv \left(\frac{1}{\beta_t}\int_0^{\beta_t} z_{it}^{-1} di\right)^{-1}$ (harmonic mean)

- Same "engine" of growth as AJJ via A_t
- Automation: Constant fraction q^h of remaining goods automated: $\dot{\beta}_t = q^h(1 \beta_t)$
 - $\circ~$ But starting productivity of newly automated good is $z_0=ar{h}(1-eta_t)$
 - o declines over time (harder to automate goods start out further behind)
- $\beta_t \rightarrow 1$ as before. What happens with Z_t ?

$$Z_t \equiv \left(rac{1}{eta_t}\int_0^{eta_t} z_{it}^{-1} di
ight)^{-1}$$
 (harmonic mean)

- Already automated goods improve at rate q^vφ over time, raising Z_t
- Newly automated goods come in with very low productivity $z = \bar{h}(1 \beta_t)$
 - Harmonic mean is dragged down by these low additions
- Surprise! Z_t aggregates as if

$$\dot{Z}_t = \kappa_t (1-eta_t)$$
 with $\kappa_t o \kappa^*$

• Just like β_t !

$$\Rightarrow~Z_t/eta_t~$$
 constant along BGP

Remarks

- BGP even with $\beta_t < 1$. Automation and KATC along BGP
- Requires the equivalent of $\dot{Z}_t = \kappa (1 \beta_t)$
 - Why should this be?
 - On the one hand, standard growth models have Z growing exponentially
 - Cool structure with newly-automated goods having lower productivity in just the right way.
 - But it's a very specific assumption.
 - Parallels Acemoglu (2003) in that very special structure required
- Paper should do a better job of clarifying that this is the contribution

Empirics

- What does β_t look like over time?
- Two equations in two unknowns

$$\alpha_{Kt} = \beta_t / Z_t$$

$$\frac{Y_t}{L_t} = (1 - \alpha_{Kt})^{\frac{\sigma}{1 - \sigma}} \left(\frac{1}{1 - \beta_t}\right)^{\frac{1}{1 - \sigma}}$$

• Get β_t from labor productivity and Z_t from capital share

Falling Labor Share and Growth Slowdown since 2000

Estimates of β_t and Z_t

- Share automated has risen from $\beta_{1950} = 0.5$ to $\beta_{2020} = 0.75$
 - Do we believe this? I don't know. Lots of automation!
 - \circ What other evidence? Unclear, but model nicely points to α_K and Y/L
- Rise in capital share since 2000 due to a 25% fall in Z_t?
 - Not a burst of automation b/c automation should increase growth (temporarily)
 - Model cannot help us understand a **decline** in Z_t
- Likely other forces contributing to growth that would change the calibration?
 - Educational attainment, LATC apart from automation, markups
 - Exponential declines in the relative price of information technology

Very interesting, provocative, and fun to read!