Distortionary Fundraising for Energy Efficiency Subsidies:
Implications for Efficient and Equitable Program Design

Chris Bruegge*
Job Market Paper

This Version: November 8, 2017

Abstract

State regulators in the U.S. require subsidies for energy efficient durable goods as an important piece of energy conservation policy, and spending on these programs has grown by 18% per year since the early 2000s. This paper examines the economic efficiency and distributional equity impacts of appliance subsidies on top of pre-existing regulations like the Energy Star label. Using household level data on program participation and energy usage from a large utility, I estimate a model of appliance purchase and utilization that recovers expected changes in household behavior and consumer surplus. I find that distortionary changes to the energy price used to fund the program account for over 80% of the total reductions in energy use and up to 90% of the change in consumer surplus change caused by the policy. These effects are not captured by traditional evaluations that assume non-distortionary fundraising. My results suggest the current program reduces consumer surplus even accounting for energy consumption externalities and private market failures, but could be rationalized if the regulator values wealth transfers to appliance producers on top of these other market failures. Finally, I find evidence that a fixed charge would improve both economic efficiency and progressivity of income redistribution, and that means testing the subsidy amount and applying the rebate at the point of sale would further increase both of these policy objectives.

*I would like to thank Larry Goulder, Charlie Kolstad, Peter Reiss, and Frank Wolak for their support on this project and guidance as members of my dissertation committee. Thanks also to Hunt Allcott and Alex Orfei for significant mentorship and an introduction to the utility data provider. Soren Anderson, Judd Boomhower, Severin Borenstein, Tim Bresnahan, Lucas Davis, Tatyana Deryugina, Liran Einav, Meredith Fowlie, Koichiro Ito, Gordon Leslie, Raviv Murciano-Goroff, Erica Myers and participants at the U.C. Berkeley Energy Camp, the Stanford Applied Lunch group, the Stanford Industrial Organization workshop, and the Stanford SEEPAC lunch group also provided helpful comments on the project. Funding for this research was provided in part by the Stanford Institute for Economic Policy Research. Pecan Street and Nielsen Marketing provided important pieces of data used in the project. The online appendix is available at http://stanford.edu/~cbruegge/jmp_appendix.pdf.

Department of Economics, Stanford University, 579 Serra Mall, Stanford, CA, 94305. Website: http://stanford.edu/~cbruegge/ E-mail: cbruegge@stanford.edu
1 Introduction

Subsidies for energy efficient durables are an important public policy in many parts of the United States, intended primarily to reduce energy consumption and the associated environmental externalities. Nationwide spending on rebates and incentives for efficient washing machines, refrigerators, pool pumps, and other durables has grown by 18% per year since the early 2000s, reaching over $7.4 billion in 2014. An essential characteristic of most energy efficiency subsidies is that fundraising occurs by raising the marginal price of electricity. While many public policies are paid for out of general tax revenue, energy efficiency subsidy programs have the feature that the fundraising distortion directly affects energy consumption, the policy outcome of interest.

This paper addresses three questions: (1) How do energy efficiency subsidies and the associated fundraising affect consumer surplus, producer surplus, and environmental damages (economic efficiency), (2) who benefits from the policy (distributional equity), and (3) what policy design changes can be made to improve efficiency and equity? In contrast to previous work that assumes that fundraising is non-distortionary, I allow the energy price change associated with the policy to play an important role in answering both program evaluation and program design questions. This energy price distortion is not only of academic interest: Since the electricity price affects all end uses of electricity, its impact on energy conservation could be large relative to the previously-studied subsidy channel that affects a single appliance class.

The key methodological feature of my work that allows me to answer these questions is a model of household appliance purchase and appliance utilization in the spirit of Dubin and McFadden (1984). The policy changes the subsidy amount and the electricity price, which in turn affect both the discrete appliance choice and the continuous utilization decision. Existing evaluations rely on experimental or quasi-experimental appliance price variation, but there are no evaluations that simultaneously take advantage of variation in the price of energy (Allcott and Kessler 2015, Allcott and Greenstone 2017, Boomhower and Davis 2014, Davis 2008, Davis et al. 2014, Fowlie et al. 2015, Houde and Aldy 2014). An advantage of these experimental evaluations is their ability to control for inframarginal participation (i.e. subsidy recipients who would have still purchased an energy efficient appliance in the absence of the rebate) and selection into program participation (i.e. observable and unobservable differences between participants and non-participants) to recover the effect of the subsidy on appliance adoption and energy usage. However, this work does not measure the effect of the entire policy on energy consumption, since all households are affected by fundraising through higher electricity prices is required by law as part of the subsidy program. The appendix contains several examples. Programs are also funded by raising natural gas prices, but I study electric appliances in this paper. Although fundraising through marginal electricity prices is common, there are a few notable exceptions to this funding design. Fowlie et al. (2015) and Houde and Aldy (2014) study subsidies that were part of the federally funded stimulus following the 2009 financial crisis.

The discrete appliance purchase choice depends not only on appliance prices, but also on the price of energy. Analogously, the continuous appliance utilization decision depends on both the price of energy and the household’s appliance holdings.
the energy price change leaving the experimenter without a low-energy-price control group. My approach retains the ability of experimental evaluations to control for selection and inframarginal participation, while also allowing for changes to the price of energy caused by the program.

An additional advantage of the model of household decisionmaking is its ability to predict how consumers would behave when faced with a policy that hasn’t yet been implemented. Since experimental evaluations identify treatment effects on energy consumption that are local to the experimental variation in adoption or appliance prices, it’s difficult to understand how consumers might respond if faced with an entirely new policy design, and it’s precisely the large design changes that haven’t been observed in any data that might have the greatest impact on total welfare. My model of behavior permits this sort of ex-ante program design, which provides a feasible method of developing more efficient and more equitable programs.

To estimate my model, I study a washing machine program and a refrigerator program in a large U.S. utility territory. For every household, I observe participation status in both the washer and the fridge rebate programs as well as monthly energy consumption. I take advantage of quasi-experimental variation in energy and appliance prices to recover consistent estimates of the parameters of the household utility function. Using the estimated primitives of the household utility, I can predict both discrete appliance purchase and continuous energy consumption choices under a range of different subsidy amounts and energy prices.

My results highlight the importance of the energy price change in a comprehensive program evaluation. I find that the energy saved through the electricity price change is five times greater than energy saved through the efficient appliance purchased because of the subsidy. This large effect of the electricity price change is not surprising given the price of electricity affects all end uses of electricity in all households, even households who did not participate in the program. The subsidy on the other hand only saves energy for a single class of appliances (either washers or fridges) and only affects behavior for a small set of marginal households whose appliance purchase decision was changed by the rebate.

The large reduction in energy use has a theoretically ambiguous effect on consumer welfare. Reductions in environmental externalities are beneficial, but savings come at the cost of decreased private surplus from energy use. My results suggest that the two programs I study reduce total

\[\text{3An experiment with all of the features relevant to an actual subsidy program would need to randomize both the subsidy and the energy price across otherwise similar households. Randomizing the subsidy across similar customers within a utility territory (and changing the energy price based on corresponding subsidy) would be preferable, but this seems un-implementable given utility company concern for equal treatment of similar customers. Another alternative would be to randomize the program across utility territories, but it might be challenging to control for differences in customers across such large regions of space.} \]

\[\text{4My agreement with the data provider prevents me from disclosing the identify of the utility company.} \]

\[\text{5This result is easily sanity-checked via a back of the envelope using off-the-shelf estimates of the relevant elasticities. I describe the relevant inputs and perform this calculation using a range of values of the needed elasticities in the appendix.} \]

\[\text{[Allcott and Kessler 2015] and [Allcott and Greenstone 2017] examine the private welfare costs of participation in similar programs (e.g. time and hassle disutility) under the assumption that fundraising is non-distortionary.} \]
welfare, even accounting for the environmental externality associated with energy use and appliance market failures that potentially lead to privately sub-optimal investment in energy efficient durables. This is due to the distortion to the electricity tariff that moves the price faced by households further from the social cost of electricity consumption, as well as to a high share of inframarginal participants. Furthermore, both the washing machine and the refrigerator programs are regressive in terms of the dollar transfers from poor to wealthy neighborhoods. Although Energy Star appliance purchase is slightly lower in poorer neighborhoods, program participation even conditional on Energy Star appliance purchase increases in income. This suggests lower awareness or higher unobserved (e.g. cognitive) costs of program participation in low-income areas, and I show average differences on the order of $100 in these costs between the lowest-income and highest-income neighborhoods in my sample.

Despite efficiency and equity reductions generated by the existing policy, several straightforward design changes improve performance along both of these margins. I develop a general policy objective function that incorporates the efficiency-equity tradeoff embodied in these programs. Using insights from the optimality conditions of this objective function, I propose two alternatives the current policy that improve efficiency and equity. First, simply changing fundraising for the policies from increases in the marginal price of electricity to fixed payments on customers’ monthly bills reduces the deadweight loss associated with the policies. This fixed-fee fundraising also benefits poor households without significantly increasing the burden on other parts of the income distribution. Second, means testing the subsidy amount and applying the rebate at the point of sale has two beneficial effects: It not only makes the income redistribution created by the program more progressive, but it also reduces the welfare costs of inframarginal participation in the rebate program.

The remainder of this paper proceeds as follows: In Section 2 I begin with a discussion of the implementation of energy efficiency subsidies and affected margins of household behavior. Sections 3 and 4 describe my discrete-continuous model of durable choice and the data I use as inputs in the model respectively. Section 5 solves the utility-maximization model and describes the comparative statics of the optimal household behavior and the corresponding correlations observed in the data, and Section 6 derives moment conditions based on the results of Section 5. In Section 7 I present the program evaluation results and discuss implications for the welfare effects of the program, and Section 8 explores the economic costs that decrease total welfare. Finally, in Section 9 I discuss

7 I need to make an additional assumption about the surplus accruing to appliance manufacturers to make this statement.

8 I discuss this finding at length in the results section, but even in the absence of these programs there is evidence that the price consumers pay for electricity is higher than the social cost of electricity consumption because fixed cost recovery for transmission and distribution infrastructure is rolled into marginal electricity prices, which is discussed at length in Borenstein and Bushnell [2017]. Thus fundraising for the programs increases the size of the wedge between the social cost and the private cost of electricity consumption, which reduces welfare even accounting for the reduced externality damages. This in no way suggests that a carbon tax is a bad policy, but more subtly that it existing pricing inefficiencies need to be accounted for when designing an electricity consumption or carbon tax.
several alternatives to the existing policy that have better economic efficiency and distributional equity properties.

2 Setting

State regulators known as Public Utilities Commissions (PUCs) regulate most electric and gas utilities in the U.S. Many regulators require utility companies to offer “public purpose” programs to provide assistance to low-income households or correct perceived market failures such as the environmental externalities associated with energy use. In many states, energy efficiency subsidies are one of the largest line-items in the public purpose program budget. These subsidies generally take the form of rebates for customers who purchase Energy Star appliances or make efficiency upgrades to their homes or business. In principle, these programs could save energy by encouraging greater adoption of efficient appliances. Furthermore, this rebate assistance might be especially useful for lower-income households who in the absence of these rebates might purchase fewer efficient appliances.

Subsidized appliances and home upgrades vary somewhat across utility service territories, but common examples include washing machines, refrigerators, pool pumps, water heaters, weatherization, compact fluorescent lightbulbs, and home energy audits. I study a washing machine and a refrigerator program in a large utility territory that are typical of many program across the U.S.

To claim the washer or fridge rebate, a customer first purchases a new Energy Star model.

9 Many states refer to the regulator as a Public Service Commission (PSC), and in some cases these agencies are also called railroad commissions since railroads were one of the first regulated natural monopolies. PUCs don’t have jurisdiction to regulate many of the activities (such as prices) of municipally owned and other public utilities, but many of the largest utilities in the U.S. are investor-owned companies that are regulated by state utility commissions. While not subject to PUC jurisdiction, municipal utility companies also run public purpose programs that are similar in purpose and structure so I will not treat them separately. The appendix contains more information on the regulatory landscape relevant to this research.

10 The most commonly cited market failure is the pollution externality arising from energy use. However, there are many other potential market failures such as landlord tenant incentives, myopia, or salience about durable good energy use. Gillingham and Palmer (2014) provide an excellent review.

11 The programs list qualifying appliance models, and sometimes there are Energy Star models that do not qualify. However, for expositional ease, I will use the phrase “Energy Star appliance” synonymously with “qualifying appliance” to denote durables that are eligible for a rebate.

12 Energy price subsidies for low income households are a slightly larger budget item than the energy efficient appliance subsidies in CA, but these two are the dominant public purpose programs. Low-income price subsidies are about 45% of the public purpose budget, and energy efficiency subsidies are about 37%. In California, there are also a few smaller public purpose programs that fund solar investment and demand response that make up the remaining 18% of the public purpose expenditures.

13 In the appendix, I use a back of the envelope calculation to show the applicability of my framework to other programs.

14 All residential customers are eligible for the rebates as long as they have not claimed a rebate for the same appliance in the last five years. A complete list of qualifying models is available from the utility website. Both brick-and-mortar and online purchases qualify.
The customer then completes an online or paper application and attaches proof of purchase, and upon receipt of the rebate application the utility issues a check or credits the customer’s next bill. Many customers purchase a qualifying appliance and to not claim the rebate due to the time and hassle of completing the application or even awareness of the program. Conversely, many of the program participants would have purchased the same Energy Star appliance even without the rebate incentive. Each year, about 2.5% of households in this utility territory claim either a washer or a refrigerator rebate.15

Since it’s expensive to subsidize participating households, regulated utilities pass the cost of these programs on to their customers. Fundraising occurs by applying a per-unit charge to all electricity consumed by all of the utility customers in the service territory.16 As a result of energy efficiency subsidies, residential electricity prices increase by 3.3% on average for customers in this utility territory.17 This has several important implications: First, it means that the fundraising activities directly affect energy consumption, one of the policy outcomes of interest. This implies that the relevant marginal cost of public funds is specific to the programs, and furthermore that the cost could even be negative if the externality reductions are greater than the private distortions to consumption utility. Second, the fundraising might also affect appliance purchases in a way not captured through existing studies, since higher energy prices creates a stronger incentive for households to purchase efficient appliances.

In order to capture the entire effect of the program or perform ex-ante evaluations of alternative policies, it’s important to model the link between the two margins of household behavior. These links determine which households are marginal to a given subsidy and energy price vector, how much energy marginal households might save conditional on participation, and how the change in energy price affects non-participating customers. A model of household behavior that incorporates these features is convenient because it allows the researcher to understand the effect of existing programs as well as to perform ex-ante evaluations of proposed program changes. In the next section, I develop such a model and show how it can be used for program evaluation and design.

15Author’s calculation
16This is true for the utility I study, as well as for many utilities across the country. Commercial, agricultural, and industrial customers also pay a public purpose charge in their bills to fund theses programs, but I focus on residential customers because of data availability. The same distortions I study in the residential context will also exist in the other sectors, and they will perhaps even be exacerbated since the non-residential customers are likely to be more elastic to the price of electricity.
17Since the utility recovers its average costs, one doesn’t need to worry about fungibility of funds. A $1 increases in program spending translates (by law) into an additional $1 of required revenue that gets collected through the electricity rates. The only margin to change is how much of the revenue gets collected from customers on different tiers of the increasing block electricity tariff. According to the EIA, over 95% of the customers in this utility were on an increasing block price for their electricity in 2013 (EIA Form 861). While the increase in the marginal price on each tier is statutorily the same across tiers, it’s possible that the actual incidence is different. However, the utility itself doesn’t have any incentive to favor on tier over another, so it’s unlikely that this is an issue.
3 Consumer Utility Model

I model the relationship between appliance purchase and utilization as the solution to a household’s utility maximization problem. Households trade off consumption of a numeraire good with consumption of energy services such as clean laundry and refrigeration. Energy Star appliances are more expensive to purchase but cheaper to operate, so consumers will choose which appliances to purchase and how much to use them to maximize their total utility.

The model follows the discrete-continuous choice intuition developed by [Dubin and McFadden 1984], but I make several innovations to account for unobserved heterogeneity in program participation costs and preferences for energy consumption. These additions to the Dubin-McFadden framework allow energy prices to affect both margins of choice as I have argued above, and they also allow me to explain why households purchase Energy Star appliances but don’t participate in the rebate programs. Since I separately study washing machines and refrigerators, in the subsequent sections the reader can replace the word appliance with the relevant durable.

3.1 Direct Utility

The model is a static model of forward looking consumers. Each consumer \(i \) is endowed with a type vector \((\alpha_i, \theta_i, \epsilon^j_i, g_i)\) that includes an “energy service type” \(\alpha_i \), a rebate cost type \(\theta_i \), appliance preference type \(\epsilon^j_i \), and a neighborhood income group type \(g_i \). The energy service type affects the level of agent \(i \)'s demand for loads of clean laundry, food refrigeration, space heating and cooling, and other energy services. The vector \(\epsilon^j_i \) has one element for each discrete choice \(j \), and these elements are allowed to be correlated across \(j \). I abstract from differences across appliances in brand, size, and features other than the Energy Star attribute, so there are four appliance choices \(j \) available to each household: No appliance purchase (\(j = C \)), Non-Energy Star appliance purchase (\(j = B \)), Energy Star appliance purchase with no rebate (\(j = A \)), or Energy Star purchase with rebate (\(j = A^+ \)). The rebate hassle cost type \(\theta_i \) affects the private costs of applying for the rebate and choosing option \(j = A^+ \), and since the only idiosyncratic difference between options \(A^+ \) and \(A \) is the hassle cost \(\theta_i \) of applying for the rebate, I let \(\epsilon_{iA^+} = \epsilon_{iA} \). Finally the neighborhood income group type allows for parameter heterogeneity for household in high income and low income areas. The variable \(g_i \) can take one of five values that correspond to quintiles of the zipcode-level distribution of median household income. If household \(i \) lives in a zipcode where the median household income is in the bottom 20% of zipcode median household incomes, then \(g_i = 1 \). Table 1 summarizes the discrete choices and the consumer types.

[18] Dubin and McFadden [1984] make an empirical simplification that prevents preferences for energy service consumption to affect appliance ownership. In their setup, appliance ownership affects energy consumption, but the reverse channel is shut down. Other discrete-continuous choice models have been applied to a range of problems including which car to purchase and how much to drive [Bento et al. 2009] and which telephone service to subscribe and how many calls to make [Wolak 1996], among others. Some of this later work models the full feedbacks between the two choice margins.
In period 0, the household makes an appliance purchase choice \(j \) (including a no-purchase outside option) given its type. The period 0 appliance purchase affects the cost of consuming energy services for the 10-year lifetime of the appliance, so all else equal high \(\alpha \) types will be willing to trade off higher fixed appliance purchase prices for lower marginal operating costs. When making the period 0 purchase decision, the agent accounts for uncertainty in its future demand for energy services caused by local weather, unexpected changes to vacation plans, or other time-varying idiosyncratic shocks. These shocks are mean independent of idiosyncratic preferences for appliances, so \(E[\nu_{ijt}|\epsilon_i] = 0 \). Although the agent accounts for uncertainty over idiosyncratic future demand shocks \(\nu_{ijt} \), it does not make the period 0 appliance purchase with the assumption that it can re-optimize its decision again in the future if prices, technology, or the distribution of these idiosyncratic demand shocks change.\(^{19}\)

In subsequent months, the household will maximize a felicity function (per-period utility function) by consuming the optimal mix of a numeraire good and energy services given its period 0 appliance purchase. Although the household makes this consumption in each subsequent period, the model is static in the sense that there are no changes to the appliance holding state variable after the initial decision period. This means that in period 0 the agent considers the expected present discounted value of owning each type of appliance before deciding on a purchase.

Consumer \(i \) with type \((\alpha_i, \theta_i, \epsilon_{ij}, g_i)\) makes the purchase price and operating cost tradeoff just discussed to solve the following utility maximization problem:

\[
\max_{(j,s)} U(j, s_{ijt}) = \underbrace{n_{i0} + \xi_{ij}(\theta_i) + \sigma_g \epsilon_{ij}}_{\text{Period 0 Purchase Utility}} + \underbrace{\mathbb{E}_p \left[\sum_t \delta^t \left(n_{it} + \frac{1}{2 \beta g_i} (s_{ijt} - \alpha_i - \nu_{ijt})^2 \right) \right]}_{\text{Expected PDV Future Operating Utility}} \quad (3.1)
\]

subject to
\[
I_{i0} \geq n_{i0} + p_{ij}^a, \quad (3.2)
\]
\[
I_{it} \geq n_{it} + p_{ij}^s \cdot s_{ijt}, \quad t \in \{1, \ldots, 120\}. \quad (3.3)
\]

The decision variables are appliance purchase \(j \) and energy service consumption in each period \(s_{ijt} \). Walras’s Law implies the appliance choice is equivalent to a choice of numeraire consumption in period 0 \(n_{i0} \), and energy service consumption choices each month \(t \) are equivalent to numeraire consumption choices \(n_{it} \).

The term \(\xi_{ij}(\theta_i) \) represents individual-by-choice specific constants that capture both observable and unobservable features of each discrete choice. As a normalization, I set the no-purchase \(\xi_{iC} = 0 \) for all customers. Customers who purchase a new, non Energy Star appliance \((j = B) \) receive utility\(^{19}\)

In other words, households assume a stationary distribution of idiosyncratic shocks to preferences for energy services, and a stationary and degenerate distribution of energy prices, appliance prices, appliance technology, and subsidy amounts. I don’t observe any subsidy changes in the data I present in the next section, so the assumption is not at odds with my empirical setting.
\(\xi_{iB} = \tau_{gi} \) for purchasing a new appliance net of shopping hassle costs. This parameter is allowed to vary across neighborhood income groups \(g \) but not within \(g \). Customers who purchase an Energy Star washer still receive the utility of owning a new appliance \(\tau_{gi} \), but they also receive utility \(\kappa_{gi} \) from the additional features of the Energy Star model relative to the conventional model, so \(\xi_{iA} = \tau_{gi} + \kappa_{gi} \). Finally, those who purchase the Energy Star model and claim the rebate incur disutility \(\theta_i \) associated with the time and energy it takes to fill out the rebate paperwork, so \(\xi_{iA^+}(\theta_i) = \tau_{gi} + \kappa_{gi} + \theta_i \). The only parameter that varies at the household level is \(\theta_i \), while the other product fixed effects only vary across neighborhood income groups. To normalize the scale of the utility, I set the marginal utility of income to 1 so that utility is expressed in dollars and I allow the parameter \(\sigma_{gi} \) to increase or decrease the variance of \(\epsilon \).

All households discount future utility at an annual rate of 5% \((\delta = (1/1.05)^{1/12})\), and each month after \(t = 0 \) the period utility is given by \(n_{it} + \frac{1}{\delta^{it}} (s_{ijt} - \alpha_i - \nu_{ijt})^2 \). The parameter \(\beta_{gi} \) affects the convexity of the utility function in numeraire / energy service space, so this will dictate the price elasticity of demand for energy services.

Prices and income enter the budget constraints in Equations 3.2 and 3.3. The household income in period \(t \) is denoted \(I_{it} \), the price of the \(j \)th appliance choice is given by \(p_{ij}^A \), and the price of energy services in period \(t \) conditional on ownership of appliance \(j \) is given by \(p_{ij}^s_t \). The price of energy services is inversely related to the efficiency of the appliance, and directly proportional to the price of electricity. I will describe the exact definition of \(p_{ij}^s_t \) in Section 4 when I describe the data. Table 2 summarizes the variables included in the model.

Figure 1 shows indifference curves in the numeraire energy service consumption space with stylized budget constraint for an efficient appliance \((j = A^+ \text{ or } j = A)\) and an inefficient appliance \((j = B \text{ or } j = C)\). Since utility is quasilinear, indifference curves are parallel shifts along the vertical numeraire axis, and if the price schedule for energy services was flat, the agent would choose to consume at its bliss point \(\alpha_i + \nu_{ijt} \). The price of energy services is proportional to the price of electricity, and for any given electricity price schedule a Energy Star appliance will produce more services for a given dollar expenditure on energy, hence the more efficient appliances flatten the slope of budget constraint. Since the upfront cost is also higher, there is a downward shift in the intercept of the budget constraint associated with the Energy Star appliance. \(^{20}\) I will present comparative statics properties of the model when I discuss identification in Section 6.

4 Data

I combine data relating to appliance purchase and energy consumption behavior from several different sources. The first dataset is a rich collection of monthly account-level electricity consumption

\(^{20}\)In the appendix I provide the theoretical results when the household optimizes with respect to the nonlinear electricity price schedule.
and rebate program participation data for over 80,000 households in a large utility territory. This dataset, which I’ll refer to as my “primary data”, was obtained under a non-disclosure agreement that prevents revealing the identity of the utility company. In addition to monthly energy consumption spanning January 2013 - December 2014 for each customer, I observe information on whether or not the household claimed a rebate from their utility, the date of the rebate claim, and type of rebate (e.g. washer subsidy, refrigerator subsidy, etc.). The rebate data covers the 2013 calendar year, so this period will correspond to the period 0 choice stage described above.

I also observe parcel characteristics for all households. These include home square footage, number of bedrooms, the year the home was built, and the zipcode field of the home address. Finally, I merge median household income at the zipcode level with the household characteristics. Summary statistics for my primary dataset are provided in Table 3.

4.1 Latent Appliance Purchase Decisions

To understand the share of non-rebate households who made choices \(j \in \{A, B, C\} \), I supplement rebate claim information in my primary dataset with information on appliance purchases from the 2009 Residential Energy Consumption Survey (RECS). From the RECS dataset, I non-parametrically compute the probability that each household in my primary dataset purchased a non-Energy Star appliance (\(j = B \)) or didn’t make an appliance purchase (\(j = C \)).

To implement this procedure, I divide the RECS households into discrete bins based on income, home size, and home age. Within each RECS bin, I compute the mean purchase probability of appliance \(j \in \{B, C\} \) as \(\hat{I}_j = 1/R \sum_r I_{rj} \) where \(R \) is the total number of RECS households in this bin, \(r \) is an index for RECS households in the bin, \(I_{rC} \) is an indicator variable that equals 1/2 if household \(r \) responded that they purchased a non-Energy Star washer (fridge) \(j \) in the last two years, and \(I_{rC} = 1/2 \) if the household responded they haven’t purchased a washer (fridge) in the years.

21 I show in the appendix that the distribution of appliance purchase across years is roughly stationary, meaning that program participation and market shares in 2013 are likely to be representative of program participation and market shares in an arbitrary year.

22 The parcel characteristics were merged to the billing data before the data were provided to me, so I observe a unique id for each household but not the actual household name or full address.

23 RECS is a nationally representative survey administered by the Energy Information Administration roughly every four years, and it contains a rich set of household-level microdata such as structure attributes, occupant characteristics, and appliance holdings that I use to compute purchase probabilities for households in my primary dataset. The survey has over 10,000 US households, 1,000 of whom are in the same state as the utility I study. Although RECS data is survey-based, a trained surveyor collects the data on site with a laptop computer, mitigating concerns that households might not whether or not their appliance is EnergyStar certified. The survey has two key questions that I use to ascertain appliance purchase probabilities and preferences for the EnergyStar label. First, the survey asks “About how old is your [clothes washer / refrigerator]?” Your best estimate is fine.” The household chooses from this list of discrete choices: (1) Less than 2 years old, (2) 2 to 4 years old, (3) 5 to 9 years old, (4) 10 to 14 years old, (5) 15 to 19 years old, and (6) 20 years or older. The second question asks “Is your [clothes washer/refrigerator] an Energy Star appliance?” Using these two questions and the set of parcel and demographic characteristics that overlap in the RECS and in my primary energy consumption data, I can non-parametrically compute \(Pr_{rA} + Pr_{rB} \) and \(Pr_{rC} \) for households in my primary dataset.

24 I use a k-means clustering algorithm to divide the RECS data into 50 bins.
last two years. The indicator is equal to 1/2 rather than 1 since the RECS information only gives me bi-annual flows. However, since the age distribution is stationary in the RECS dataset, 1/2 of the two year flow is a good estimate of the one year flow.

For each household i in my primary dataset, I directly observe program participation status I_{iA+}. For households in my primary dataset that didn’t claim the rebate (i.e. $j \in \{A, B, C\}$), I use the sample average of the RECS purchases \hat{I}_j in the same bin as an unbiased estimated of the expected value of the choice indicator $E[I_{ij}]$. In particular, if $I_{iA+} = 0$, then I assume that $E[I_A] = 1 - \hat{I}_B - \hat{I}_C$, $E[I_B] = \hat{I}_B$, and $E[I_C] = \hat{I}_C$. If $I_{iA+} = 1$, then the expected value of the other indicators is 0. Since the RECS sample is representative of US household (stratified by state) and since I only use RECS households in the same state as my utility, the RECS sample average should be an unbiased estimator of $E[I_{ij}]$. I show summary statistics for the variables used to bin the households in Table 4. Since RECS households are used to compute the expected choices for multiple households in my primary dataset, so I cluster by bin to allow for arbitrary within-bin heteroskedasticity and autocorrelation. Table 5 summarizes the mean purchase probabilities for households in each zipcode income quintile.

4.2 Appliances Prices

Although the RECS data has detailed appliance holding information, it doesn’t provide any insight about appliance prices. To match household in my primary dataset with the appliance prices that they may have faced when they made their purchase decision, I use the Nielsen Retail Scanner database to construct an appliance price index that varies across locations. Nielsen collects price and quantity data at retailers across the country, and while most of the products recorded are grocery items, they also have information on a few appliances such as refrigerators. Unfortunately the data does not include sales prices for washing machines, so I use the refrigerator price index for both washing machines and refrigerators.

To construct the price index, I identify the most popular refrigerator in the data so that price variation isn’t contaminated by differences in the composition of appliances sold in different areas. Nielsen defines each retailer’s geographic market, as well as the first three digits of each retailer’s zipcode. My markets are defined as the intersection of the Nielsen markets and the unique three digit zipcode prefix. For each of my markets I compute the mean sales price for the most popular fridge, then I define $p_{m_i}^{index} = \bar{p}_{m_i}/p_{50}^{50}$, where m_i is the market where household i is located, \bar{p}_{m_i} is the average price in market m_i, and p_{50}^{50} is the median price across all markets in the data. The

25 Notice that households who choose option $j = C$ might have an Energy Star washer that’s older than two years. In the next section, I discuss how I incorporate this possibility into the estimation.

26 I’m matching households to the nearest bin based on the Mahalanobis distance in the income, home size, and home age variables.

27 In the appendix, I use the Nielsen market definition to construct price instruments below that allow regional demand to affect local appliance prices.
The appliance price a household i faces is given by $p_{ij} = p_j^A \cdot p_{m_i}^{\text{index}}$ where $p_A^i = p_B^i$ is the nationally advertised online price for a typical Energy Star appliance and p_C^i is the online price for a typical conventional appliance.

The appliance price index is a potentially imperfect way of capturing the variation that’s relevant for households choices. Even if the index actually reflects price variation across markets, there is a lingering concern that prices are affected by local demand rather than differences across space in the supply curve. Note however, that since I have product fixed effects, any unobserved product-specific features that are correlated with price levels are captured by the parameters τ, κ, and θ. Furthermore, income and other demographics are allowed to affect appliance price levels, but the assumption I need to make to compute expected purchase probabilities is that demographics are independent of price differences. If there are product-by-market factors that are correlated with the product-by-market price differences, then I can use the Neilsen market definitions to construct price instruments. Including product-by-Neilsen-market fixed effects in the model removes demand shocks that might be correlated with price differences, and leaves residual price variation that could be caused by factors such as transportation costs or inventory mistakes that are unrelated to demand.\footnote{The intuition follows the spirit of Gentzkow and Shapiro (2010) and Hausman (1979) and relies on regional (Neilsen market) price variation that is driven by regional demographic characteristics. Both empirical evidence and qualitative industry reports suggest that a substantial amount of price variation is determined regionally, with generally small residual variation at the local level (DellaVigna and Gentzkow 2017).}

These fixed effects require a substantially larger computational burden to compute, and are preliminarily available in the appendix.

4.3 Computing Latent Energy Service Consumption

The final object that I need in the model is energy service consumption, s. Energy services are produced as households use their appliances to convert electricity into clean laundry, refrigeration, light, etc. The electricity input measured in kilowatt hours (kWh) is observed in my primary billing data, so the last missing piece is the production function that converts energy into services.

Since energy services are a composite of clean clothes, refrigeration, lighting, heating and cooling services, etc., it’s helpful to normalize s so we can interpret its units. Let one kWh of electricity consumed by a households who owns a conventional washer (fridge) produce one unit of energy services.\footnote{Clearly I can normalize the scale of energy services. Aggregating the modeled and unmodeled appliances, however, is not without loss of generality.}

Let the parameter ω_{ijt} be the fraction of total kWh of electricity used by households i with washer (fridge) j in month t and let γ_j be efficiency of washer (fridge) j relative to the
conventional washer (fridge). It follows that energy service consumption is given by

\[
s_{ijt} = (\gamma_j)(\omega_{ijt})kWh_{it} + (1 - \omega_{ijt})kWh_{it} = \left[1 + \omega_{ijt}(\gamma_j - 1)\right]kWh_{it}
\]

where \(kWh_{it} \) observed total energy consumption. The appendix contains a more detailed derivation of this expression. The parameter \(\gamma_B = 1 \) because of my normalization, so notice that this expression indicates that \(s_{iBt} = kWh_{iBt} \). To determine the production function \(\gamma_j \) for the other appliances, I use estimates from the U.S. Department of Energy. The DOE estimates that Energy Star washers use 25% less energy per load than conventional washers, so \(\gamma_{A+} = \gamma_A = 1/(1-0.25) \cdot \gamma_B = 1.33\gamma_B \). The outside option C includes households that purchased an Energy Star or a conventional washer more than a year ago, so I use the weighted average of the market share of these two purchase options from the RECS data for appliances older than two years to compute \(\gamma_C \).

The expression above now just requires an estimate of \(\omega_{ijt} \) to compute \(s_{ijt} \). I estimate \(\omega_{ijt} \) using monthly plug-level data from Pecan Street and the same procedure I presented for the purchase probability imputation. In addition to using income, home size, and home age to discretize the Pecan Street data, I also use mean monthly temperature. This allows the share of energy consumed by washing machines and refrigerators to decrease during hot months where the air conditioning is running. It follows that the price of energy services is

\[
p_{ijt}^s = \frac{p_{iit}^{kWh}}{1 + \omega_{ijt}(\gamma_j - 1)}
\]

The price of electricity, \(p_{iit}^{kWh} \), varies over time and across 10 different regions in the utility territory. I collected these prices for my sample period from the utility.

\[\text{30}\] Although there have been a number of economists who have suggested that engineering estimates such as the ones I use here overstate actual savings (Fowlie et al. (2015), Davis et al. (2014)), these concerns shouldn’t apply to my particular setting because I explicitly model the behavioral responses that would create a divergence from the engineering calculations and the experimentally measured savings in previous economic studies. It is easy to plug various appliances into a watt meter and measure how much energy is consumed for a load of laundry, an hour of refrigeration at a given temperature, etc. This is the calculation upon which I base my estimates of \(\gamma_j \).

\[\text{31}\] The 10 different baseline regions are defined by a customer’s zipcode. This utility offers several different pricing plans to its electricity customers, including time of use pricing and critical peak pricing. Despite offering several plans, only 6.8% of customers were enrolled in one of these plans in 2015, up from less than 5% in 2013. This information is available from the EIA’s form 861, which collects information on US utilities. The form is available from https://www.eia.gov/electricity/data/eia861/ There is also a special rate for low-income households. Since the households in my dataset are mostly owner-occupied units, the fraction of low-income customers is less than the full utility sample.
5 Estimable Equations

After transforming the observed data into the variables described in the model (the focus of Section 4), there are two steps left to estimate the model’s parameters. First, I solve the expected utility maximization problem to compute the agent’s optimal energy service consumption and appliance choices. This requires assumptions about the distributions that produced the (unobserved) realizations of the structural error terms ($\vec{\epsilon}_i, \theta_i, \nu_{ijt}$). The second step is to derive a set of moment conditions that will identify the model’s parameters. This section focuses on the first step (the derivation of the agent’s optimal choices), and Section 6 describes the derivation of the moment conditions that define the estimated parameters.

Rewriting the household’s utility maximization problem

\[
\max_{(j,s)} U(j, s_t) \\
\text{subject to } I_{i0} \geq n_{i0} + p^a_{ij}, \\
I_{it} \geq n_{it} + p^s_{ij} \cdot s_{ijt}, \ t \in \{1, \ldots, 120\}.
\]

I can solve for the optimal amount of energy service consumption conditional on appliance j and a realization of demand shock ν_{ijt}, which results in the expression

\[
s_{ijt} = \alpha_i + \beta^{s}_{j_i} p^{s}_{ijt} + \nu_{ijt} \tag{5.1}
\]

Substituting the optimal energy service consumption back into the utility function and integrating over the distribution of ν produces the expected conditional indirect utility associated with each discrete choice j, which I denote by $E_{\nu}V_{ij}$.

This is an expected utility maximization problem since the time-variant shocks to energy service demand ν_{ijt} are unobserved by the household when it makes its period 0 appliance purchase, so each agent maximized expected utility by integrating over the distribution of ν.

The household knows its type ($\alpha_i, \epsilon_i, \theta_i, g_i$), but the econometrician doesn’t observe ϵ_i or θ_i. Consequently, I do not observe the household’s expected utility, but I can integrate over the distributions of ϵ_i and θ_i to compute the probability that $E_{\nu}V_{ij} > E_{\nu}V_{ik}, \forall j \neq k$. This is the probability household i makes discrete choice j given the observables and the distribution of the structural errors.

Let the error terms $\epsilon_{iA}, \epsilon_{iB}$, and ϵ_{iC} follow a generalized extreme value distribution where I

32I suppress the arguments ($I_{it}, p^{s}_{ijt}, p^{a}_{ij}$) for notational convenience.

33The interested reader is directed to the appendix for the derivation of the indirect utility functions from the consumer’s maximization of her direct utility.
allow for correlation between the purchase options. The CDF is given by

\[
F(\epsilon_iA, \epsilon_iB, \epsilon_iC) = \exp\left[\frac{-(\exp(-\epsilon_iA/\rho) + \exp(-\epsilon_iB/\rho)^\rho - \exp(-\epsilon_iC))}{\rho}\right]
\]

(5.2)

It follows that the correlation between \(\epsilon_iA\) and \(\epsilon_iB\) is \(1 - \rho^2\) and that \(\text{corr}(\epsilon_iC, \epsilon_{ij}) = 0\) for \(j \neq C\).

The vector \(\epsilon\) is drawn independently across individuals. I assume the random parameters \(\theta_i\) are distributed proportional to Rayleigh random variable with negative support, and \(\theta\) is independent of \(\epsilon\). The results are qualitatively robust to other distributions of \(\theta\), but the Rayleigh is intuitive because the mode does not occur at 0, meaning most people have a non-zero cost of filling out rebate paperwork.

For notational convenience, let \(\mu_{ij}(\theta_i) = \mathbb{E}_\nu(V_{ij}) - \epsilon_{ij}\) (recall that \(\epsilon_{iA} = \epsilon_iA + \theta_i\)). It follows that

\[
Pr_{iA^+} = \text{Prob}(\mathbb{E}_\nu(V_{iA^+}) > \mathbb{E}_\nu(V_iA), \mathbb{E}_\nu(V_iB), \mathbb{E}_\nu(V_iC))
\]

\[
= \text{Prob}(-\theta_i < \text{Sub.}, \epsilon_iB - \epsilon_iA < \frac{1}{\sigma_{i\theta}}(\mu_{iA^+}(\theta) - \mu_{iA}), \epsilon_iC - \epsilon_iA < \frac{1}{\sigma_{i\theta}}(\mu_{iA^+}(\theta) - \mu_{iC}))
\]

\[
= \int_R dF\epsilon dF\theta
\]

where \(R\) is the region in which the inequalities in the second line hold and \(F\epsilon\) is the joint distribution of \(\epsilon_iA, \epsilon_iB,\) and \(\epsilon_iC\). Notice that the agent has already taken expectations over the distribution of future shocks \(\nu\), so the probability of choosing a given option only requires integration over \(\epsilon\) and \(\theta\).\(^{34}\) Given the distribution for \(\epsilon_i\) in Equation 5.2 and the distribution of \(\theta\), the probability of purchasing the Energy Star appliance and claiming the rebate is given by\(^{35}\)

\[
Pr_{iA^+} = \int_{-\text{Subsidy}}^{0} f_{\theta}(\theta) \cdot \frac{1 + \exp(-\frac{(\mu_{iA^+}(\theta) - \mu_{iB})/\sigma_{i\theta}})}{\exp(-\mu_{iA^+}(\theta)/\sigma_{i\theta}) + (1 + \exp(-\frac{(\mu_{iA^+}(\theta) - \mu_{iB})/\sigma_{i\theta}})^\rho))} d\theta
\]

(5.3)

An important feature of this setting is that when the subsidy equals 0 (i.e. is not offered), then the probability of choosing option \(j = A^+\) is 0. The parameter \(\theta_i\), which represents the hassle cost of filling out the rebate application, changes the basic structure of the nested logit model and allows me to rationalize a purchase probability of 0 when the subsidy is 0. Notice that the probability of option A is just the nested logit probability weighted by the density of \(\theta_i\) and integrated over the region where \(\theta_i + \text{Subsidy} > 0\).

\(^{34}\)If the agent observed \(\nu\) but the econometrician did not, then I would also integrate over the distribution of \(\nu\) in the expression for the probability of each discrete choice. Also, since utility is quasilinear in income it follows that indirect utility is linear in \(\nu\). This means that uncertainty created by the variance of \(\theta\) doesn’t affect the agent’s choice. If the agent were risk averse, then a higher variance of \(\nu\) would create a stronger incentive to purchase an energy efficient appliance.

\(^{35}\)I provide details of this derivation in the appendix, as well as the expressions for \(Pr_{ij}\) for the other discrete choices \(j\).
6 Estimation and Identification

I use a generalized method of moments strategy for estimation since this allows me to impose the instrumental variable moment conditions to deal with endogenous energy and appliance prices as well as impose the cross equation restrictions implied by Equation 5.1 and Equation 5.3 (and the other probability expressions). I use simulation to compute the integrals in Equation 5.3 and the other market share equations. I derive moment conditions below to estimate the parameters. A complete summary of the moment conditions is available in the appendix.

6.1 Unobserved Heterogeneity α_i and Energy Price Endogeneity

Recall that a household’s demand for energy services is given by the expression $s_{ijt} = \alpha_i + \beta_{sg} p_{ijt}^s + \nu_{ijt}$. I have already discussed the intuition that high α households are more likely to purchase efficient appliances. A second source of endogeneity arises because the utility company charges an increasing block price for electricity consumption, meaning that the marginal and average prices of electricity are increasing functions of consumption; thus α_i is mechanically correlated with the price of electricity.

Since there are no income effects in my model, household optimization with respect to the full nonlinear price schedule and optimization with respect to the marginal price is equivalent on the interior of each price tier. I assume that households respond to the marginal price of electricity and take advantage of within customer-by-tier variation in the price schedule to identify β_{sg} and α_i.

Notice that by taking a 12-month difference of the household’s consumption consumption, I obtain

$$\Delta s_{ijt} = \beta^s \Delta p_{ijt}^s + \Delta \nu_{ijt}$$ (6.1)

where $\Delta s_{ijt} = s_{ijt} - s_{ij,t-12}$. The change in idiosyncratic preferences $\Delta \nu_{ijt}$ might still be correlated with the change in prices Δp_{ijt} if customers move to a different tier. To alleviate this concern, I only use the within-tier price variation for customers who stayed on the same tier between the two

36Presently, I do not estimate the parameter ρ. Instead, I estimate the model using several different values of ρ in a range that’s seems intuitive and report the corresponding estimates for the other parameters.

37This can be checked mathematically by noting that $\partial Pr_{AB}/\partial \alpha_i > 0$

38This is a very common form of pricing in electricity. Although the utility offers other pricing plans such as time of use pricing, the block pricing was by far the most popular with over 95% of residential customers in the utility territory in 2013.

39Optimization with respect to the full nonlinear price schedule implies bunching, which I do not observe. Customers could also optimize with respect to the average price they face in the previous month. [Ita (2014)] provides evidence of this phenomenon when customers face a complicated multi-part price schedule. This assumption does not change the theory developed up to this point, but if there is autocorrelation in consumption it substantially complicates the econometrics since price idiosyncratic demand in the current month is correlated with price in the previous month.
I then use the moment conditions
\[
E[(\Delta s_{ijt} - \beta^s \Delta p_{ijt}^s - \beta^w \Delta w_{it}) \cdot (I_{it}^{tier} \cdot \Delta p_{ijt}^s)] = 0 \quad \forall j
\]
(6.2)
and
\[
E[(\Delta s_{ijt} - \beta^s \Delta p_{ijt}^s - \beta^w \Delta w_{it}) \cdot (I_{it}^{tier} \cdot \Delta w_{it})] = 0 \quad \forall j
\]
(6.3)
in my estimation, where \(t \) is January of 2014, \(t - 12 \) is January 2013, \(w_{it} \) is the mean temperature (weather) for household \(i \) in month \(t \), and \(I_{it}^{tier} = 1 \) if the customer is on the same tier in \(t \) and \(t - 12 \) and 0 otherwise. The control for mean temperature and using \(\nu^* \) instead of \(\nu \) as the residual is an important correction since there are in-sample differences between \(t \) and \(t - 12 \) that explain some of the differences in usage. Energy service consumption in period \(t - 12 \) is by definition \(s_{ij,t-12} = \text{kWh} \) since \(\sigma_D \) and \(\gamma_D \) incorporate the fact that some non-purchasers have Energy Star appliances. Conditional on \(\beta_g \), \(\alpha_i = s_{ijt} - \beta_g p_{ijt}^s \), which is simply the parameter I would get from a linear regression with customer-by-tier fixed effects and a coefficient for monthly mean temperature.

Identifying Variation for \(\alpha_i \) and \(\beta_g \) Variation in the energy price instrument occurs because the price schedule shifts by different amounts at different levels of energy consumption. Intuitively, the parameter \(\beta_g \) is identified by comparing the average within-tier change for each customer in zipcode income quintile \(g \) to the average within-tier change in price. These price changes are exogenous to energy service demand since they result from the exogenous changes to the utility’s cost of electricity procurement. In particular, the utility is allowed by the regulator to pass costs of generation on to its customers, so when the price of natural gas changes, the price of electricity will eventually adjust up or down to reflect the higher or lower cost of generation. Once \(\beta_g \) is pinned down, \(\alpha_i \) is identified for each individual by correcting their average level of consumption for the average prices that they face.

6.2 Product Fixed Effects and Variance of the Logit Error
To identify the produce fixed effects, I match observed market shares in the data to mean purchase probabilities across households. Since I observe whether or not a household claimed the subsidy \((I_{iA}) \), I first impose the moment conditions
\[
E[(I_{iA} - Pr_{iA})Z] = 0
\]
(6.4)

40 This is a more restrictive form of the variation that is used in a simulated instrument identification strategy. For the customers who don’t change tiers, the simulated instrument is simply the price movement on the customer’s tier.

41 The interpretation of \(\nu^* \) is the piece of \(\nu \) that’s not explained by a linear trend in temperature. I get a larger elasticity if I omit this since Jan 2014 was colder than Jan 2013.
where \(\mathbb{1}_{iA} \) is an indicator vector that equals 1 if customer \(i \) claimed the rebate and 0 otherwise and \(Z = (1, Z^*)' \) is a vector of instruments. The first element of \(Z \) simply requires that on average the market share of program participants implied by the model be equal to the observed number of program participants in the data. The second element \(Z^* \) of \(Z \) is an instrument for the deterministic part of the indirect utility. This second instrument pins down the variance of \(\epsilon \) as I will describe below.

To allow me to separately estimate the other fixed effect parameters, I impose the moment conditions

\[
E \left[\left(\hat{I}_{ij} - P_{rij} \right) Z \right] = 0, \quad j \in \{B, C\}
\] (6.5)

Note that \(\hat{I}_{ij} \) is a random variable with a mean that should equal the actual market share of choice \(j \) since the RECS data is a representative sample of customers in this state. The variance of \(\hat{I}_{ij} \) is given by \(\frac{\hat{I}_{ij}(1-\hat{I}_{ij})}{R_i} \) where \(R_i \) is the number of RECS households in this bin used to compute \(\hat{I}_{ij} \). Thus to correct for the smaller variance of the imputed purchase choice relative to the actual purchase choice, I multiply the moment conditions \(6.5 \) by \(\sqrt{R_i} \), the number of RECS households used to compute \(\hat{I}_{ij} \) and cluster by the RECS bin to correct for heteroskedasticity and autocorrelation of the \(\hat{I}_{ij} \) induced by using the same RECS households to compute the expected value of \(\mathbb{1}_{ij} \) for multiple households in my primary dataset.

There are several possibilities for the instrument \(Z^* \), and notice that there are three moment conditions corresponding to each of the three discrete choices to estimate \(\sigma_{g_i} \), so I can test over-identifying restrictions.\footnote{There are a number of over-identifying restrictions implied by my model that I can test using a J-test. The interested reader is directed to the appendix for a complete list of moment conditions and the chi-squared statistics from the test of over-identifying restrictions.} First, if appliance prices are exogenous, then I can use the indirect utility for choice \(j \), \(V_j \), as a instrument. If price variation is related to local demand or measurement error, then I need to use a subset of the variables \(p^{A'}, D', V_j' \), where \(p^{A'} \) is the average price in other markets in the Nielsen market region, \(D' \) is a vector of averages of at least three demographic characteristics (e.g. Income, home size, home age) in other markets in the Nielsen market region, and \(V_j' \) is the average indirect utility in other markets in the Nielsen region. If prices are set regionally, then each of these variables will be related to the price in a given market even though they don’t affect demand (conditional on price).

Identifying Variation for Product Fixed Effects and Logit Error Variance The fixed effects \(\tau_g \) and \(\kappa_g \) and the parameter \(\lambda_g \) that governs the distribution of \(\theta_i \) are identified by equating market shares in the data to average purchase probabilities in the model. For example, many households in the data purchase energy efficient washing machines but few participate in the program, so a large (negative) mean of the distribution of \(\theta_i \) rationalizes low program participation given the popularity of Energy Star appliances. Similar arguments follow for the other fixed effect
parameters.

To understand how σ_{g_i} is identified, consider two extreme cases. If the appliance price and consumption utility is totally uncorrelated with purchase probabilities, then the only thing that can explain differences in purchase probabilities across customers is differences in ϵ. In this case, σ_{g_i} would be large. If on the other hand appliance prices across space are highly correlated with purchase probabilities, then the deterministic portion of my model will explain most of the variation in appliance choice and the residual variation explained by the logit error will be small. In other words, the variance of ϵ is identified by the amount of variation in purchase probabilities explained by the deterministic portion of my model (with marginal utility of income normalized to 1) relative to the unexplained variation that gets rationalized by ϵ. This variation is depicted graphically in Figure 2, which shows how the washer program participation rate changes with the price of the Energy Star washing machine. Each circle is a market, and the x-axis shows the share of households in the market who participated in the washing machine program during the 2013 period 0 and the y-axis shows the Energy Star washer price constructed using the price index described in the previous section.

7 Results

Parameter estimates for the washing machine program are presented in Figures 3 and 4 and in Table 6. Here I’ll highlight the own price elasticity of energy service demand and the distribution of the parameter θ since these have important implications for the welfare impact of the programs. The own price elasticity of energy service demand in Figure 3 decreases in magnitude in income. Households at the low end of the income distribution are the most price sensitive, with an elasticity of -0.66, and households in the wealthiest areas are least price sensitive, with an elasticity of -0.13. Since changes in consumer surplus is proportional to the elasticity of demand, this suggests that low-income households are likely to be more adversely affected by the electricity price change associated with the program. Figure 4 shows the distribution of θ_g for each income quintile. I plot the same simulated draws from a Rayleigh distribution that I used in estimation. Notice that with the exception of the bottom two quintiles of the neighborhood income distribution, the distribution of θ increases in income in a first order stochastic dominance sense. This suggests that low income households have a larger cognitive burden of filling out the rebate application than households in wealthier areas. This estimate follows from the descriptive feature of the data in Table 5 that a higher share of Energy Star appliance purchasers claim the rebate in high-income areas relative to low-income areas. Table 6 describes the other parameters for the washing machine program. Analogous tables and figures for the fridge program show qualitatively similar results, and these are available in the appendix.
7.1 Energy Savings and Environmental Benefits

To evaluate the energy savings caused by the program, I use the model to generate counterfactual appliance holdings and energy consumption if households were not offered the subsidy and consequently faced a lower electricity price. Consider the expression

\[E[kwh| (p^a, p^s)] = \sum_{i=1}^{N} \sum_{j} (Pr_{ij}(p^a, p^s) \cdot kWh_{ij}(p^a, p^s)) \]

(7.1)

that predicts consumption for an arbitrary appliance price / energy service price vector \((p^a, p^s)\). Equation 7.1 accounts for the change in adoption, the change in usage conditional on adoption, and the selection of adopters. Let \(p_{act}^a\) denote the net-of-subsidy appliance prices under the actual program, let \(p_{0}^a\) be the appliance prices without the subsidy, and let \(p_{0}^s\) describe the energy price that would prevail if the program didn’t exist or if the program was funded through a fixed charge to monthly bills. Taking the difference of 7.1 evaluated at the price vectors \((p_{0}^a, p_{0}^s)\) and \((p_{act}^a, p_{0}^s)\) then gives monthly energy savings that would be achieved from a subsidy program funded through a non-distortionary fixed fee on customer bills. To compute total savings, I multiply monthly savings by \(\sum_{t=1}^{12} \delta_t\) and then correct for the marginal households who purchased an appliance in 2013 but who will save energy for the entire lifetime of the appliance. Energy savings for the actual program are computed in the same manner using \((p_{act}^a, p_{act}^s)\) instead of \((p_{act}^a, p_{0}^s)\) to evaluate 7.1. Expected energy savings for a program funded through a fixed monthly fee in households’ utility bill and the actual program funded through the distortionary electricity price change are listed in Panel A of Table 7. Notice in the last column of the table that only 17.7% of energy savings are achieved by the fixed fee program. In other words, a program evaluation that ignored the effect of the energy price change would only capture 17.7% of the total effect on energy use if the actual funding occurred through marginal electricity prices.

To compute the environmental benefit of the fixed-fee program and the actual program, I multiply the kWh electricity savings by estimates of the social cost of 1 kWh. I use a social cost of $0.10, which is on the high end of estimates from Holland et al. (2016) and Borenstein and Bushnell. The thought experiment here represents the amount of energy that would be saved by raising prices for 1 year to fund a yearlong program, then lowering prices at the end of the year (but where customers expected the higher prices to persist for the 10-year horizon of their durable purchase decision). Savings in this thought experiment accrue from one year of higher prices and 10 years of Energy Star appliance ownership for the marginal households who changed their behavior in response to the program.

Also notice that in some parts of the U.S., cap-and-trade markets for carbon dioxide and other air pollutants exist. If these caps bind and regulators measure / count savings from energy efficiency programs as part of the cap, then reductions in energy consumption due to higher retail electricity prices and greater adoption of energy efficient durables will be offset by increases in emissions from other covered sectors. In this case the benefit isn’t emissions reductions, it relaxing the emissions cap constraint and allowing additional economic activity.

Recall that the price of energy services is determined by the choice of the price of electricity and the price of Energy Star appliances depends on the level of the subsidy.

This correction is given by adding \(\sum_i \sum_{t=13}^{120} \delta_t Pr_i(Marginal) \cdot (\Delta kWh_i|Marginal)\) to energy savings.
and will ensure that any negative welfare changes will be conservative estimates. The social cost accounts for the environmental damages like greenhouse gas emissions and local air pollution as well as the cost of generating the electricity. An important thing to notice is that the $0.10 social cost is still below the lowest price of electricity in this utility territory. The reason is that this utility (and many others) recover fixed costs of maintaining the transmission infrastructure and other activities through higher marginal prices. Consequently adding funding for this program to marginal prices pushes the price further from the social optimum. This suggests that a Pigouvian tax on electricity is efficiency decreasing in this utility territory, and I’ll show in the next section that this is indeed the case.

7.2 Net Welfare Effect of the Program

While energy savings are an important program benchmark, total welfare is perhaps a more economically-founded policy objective. Welfare includes not only the environment benefits caused by the program, but also the change in consumer and producer surplus. There are two relevant producers in this setting, utility companies and appliance producers. Utilities are regulated so roughly they earn zero economic profits. For now, assume also that the appliance market is competitive so that producers earn zero profits. I will relax this assumption in the next section. This leaves only environmental damages and consumer surplus in the welfare function.

To compute changes in consumer surplus, I evaluate the indirect utility function at the price vectors \((p^a, p^s)\), \((p^{a,act}, p^{s,0})\), and \((p^{a,act}, p^{s,act})\) described above. Since the econometrician doesn’t observe the realizations of \(\epsilon\), I simulate from the distribution of \(\epsilon\) to compute the expected value of the upper envelope of the conditional indirect utility function across choices \(j\).

Panel B of Table 7 shows the net change in total surplus for the non-distortionary and the distortionary programs, where I compute each number by adding money metric indirect utility across households. Notice that program costs substantially outweigh program benefits, so this subsidy program is not justified solely on the energy saving grounds at a social cost of electricity consumption of $0.10. There are several economic costs that cause the program to reduce efficiency:

\(^{47}\) Operating costs are passed directly on to customers through higher prices, and regulators try to ensure that companies earn a fair rate of return on capital investment such as electricity transmission lines.

\(^{48}\) Since utility is quasilinear, the indirect utility function is the negative of the expenditure function (plus a constant). I derive the expenditure function in the appendix.

\(^{49}\) Small and Rosen (1981) and Williams (1977) show that the expenditure function of many discrete choice models can be integrated to compute compensating variation, and convenient closed-form expression is available for logit models. The change in consumer surplus in a conditional logit model is given by the expression \(\Delta E(CS) = \ln(\sum_{j_1} e^{V_{j_1}}) - \ln(\sum_{j_0} e^{V_{j_0}})\), where \(J_1\) is the choice set with new prices, product attributes, etc, and \(J_0\) is the original choice set as in Train (2009). Although this framework can be easily extended to my discrete-continuous model and to multiple price changes, the analogous expression in my model does not have a closed form. Consequently, I simulate from the distribution of my structural error terms to compute expected compensating variation and expected changes in indirect utility for each household in my sample.

\(^{50}\) In the program design section, I’ll consider consumer surplus if the regulator values $1 differently for a low-income and a high-income household.
First, the increase in the electricity price creates deadweight loss since the price of electricity without the program fundraising is already above the social cost of electricity in this utility territory.\(^{51}\) The electricity price distortion reduces net surplus by about $6,700, which is simply the difference between the cost of the program funded through a non-distortionary fixed fee and the program funded through the energy price change. A second economic cost is the disutility \(\theta\) incurred by households who fill out the rebate application and participate in the program. These time and hassle costs are economic burdens, not transfers between agents. Finally, the additional purchase price of Energy Star appliances represents larger production costs, which are costs to society.\(^{52}\) I will relax the assumptions that \(\theta\), \(p_A^a - p_B^a\), and \(p_A^a - p_B^a\) represent actual welfare costs in the next section.

Appliance Market Failures

The environmental externality is an important justification for the appliance subsidies, but regulatory statements also indicate that a goal of these programs is to save households’ money, which implies that households are not making a privately optimal appliance purchase.\(^{53}\) Allcott et al. (2014) show that many types of appliance market failures can be incorporated into a discrete-continuous model like mine by allowing the household to discount the present discounted value of consumption utility at the time of purchase by a factor \(\Gamma\). At the time of purchase, the household has indirect utility

\[
V_j = I_0 - p_j^A + \xi_j(\theta) + \sigma \epsilon_j + \Gamma \cdot \mathbb{E}_\nu \left[\sum_t \delta^t (I_t - p_j^S \left(\frac{1}{2} \beta^S p_j^S + \alpha + \nu_{jt} \right)) \right]
\]

(7.2)

where \(\Gamma < 1\), but after purchase the household’s experience utility is given by setting \(\Gamma = 1\) in expression 7.2. Panel C shows the change in consumer surplus and net welfare change if there is a small market failure and households only value consumption utility at \(\Gamma = .75\) when they make their purchase decision. Two features of these results are worth highlighting: First, the distortionary fundraising exacerbates the appliance market failure because households discount the disutility that will be incurred in the future because of the higher energy prices when they make their appliance purchase.\(^{54}\) Second, the fixed fee program is more attractive when there is an appliance failure than in many parts of the country, however, it’s possible that energy efficiency subsidies would move the price of electricity closer to the social cost of electricity and increase efficiency.\(^{52}\) Subsidized households don’t necessarily value the appliance at the full purchase price, so if the price is reflective of production costs then subsidizing purchase creates an inefficient allocation of resources absent an appliance market failure justifying the subsidy.\(^{55}\)

Gillingham et al. (2009) provide a review of other market failures that might rationalize a policy that subsidies energy efficient appliances. \(^{54}\) Qualitatively the same phenomenon can be shown by setting \(\Gamma = 1\) in the decision utility and \(\Gamma > 1\) in the experience utility. This is the approach I take since in my estimation \(\Gamma = 1\). In ongoing work I am estimating \(\Gamma\) using the variation in how households trade off purchase price with operating costs.

If the retail electricity price were below social marginal costs, then there would be two competing effects: fundraising energy efficiencies through increases to the marginal price of electricity would move the electricity price in the right direction, but it would also imply that the private mis-optimization was more severe. Consequently it’s ambiguous if...
when there is no market failure since it helps to encourage more adoption of Energy Star durables and correct for the private market failure. Panel C shows a large market failure where $\Gamma = .25$ and households significantly discount consumption utility at the time of purchase. The welfare costs of the distortionary program are further amplified and the costs of the non-distortionary program decrease.

8 Economic Costs of an Appliance Subsidy Program

There are three main channels through which the program generates economic costs: (1) First, the electricity price change distorts household energy consumption decisions and creates deadweight loss, (2) second the time, hassle, and cognitive burden of applying for the rebate represents an economic cost, and finally (3) the cost of producing more energy efficient durables is a burden on society that’s justifiable from an efficiency perspective only if households value these appliances at their cost of production. In this section I describe the relative importance of each of these forces, and I relax the assumptions from Table 7 that (2) and (3) represent real economic costs.

8.1 Costs of Distortionary Fundraising

Table 7 compares a program funded through a fixed monthly fee on all households to one funded through a change in the marginal price of electricity. The last column of this table shows the ratio of benefits and costs from the non-distortionary program to the actual program. It’s also worth emphasizing that this ratio also represents the amount of total benefits and costs that would be captured by an evaluation of a distortionary program that mistakenly assumed that fundraising didn’t affect the energy price. The discrepancy between the two types of program is large: Only 17.7% of the effect on energy consumption and as little as 18.3% of the change in welfare are captured.

Across each panel of Table 7 the program funded from a fixed-fee on monthly bills performs better than the distortionary program. However, eliminating the distortionary fundraising does not reduce the costs of the program to zero. This is primarily because the hassle costs of participating in the program and the cost to society of producing more efficient appliances are also large, especially in Panel B where there is no privately sub-optimal investment in energy efficiency. In fact comparing the net welfare effect of the distortionary program to the non-distortionary program, there is only about a $6,710 difference in the welfare costs even though the total distortion is close to $70,000. Another way of framing this is that the relatively low own-price elasticity of demand for electricity means a Ramsey model would levy high taxes on electricity consumption. The expected program budget based on the model is $74,292 but only $6,710 of deadweight loss are created directly by the funding, implying a $0.09 marginal cost of public funds for the program fundraising. In this distortionary fundraising could improve welfare when households make appliance purchase “mistakes.”
context, however, it’s important to note that this fundraising cost could be driven to zero by levying a fixed charge on monthly electricity bills.\footnote{It’s unlikely that a small charge of about $1 per year would lead households to disconnect entirely from the grid or change behavior because of unmodeled income effects.}

8.2 Infra-marginal Participation and the Welfare Costs of θ

Infra-marginal participation in the programs is inefficient because these households receive a pure income transfer that has a cost to society of θ_i. Infra-marginal households make the same appliance and energy consumption choices that they would have made in the absence of the subsidy policy and therefore do not save any energy relative to a counterfactual in which they were not offered a subsidy.

With estimates of the model parameters, I can compute expected number of program participants who were inframarginal to the subsidy incentive and the higher energy prices. Mathematically, a household is inframarginal to the subsidy if $V_{iA^+} > V_{iA} > V_{iB}, V_{iC}$. Since I never observe ϵ, I can’t determine inframarginal individuals, but I can compute the probability that a household is inframarginal as $Pr(V_{iA^+} > V_{iA} > V_{iB}, V_{iC})$ where V_{ij} is the conditional indirect utility associated with discrete choice j. This expression is given by

$$Pr(V_{iA^+} > V_{iA} > V_{iB}, V_{iC}) = \int_{-\text{Subsidy}}^{0} f_\theta(\theta) \cdot \frac{(1 + e^{\beta (\mu_i A - \mu_i B) / \sigma_{ij} \rho})^{\rho-1}}{e^{\beta (\mu_i A / \sigma_{ij} \rho)} + (1 + e^{\beta (\mu_i A - \mu_i B) / \sigma_{ij} \rho})^{\rho}} d\theta$$

$$= Pr(V_{iA} > V_{iB}, V_{iC}) \int_{-\text{Subsidy}}^{0} f_\theta(\theta) d\theta$$

(8.1)

It follows from this expression that inframarginal participation increases in the utility of $j = A$ and decreases in the utility of $j = B$. If the program affected the energy price as well, then an inframarginal household is one who prefers A^+ to all other choices at price vector $(p^{A,act}, p^{S,act})$ but who prefers A to B and C at price vector $(p^{A,0}, p^{S,0})$. Expected inframarginal participation with respect to both the subsidy and the price change is easily evaluated by simulating from the distributions of ϵ and θ.

The first panel of Table 8 shows the number of program participants whose purchase was marginal to the subsidy and the higher energy prices.\footnote{Note that my expected number of participants is higher than the actual number of participants observed in the data. This is because I impose over-identifying restrictions so my model doesn’t exactly replicate market shares observed in the data. In expectation, very few households purchased an efficient appliance because of the electricity price change.} Out of a total of 1,486 expected participants, notice that only 420 (28%) were marginal to the subsidy incentive. This means that almost two thirds of participants didn’t change their behavior and simply received a wealth transfer by claiming the rebate.\footnote{Boomhower and Davis (2014) estimate close to 50% in a utility rebate program in Mexico, and Houde and Aldy...} The high share of inframarginal households follows from the descriptive features of...
the survey purchase data. In the RECS data, 68% of washing machine purchasers choose an Energy Star model. This only leaves scope for the program to change the purchase decision of the 32% of washing machine shoppers who are possibly considering the purchase of an inefficient appliance.

The second panel of Table 8 shows that inframarginal households have larger expected lifetime energy “savings” than marginal households. I use “savings” to describe the change in energy consumption experienced by these households after purchasing an Energy Star appliance, not savings caused by the program. This is intuitive, as households with strong private incentives to invest in an Energy Star appliance will be less likely to be on the margin; they make the energy efficient appliance purchase even without the rebate incentive.

Welfare if \(\theta^* \neq \theta \) is Welfare Relevant Although time and hassle costs of program participation are large, the social burden embodied by the parameter \(\theta \) could be the result of a mistake rather than the manifestation of a true cost. If large values of \(\theta \) are the result of unawareness of the program or households who forget to mail in the rebate paperwork, then the actual welfare effect of the program can be evaluated by allowing the estimated parameter \(\theta \) to enter the decision utility and a different parameter \(\theta^* \) to enter the experience utility. Table 9 shows the economic efficiency of the actual policy of \(\theta^* = 0 \). Environmental benefits from Table 7 are the same, so I have not repeated these numbers. Notice that the hassle costs of the rebate paperwork (if they’re a real welfare cost) represent a much larger burden to households than the distortion to the energy price change without an appliance market failure. This follows because so many of the program participants are inframarginal (and so few are marginal) that the subsidy does little to correct appliance market failures and mostly transfers income between the average ratepayer, program participants, and appliance producers and retailers. Consequently reducing these costs might be an important way to improve program efficiency.

8.3 Imperfect Competition in the Appliance Market

Even if \(\theta^* = 0 \), the program would reduce welfare net of environmental benefits in a competitive appliance market where retail price was equal to marginal cost of appliance production and transportation. However, if manufacturers and retailers marked up Energy Star appliances above marginal cost because of imperfect competition, then some of the higher prices paid by households would be reflective of producer surplus and not social costs. To compute consumer and producer surplus if manufacturers and retailers mark up prices, I evaluate the expected indirect utility and expected appliance purchases at the actual prices. Then I allow producers to retain 50% of the price difference between the Energy Star model and the conventional model as producer surplus. I also allow 50% of the price of the conventional option to represent producer surplus.

59. A 100% markup over costs.

A 100% markup over costs.
Panels C and D of Table 9 show that the program would be welfare enhancing if 50% of the price difference between the Energy Star and the conventional appliances represented producer surplus and the costs θ^* of filling out the rebate application was 0. However, net benefits to consumers are still negative since consumers pay for the program fundraising and for appliances. Appliance producers and retailers, however, benefit significantly from additional sales of Energy Star appliances. Also, even with a small market failure the program does not increase consumer surplus. The large share of inframarginal participation means that the program is more effective at transferring wealth than at addressing market failures. In the next section, I’ll explore the implications of the policy if the regulator has preferences to transfer wealth between households in different neighborhoods.

9 The Equity/Efficiency Tradeoff and Program Design

The previous section demonstrated that it is unlikely the programs in this utility increase aggregate consumer surplus given a variety of assumptions about the amount of producer surplus and the welfare cost of applying for the rebate. However, there are a variety of reasons why a regulator might have preferences to redistribute wealth across income groups or to increase profits for appliance manufacturers and retailers. This is manifest by increasing marginal rates for federal and state income taxes, numerous cash transfer programs that are targeted at the poor, and large R&D subsidies for energy efficiency research.

Using the notation from the previous sections, let household i’s expected indirect utility for appliance j is given by V_{ij} (which is expressed in dollars). Additionally, assume that each kWh of electricity consumption create an externality $\phi = $0.10 to society. A policy maker might seek to maximize the expected total welfare function given by

$$\sum_i w_{gi}V_i - \phi \sum_i E[kWh_i]$$

(9.1)

where $V_i = max_j(V_{ij})$ is the unconditional expected indirect utility for consumer i and $E[kWh_i] = \sum_j Pr_{ij}kWh_{ij}$. This setup that embodies the efficiency-equity tradeoff of the program is fairly general, as the welfare weights w_{gi} allow the planner to value marginal changes in income differentially across income groups. To evaluate consumer surplus in the previous sections, I used the weights $w_{gi} = 1$, implying a Kaldor-Hicks notion of efficiency, but other weights are also justifiable. I consider the general optimal program design problem in the appendix, but in this section I focus on three intuitive and relatively easily implementable potential changes to the existing program.

60This framework is equally applicable to many possible alternative specifications for the policy objective function.
9.1 Distributional Program Burden

Table 10 shows the distribution of costs and benefits across households in different neighborhood income groups. Panel A shows the average change in dollars of consumer surplus for households in each zipcode income quintile. With the distortionary energy price change, the households in the first three quintiles experience $0.99 - $1.09 of disutility from the program, but households in the top two quintiles only experience about $0.67 - $0.72. This implies that if the regulator is maximizing Equation 9.1 then the weights on higher income households are larger than the weights on lower income households.\footnote{It’s very likely the regulator just isn’t maximizing 9.1 given my model estimates. If it were the case that in fact the actual policy did maximize 9.1 then one would infer that lower income households are less vocal about the burden imposed by the program or they are less politically influential. I prefer to interpret this finding that the existing policy just isn’t intentionally maximizing anything similar to my optimal policy objective, implying instead that there’s room for productive policy changes that improve equity and efficiency.}

The higher burden for households in low-income areas arises primarily because of two forces: First, these households are more energy-price elastic implying larger deadweight loss for a given energy price change. Second, participation in the subsidy program is lower, so even conditional on a given amount of bill change less benefits accrue to lower income areas. Panels B and C of Table 10 describes the expected bill change and the expected subsidy benefits. Notice that the variation across zipcode income deciles in expected bill change is smaller than the variation in consumer surplus from Panel A. While households at the bottom and the top of the income distribution both have expected bill changes of about $0.80 per year, households at the top (particularly in the 4th income quintile) participate in the rebate program at a substantially higher rate. Thus subsidy receipts per dollar of bill change are larger for higher income households, and the program transfers wealth from lower-income areas to higher-income areas.

The lower participation is rationalized in the model by a larger distribution of the hassle costs θ of the rebate application process. While this might at first seem counterintuitive since the opportunity cost of time should increase with income, there is evidence that suggests that wealthier individuals have a lower cognitive processing costs because they are more skilled at completing complicated applications like the rebate we investigate here. Table 5 shows the raw data that leads to this conclusion, with lower income household purchasing efficient appliances and claiming rebates at a lower rate than higher income households. The costs represented by θ dictate a substantially greater amount of the variation in program participation that the expected savings conditional on the purchase of an energy efficient appliance.

9.2 Efficient and Equitable Policy Design

I have showed that the program transfers a substantial amount of wealth relative to the size of the environmental benefit. Furthermore these transfers move wealth from poor neighborhoods to
wealthy neighborhoods. In this section, I suggest several potential policy improvements that are incremental program changes that lead to potentially large program improvements.

Lump Sum Program Funding The preceding analysis suggested that fundraising through fixed monthly “connection” charges would improve Kaldor-Hicks efficiency. This result is robust to a variety of different market failures that I have explored in Table 9. A major concern for funding public purpose programs through fixed charges on electricity bills is the perception that this would be regressive. However, Table 10 highlights that this change would also increase the progressiveness of the program’s net benefits. In particular, the net costs on low income households would decrease by about $0.15 - $0.26 for the bottom four zipcode income groups and only increase by $0.04 for the highest income group. This is also an easily implementable billing change since many utility companies already charge a fixed monthly connection fee to customers who are plugged into the electricity grid.

Because the lump sum program still creates a social cost, I can compute the size of the appliance market failure needed to justify such a policy by dividing the net welfare costs associated with the program in Table 7 and 9 by the number of marginal households in Table 8. To justify the lump sum program in Panel B of Table 7, it would take a private market failure on the order of $149.90 per marginal participant. In other words, if the average marginal participant undervalued the lifetime operating cost of their appliance by $149.90, then the program’s costs would be equal to its benefits from externality reductions and more privately optimal appliance purchase. Average annual spending electricity consumption for a washing machine is less than $15.00, so this is equivalent to discounting almost the entire flow of electricity consumption over the appliance lifetime.

Rebates at Point of Sale The “fixed-fee” policy improves efficiency and equity, but there is substantial scope for further efficiency improvements. For example, if the regulator could reduce the time and hassle costs of program participation, social welfare would potentially increase. The regulator’s problem is the mirror image of the monopolists’ problem: Decreasing program participation costs reduces the burden on inframarginal households, but it encourages more households to participate. If the marginal reduction of the burden on the inframarginal participants outweighs the marginal costs incurred by the marginal participants, then reducing the distribution of \(\theta \) improves welfare.

One way that this might be accomplished would be allowing households to claim the rebate at the point of sale. In this case, welfare costs for all inframarginal households would decrease to zero and marginal households would also incur no economic costs of program participation. If manufacturers and retailers didn’t respond by changing prices, then the effect of this program would be given by the results previously discussed in Table 9. However, a reasonable concern with this

62 See https://www.efficiencyvermont.com/tips-tools/tools/electric-usage-tool
approach is that appliance prices *would* increase so that manufacturers would capture most of the subsidy transfers. This might be avoided if there were eligibility criteria based on income. Retailers would offer the same price to everybody, but only households who met the eligibility criteria would be able to claim the rebate at the point of sale.

A Means-tested Point of Sale Program Consider a point of sale program that lowers the hassle costs of participation $\theta = 0$ and sets the subsidy amount as a function of income. Means-tested subsidy amounts could be rationalized if the regulator valued $\$1.00$ of income at $w_g < \$1.00$ for a household in a low income areas and $w_g > \$1.00$ for households in high income areas. Hendren (2014) backs out the weights w_g implied by the U.S. tax system, and in this section I’ll use these as a potential example of society’s “revealed preference” welfare weights. I’ll also allow the regulator to value producer surplus at $w_5 = \$0.63$. If a regulator in fact did have a different set of marginal welfare weights in mind, then those could be easily substituted into this framework.

Table 11 shows the effect of a means tested policy that applies the rebate at the point of sale and sets $\theta = 0$. In the appendix, I show that this example is the solution to an optimal policy design problem with the weights from Hendren (2014), but here just consider this as a potential alternative to the actual policy. In this example policy, all households pay an annual $\$7.34$ connection fee to consume electricity. The marginal price is set at $p^{s,0}$. The subsidy incentive is $\$70$ for households in the bottom 20% of the zipcode income distribution, and decreases to $\$55$, $\$45$, $\$25$, and $\$5$ for quintiles 2 through 5. The weights are listed in the fourth column, and these represent the social value of $\$1.00$ of wealth for a household in zipcode income quintile g. Finally, the last column in the first panel shows the change in consumer surplus per household weighted by the welfare weights w_g.

The policy generates consumer surplus in the first income quintile, and on average these households receive $\$1.66$ of weighted surplus per account. Households in higher income quintiles have a welfare loss of between $\$0.55$ in quintile 2 and $\$4.45$ in quintile 5, leading to an overall loss of consumer surplus of $\$182,700$. However, this loss of consumer surplus is offset by a substantial increase in (weighted) producer surplus of over $\$1,000,000$. If households in this regulator’s jurisdiction own the manufacturers and retailers that enjoy this windfall, then this producer surplus ultimately represents gains to households. If the value of producer surplus was 0, then the means tested point of sale policy wouldn’t be justified unless there was a substantial private mis-optimization in the purchase of efficient appliances.

This policy is suggestive of scope to substantially improve the efficiency and equity embodied

63 This doesn’t require any more information than a credit card application, and it is common for merchants to extend credit card offers at the time of purchases.

64 The intuition is that one can impute the weights w_g by comparing the distortions created by the high marginal tax rates at the top of the income distribution with the distortions created by the lower tax rates at the bottom of the income distribution.
by the subsidy program. By specifying a policy objective that could include economic efficiency and wealth redistribution, policy makers can then determine how to maximize their objective by lowering economic costs of fundraising and participation and by targeting households who have the highest social marginal utility of income. A more general policy design problem is considered in the appendix, but even with simple changes to the existing policy, I have showed scope for substantial improvements.

10 Conclusion

Because of the increasing role of energy efficiency subsidies in state energy policy, tools for program evaluation and design are more and more relevant. This paper suggests that fundraising distortions need to be an integral part of subsidy program evaluation and design. I show that energy price changes used to raise subsidy funds accounts for over 80% of energy savings and between 10-90% of the welfare loss caused by the policy depending on the size of the appliance market failure. With this broader perspective on the relevant pieces of such policies, I develop a model of households’ appliance purchase and energy consumption that incorporates the economic incentives for appliance purchase and energy use. The framework allows participating households to be different than non-participating households in their preferences for energy consumption, it accounts for the households who participate in the program who would have made the same durable good purchase in the absence of the subsidy policy, and it models how all households – even non-recipient households – decrease their energy consumption in response to the higher energy prices used to fund the programs. I evaluate the energy savings and the change in total welfare associated with the existing program, and I show that the existing policy is only justified under large private market failures or if the regulator values producer surplus generated by increased Energy Star appliance sales. Through the lens of the model, I can also compute expected household behavior under various alternatives to the current policy, and I find that fundraising through fixed charges in customer bills simultaneously cuts the economic cost of the program and increases the progressiveness of the income redistribution. Finally, I explore how a means-tested policy applied at the point of sale might improve a potential social welfare function that incorporates both notions of equity and efficiency.
Tables

Table 1: Summary of Types and Discrete Choices

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
</table>
| α_i | Energy Service Type
Idiosyncratic demand for energy services |
| θ_i | Rebate Hassle Cost Type
Hassle cost of submitting rebate application |
| ϵ_{ij} | Appliance Preference Type
Idiosyncratic demand for discrete choice j, $\epsilon_{iA} = \epsilon_{iB} + \theta_i$ |
| g_i | Neighborhood Income Group Type
*Household i’s zipcode income quintile, $g_i \in \{1, ..., 5\}$ |
| ϵ_{ij} | Appliance Preference Type
Idiosyncratic demand for discrete choice j, $\epsilon_{iA} = \epsilon_{iB} + \theta_i$ |

<table>
<thead>
<tr>
<th>Discrete Choice</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Energy Star Appliance, Rebate</td>
</tr>
<tr>
<td>B</td>
<td>Energy Star Appliance, No Rebate</td>
</tr>
<tr>
<td>C</td>
<td>Non-Energy Star Appliance</td>
</tr>
<tr>
<td>D</td>
<td>No Appliance Purchase</td>
</tr>
</tbody>
</table>

Notes: The zipcode income quintile g_i is computed using the zipcode where household i resides and the distribution of zipcode-level median household income from the census. If household i lives in a zipcode whose median household income is in the bottom 20% of the distribution of zipcode-level median household incomes, then $g_i = 1$. For households who live in wealthy zipcodes in the top 20% of the distribution of zipcode median household incomes, then $g_i = 5$.

31
Table 2: Summary of Variable Definitions

<table>
<thead>
<tr>
<th>Choice Variables</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i, j, t</td>
<td>Customer, Discrete Choice, Month (Respectively)</td>
</tr>
<tr>
<td>s_{it}</td>
<td>Energy Service Consumption in Month t</td>
</tr>
<tr>
<td>n_{it}</td>
<td>Numeraire Consumption in Month t</td>
</tr>
<tr>
<td></td>
<td>Equivalent to choosing j and s_{it}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prices and Income</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{it}</td>
<td>Median household in zipcode where household i is located</td>
</tr>
<tr>
<td>p_{ij}^a</td>
<td>Appliance Price</td>
</tr>
<tr>
<td>p_{ij}^s</td>
<td>Energy Service Price</td>
</tr>
<tr>
<td></td>
<td>Inversely related to appliance j’s efficiency</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimated Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_{g_i}</td>
<td>Utility Concavity</td>
</tr>
<tr>
<td></td>
<td>Determines price elasticity of energy service demand</td>
</tr>
<tr>
<td>λ_{g_i}</td>
<td>Dictates Distribution of θ_i</td>
</tr>
<tr>
<td></td>
<td>$\theta = \lambda_{g_i} \cdot \text{Rayleigh}(1), \theta < 0$</td>
</tr>
<tr>
<td>$\sigma_{\epsilon_{g_i}}$</td>
<td>Variance of ϵ_{ij}</td>
</tr>
<tr>
<td></td>
<td>Logit scale normalized to set marginal utility of income = 1</td>
</tr>
<tr>
<td>$\xi_{ij}(\theta_i)$</td>
<td>Customer / Choice Fixed Effect</td>
</tr>
<tr>
<td>$\xi_A = \tau_{g_i} + \kappa_{g_i}$</td>
<td></td>
</tr>
<tr>
<td>$\xi_B = \tau_{g_i}$</td>
<td></td>
</tr>
<tr>
<td>$\xi_C = 0$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>Monthly Discount Factor</td>
</tr>
<tr>
<td>ρ</td>
<td>Affects Correlation of Appliance Purchase Options</td>
</tr>
<tr>
<td></td>
<td>$\text{Corr}(\epsilon_{iC}, \epsilon_{iB}) = 1 - \rho^2$</td>
</tr>
</tbody>
</table>

Notes: I don’t actually estimate ξ_A or ξ_B. Since the realization of θ_i is unobserved by the econometrician, I estimate the distribution of θ and can therefore determine the distribution of $\xi_A(\theta_i)$. ξ_D I normalize to 0. These two fixed effects are included in the table of estimated parameters to keep them together with ξ_B and ξ_C, which I do estimate.
Table 3: Summary Stats

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013 Program Participation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_i(A^+)$ Washer</td>
<td>84,020</td>
<td>0.018</td>
<td>0.13</td>
</tr>
<tr>
<td>$I_i(A^+)$ Fridge</td>
<td>84,020</td>
<td>0.004</td>
<td>0.06</td>
</tr>
<tr>
<td>Monthly HH Energy Use (kWh)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full Sample: Oct ‘10 - Aug ‘15</td>
<td>2,520,360</td>
<td>745.86</td>
<td>453.53</td>
</tr>
<tr>
<td>Estimation Sample: Jan ‘13, Jan ‘14</td>
<td>168,040</td>
<td>744.93</td>
<td>438.65</td>
</tr>
</tbody>
</table>

Notes: This table contains summary statistics for my primary dataset. I use the same set of customers for the washing machine and refrigerator programs, although there is very little overlap between the two subsidy policies and households generally only participate in a single program. The participation rate shown in for the washing machine program. Monthly income is the census block group median household income, and washer price is the mean of the Energy Star washer price computed using the appliance price index discussed in the text.

Table 4: RECS Summary Stats

<table>
<thead>
<tr>
<th>RECS Mean</th>
<th>Primary Data Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income</td>
<td>67,094.63</td>
</tr>
<tr>
<td>Home Size</td>
<td>1,522.81</td>
</tr>
<tr>
<td>Home Age</td>
<td>39.80</td>
</tr>
<tr>
<td>Tenure at Address</td>
<td>13.69</td>
</tr>
</tbody>
</table>

N 1,088 84,020

Notes: This table compares means of observable characteristics in my primary dataset and in the RECS data to illustrate that the households are comparable. Income is measured in dollars, home size is measured in square feet, and home age and tenure at the current address are measured in years. I rely on overlapping observable characteristics in both samples to compute an unbiased estimate of the expected (latent) purchase behavior of households in my primary dataset. Income in my primary dataset is median income in household i’s zipcode, not household income. Consequently all of my heterogeneity by income is based on neighborhood income, not household income.
Table 5: Appliance Purchase Shares

<table>
<thead>
<tr>
<th></th>
<th>Washers</th>
<th>Energy Star + Rebate</th>
<th>Energy Star, No Rebate</th>
<th>Non-Energy Star</th>
<th>No Purchase</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g_i = 1$</td>
<td>0.8</td>
<td>6.8</td>
<td>0.5</td>
<td>91.9</td>
<td></td>
</tr>
<tr>
<td>$g_i = 2$</td>
<td>1.2</td>
<td>6.6</td>
<td>0.5</td>
<td>91.7</td>
<td></td>
</tr>
<tr>
<td>$g_i = 3$</td>
<td>1.6</td>
<td>6.3</td>
<td>0.5</td>
<td>91.6</td>
<td></td>
</tr>
<tr>
<td>$g_i = 4$</td>
<td>2.1</td>
<td>5.5</td>
<td>0.5</td>
<td>91.9</td>
<td></td>
</tr>
<tr>
<td>$g_i = 5$</td>
<td>2.2</td>
<td>4.4</td>
<td>0.3</td>
<td>93.1</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Expected market shares are computed using the data from RECS households with similar characteristics as described in the text. The probability of no purchase and non-Energy Star purchase are directly observable in the RECS data. The share of program participants is directly observable in the primary data.

Table 6: Washer Parameter Estimates

<table>
<thead>
<tr>
<th>Income Quintile</th>
<th>α_i</th>
<th>β^{α}</th>
<th>p^γ</th>
<th>Elasticity</th>
<th>τ</th>
<th>κ</th>
<th>θ_i</th>
<th>σ_{ϵ}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>991.690</td>
<td>-1235.023</td>
<td>-0.661</td>
<td>273.397</td>
<td>322.818</td>
<td>-155.952</td>
<td>51.072</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(471.602)</td>
<td>(108.558)</td>
<td>(0.058)</td>
<td>(0.625)</td>
<td>(0.319)</td>
<td>(-2.177)</td>
<td>(0.172)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>975.936</td>
<td>-1006.677</td>
<td>-0.633</td>
<td>295.800</td>
<td>280.846</td>
<td>-165.797</td>
<td>67.535</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(489.986)</td>
<td>(90.318)</td>
<td>(0.057)</td>
<td>(0.513)</td>
<td>(0.300)</td>
<td>(-0.582)</td>
<td>(0.211)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1070.034</td>
<td>-1157.515</td>
<td>-0.567</td>
<td>93.641</td>
<td>380.414</td>
<td>-149.728</td>
<td>101.219</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(523.641)</td>
<td>(98.989)</td>
<td>(0.049)</td>
<td>(10.282)</td>
<td>(3.677)</td>
<td>(-27.917)</td>
<td>(5.715)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>949.709</td>
<td>-1037.328</td>
<td>-0.564</td>
<td>139.245</td>
<td>352.297</td>
<td>-116.843</td>
<td>99.585</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(513.596)</td>
<td>(109.769)</td>
<td>(0.060)</td>
<td>(1.877)</td>
<td>(1.506)</td>
<td>(-1.208)</td>
<td>(0.312)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>692.155</td>
<td>-216.341</td>
<td>-0.132</td>
<td>62.125</td>
<td>382.654</td>
<td>-55.939</td>
<td>96.386</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(380.967)</td>
<td>(127.112)</td>
<td>(0.078)</td>
<td>(11.760)</td>
<td>(9.332)</td>
<td>(-26.881)</td>
<td>(3.917)</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Standard errors reported in parentheses are clustered by RECS bin and are robust to arbitrary within-bin heteroskedasticity and autocorrelation. The standard error for the price elasticity of demand for energy services in the “Elasticity” column is computed using the delta method. The last column labeled θ shows the mean of the distribution of the parameter θ, which is distributed proportional to a Rayleigh(1) random variable.
Table 7: Economic Efficiency

<table>
<thead>
<tr>
<th>Panel</th>
<th>Non-distortionary Electric Price Change</th>
<th>Distortionary Electric Price Change</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Savings (kWh)</td>
<td>10,610</td>
<td>60,114</td>
<td>0.177</td>
</tr>
<tr>
<td>Social Cost of 1 kWh ($)</td>
<td>.1</td>
<td>.1</td>
<td></td>
</tr>
<tr>
<td>Environmental Benefit ($)</td>
<td>1,061.00</td>
<td>6,011.40</td>
<td>0.177</td>
</tr>
<tr>
<td>Panel B:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Appliance Market Failure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in Consumer Surplus ($)</td>
<td>-63,987</td>
<td>-75,646</td>
<td>0.846</td>
</tr>
<tr>
<td>+ Environmental Benefit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net Welfare Change ($)</td>
<td>-62,926</td>
<td>-69,635</td>
<td>0.904</td>
</tr>
<tr>
<td>Panel C:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small Appliance Market Failure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in Consumer Surplus ($)</td>
<td>-63,570</td>
<td>-103,860</td>
<td>0.612</td>
</tr>
<tr>
<td>+ Environmental Benefit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net Welfare Change ($)</td>
<td>-62,509</td>
<td>-97,853</td>
<td>0.639</td>
</tr>
<tr>
<td>Panel D:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large Appliance Market Failure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in Consumer Surplus ($)</td>
<td>-60,230</td>
<td>-329,610</td>
<td>0.183</td>
</tr>
<tr>
<td>+ Environmental Benefit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net Welfare Change ($)</td>
<td>-59,169</td>
<td>-323,600</td>
<td>0.183</td>
</tr>
</tbody>
</table>

Notes: Panel A shows the energy savings and environmental benefits from a subsidy funded through fixed monthly charges versus distortionary changes to the marginal price of electricity. The final column shows the ration of savings and benefits from these two policies. Note that an evaluation that mistakenly assumes non-distortionary fundraising when in fact subsidy monies are raised through marginal electricity prices only captures 17.7% of the effect on energy consumption. Panels B - D show the change in consumer surplus and net economic benefits under various sizes of the appliance market failure and with the maintained assumption that the appliance market is competitive and θ represents a true welfare cost. In Panel C (small appliance market failure) households discount operating utility by a factor of .75 at the time of purchase relative to the time of consumption. In Panel D, households discount operating utility by a factor of .25 in their decision utility relative to their experience utility.
Table 8: Inframarginal Participation and Energy Savings

<table>
<thead>
<tr>
<th>Program Participation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{E}(\text{Marginal Participants}))</td>
<td>419.8</td>
</tr>
<tr>
<td>(\mathbb{E}(\text{Inframarginal Participants}))</td>
<td>1,066.0</td>
</tr>
<tr>
<td>(\mathbb{E}(\text{Total Participants}))</td>
<td>1,485.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Savings Given Energy Star Purchase</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{E}(\Delta kWh</td>
<td>\text{Marginal Participant}))</td>
</tr>
<tr>
<td>(\mathbb{E}(\Delta kWh^*</td>
<td>\text{Inframarginal Participant}))</td>
</tr>
<tr>
<td>(\mathbb{E}(\Delta kWh^*</td>
<td>\text{Participant}))</td>
</tr>
</tbody>
</table>

Notes: The top panel shows the expected number of marginal program participants and inframarginal program participants. Inframarginal participation was computed based on simulation so I could account for purchasers who bought an energy efficient appliance because of both the subsidy and the electricity price change channels. In expectation, less than one household changed their because of the energy price change, but almost one third purchased an Energy Star durable because of the subsidy incentive. Consequently Expression 8.1 in the text provides a good approximation of the number of inframarginal participants. The Second panel shows energy savings conditional on purchasing an Energy Star appliance. Only marginal households purchase the efficient appliance because of the program, so savings from inframarginal households are realized with and without the policy. Expected savings conditional on begin a marginal participant are computed from the expression \(\sum_i Pr_i(\text{Marginal}) \cdot (kWh_{iA} - kWh_{iB} \cdot Pr_{iB}\text{ES}^C - kWh_{iC} \cdot Pr_{iC}\text{ES}^C) / \sum_i Pr_i(\text{Marginal}) \) where \(Pr_i|\text{ES}^C \) is the probability of making discrete choice \(j \) given household \(i \) has not made an Energy Star appliance purchase.
Table 9: Economic Efficiency if $\theta^* = 0$ or Producer Surplus > 0

<table>
<thead>
<tr>
<th>Panel</th>
<th>Non-distortionary</th>
<th>Distortionary</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electricity Price Change</td>
<td>Electricity Price Change</td>
<td>Ratio</td>
</tr>
<tr>
<td>No Appliance Market Failure, Competitive Appliance Producers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel A:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in Consumer Surplus ($)</td>
<td>-14,562</td>
<td>-26,215</td>
<td>0.556</td>
</tr>
<tr>
<td>+ Environmental Benefit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net Welfare Change ($)</td>
<td>-13,500</td>
<td>-20,204</td>
<td>0.668</td>
</tr>
<tr>
<td>Small Appliance Market Failure, Competitive Appliance Producers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel B:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in Consumer Surplus ($)</td>
<td>-14,144</td>
<td>-54,434</td>
<td>0.260</td>
</tr>
<tr>
<td>+ Environmental Benefit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net Welfare Change ($)</td>
<td>-13,083</td>
<td>-48,422</td>
<td>0.270</td>
</tr>
<tr>
<td>No Appliance Market Failure, 50% of Energy Star Price Diff. is Producer Surplus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel C:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in Consumer Surplus ($)</td>
<td>-14,562</td>
<td>-26,215</td>
<td>0.556</td>
</tr>
<tr>
<td>Change in Producer Surplus ($)</td>
<td>50,207</td>
<td>50,268</td>
<td>0.999</td>
</tr>
<tr>
<td>+ Environmental Benefit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net Welfare Change ($)</td>
<td>36,707</td>
<td>30,064</td>
<td>1.221</td>
</tr>
<tr>
<td>Small Appliance Market Failure, 50% of Energy Star Price Diff. is Producer Surplus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel D:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in Consumer Surplus ($)</td>
<td>-14,144</td>
<td>-54,434</td>
<td>0.260</td>
</tr>
<tr>
<td>Change in Producer Surplus ($)</td>
<td>50,207</td>
<td>50,268</td>
<td>0.999</td>
</tr>
<tr>
<td>+ Environmental Benefit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net Welfare Change ($)</td>
<td>37,124</td>
<td>1,846</td>
<td>20.1123</td>
</tr>
</tbody>
</table>

Notes: This table relaxes the assumptions made in Table 7 that θ represents a welfare cost and that the appliance market is competitive. In all Panels, I let $\theta^* = 0$ enter the experience utility and θ drawn from the estimated distribution of θ enter the decision utility. Analogous to Table 7, a small appliance market failure means households discount consumption utility by a factor of .75 in their decision utility relative to their experience utility. To compute producer surplus, I let 50% of the markup between the Energy Star and conventional appliance prices to accrue to producers. The change in consumer surplus is therefore the number of marginal participants multiplied by half the average price difference faced by these marginal households.
Table 10: Distributional Burden

<table>
<thead>
<tr>
<th></th>
<th>Non-distortionary</th>
<th>Distortionary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity Price Change</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel A: Change in Consumer Surplus per Household ($)

<table>
<thead>
<tr>
<th>g</th>
<th>Non-distortionary</th>
<th>Distortionary</th>
</tr>
</thead>
<tbody>
<tr>
<td>g1</td>
<td>-0.87</td>
<td>-1.02</td>
</tr>
<tr>
<td>g2</td>
<td>-0.82</td>
<td>-0.99</td>
</tr>
<tr>
<td>g3</td>
<td>-0.83</td>
<td>-1.09</td>
</tr>
<tr>
<td>g4</td>
<td>-0.58</td>
<td>-0.72</td>
</tr>
<tr>
<td>g5</td>
<td>-0.71</td>
<td>-0.67</td>
</tr>
</tbody>
</table>

Panel B: Expected Bill Change ($)

<table>
<thead>
<tr>
<th>g</th>
<th>Non-distortionary</th>
<th>Distortionary</th>
</tr>
</thead>
<tbody>
<tr>
<td>g1</td>
<td>0.88</td>
<td>0.85</td>
</tr>
<tr>
<td>g2</td>
<td>0.88</td>
<td>0.91</td>
</tr>
<tr>
<td>g3</td>
<td>0.88</td>
<td>0.97</td>
</tr>
<tr>
<td>g4</td>
<td>0.88</td>
<td>0.87</td>
</tr>
<tr>
<td>g5</td>
<td>0.88</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Panel C: Expected Subsidy per Household ($)

<table>
<thead>
<tr>
<th>g</th>
<th>Non-distortionary</th>
<th>Distortionary</th>
</tr>
</thead>
<tbody>
<tr>
<td>g1</td>
<td>0.59</td>
<td>0.59</td>
</tr>
<tr>
<td>g2</td>
<td>0.83</td>
<td>0.83</td>
</tr>
<tr>
<td>g3</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>g4</td>
<td>1.43</td>
<td>1.43</td>
</tr>
<tr>
<td>g5</td>
<td>0.79</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Notes: Table 10 breaks down costs and benefits of the subsidy program by zipcode income quintile. In Panel A, I list the expected change in consumer surplus (measured in dollars) for the distortionary program and the non-distortionary program. Notice that moving fundraising to a fixed-fee rather than an increase to the marginal price reduces loss of consumer surplus in all but the wealthiest 20% of zipcodes. Panel B breaks down account costs and benefits of the program into expected bill change and expected subsidy receipts. The loss of consumer surplus does not equal the accounting costs and benefits because of the distortions to utilization decisions, hassle costs of program participation, and surplus that accrues to producers.
Table 11: Equity Efficiency Improvements

<table>
<thead>
<tr>
<th>Zipcode</th>
<th>Income Quintile</th>
<th>Fixed Fee (per Year)</th>
<th>Subsidy</th>
<th>$w_g \cdot \Delta CS$ (per HHI)</th>
<th>\times Number of Households per Quintile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.34</td>
<td>70</td>
<td>1.21</td>
<td>1.66</td>
<td>16,804</td>
</tr>
<tr>
<td>2</td>
<td>7.34</td>
<td>55</td>
<td>1.16</td>
<td>-0.55</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7.34</td>
<td>45</td>
<td>1.05</td>
<td>-2.96</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7.34</td>
<td>25</td>
<td>0.95</td>
<td>-4.58</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7.34</td>
<td>5</td>
<td>0.63</td>
<td>-4.45</td>
<td></td>
</tr>
</tbody>
</table>

Notes: This table shows the net welfare change that would be associated with a means-tested point of sale policy if the regulator valued income based on the weights from Hendren (2014) and valued producer surplus with the rate as income in for the wealthiest zipcodes. Notice that if producer surplus was given a weight of 0, then this policy would not improve social welfare. Several alternatives to this possible policy change are considered in the appendix.
Figures

Figure 1: Direct Utility and Stylized Budget Constraint

Notes: Figure 1 shows an example of an indifference curve in numeraire / energy service space. The budget constraints in the right panel indicate that more efficient appliances cost more to purchase (so the intercept in numeraire space is lower) but are cheaper to operate (so the slope isn’t as steep).
Notes: An observation is a household month, \((y_{it}, x_{it})\). The y-axis shows within household energy price variation and the x-axis shows within household energy consumption variation. This “within” variation is used to identify the parameters \(\beta_{yt}\). The plot shows that energy consumption is relatively inelastic.
Notes: An observation is a market (unique first three zipcode digits for each Neilsen market). The x-axis shows the mean program participation rate in each market, and the y-axis plots the Energy Star washer price in the market. Marker size is proportional to the number of households in the market. Variation in prices and other components of $\mu_{ij}(\theta)$ is used to identify the variation of the logit error term. The stronger the relationship between the explained component $\mu_{ij}(\theta)$ of utility and market shares, the smaller the variance of ϵ. Intuitively, the more variation in purchases is explained by $\mu_{ij}(\theta)$, the less is explained by variation in ϵ and consequently the smaller the implied variance of ϵ.
Figure 3: Price Elasticity of Demand for Energy Services

Notes: Each marker represents the average price elasticity of demand for energy service consumption in zipcode income quintile g_i. Robust standard errors are computed using the delta method. Price elasticity $= \beta_{g_i} \cdot \frac{p^s}{s}$.
Figure 4: Simulated Distribution of θ

Notes: The plot shows the simulated empirical distribution of $\theta_{g_i} = \lambda_{g_i} \cdot Rayleigh(1)$. The same 100 draws from a Rayleigh(1) distribution were used for each income quintile. Notice that the distribution increases in income in a first-order-stochastic-dominance sense.
References

CPUC (2016b). Regulating energy efficiency.

