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ABSTRACT

A recently developed mixing length model of the turbulent shearing stress has been shown to generate a universal velocity profile that
provides an accurate approximation to incompressible pipe flow velocity profiles over a wide Reynolds number range [B. J. Cantwell, “A
universal velocity profile for smooth wall pipe flow,” J. Fluid Mech. 878, 834–874 (2019)]. More recently, the same profile was shown to
accurately approximate velocity profiles in channel flow, the zero pressure gradient boundary layer, and the boundary layer in an adverse
pressure gradient [M. A. Subrahmanyam, B. J. Cantwell, and J. J. Alonso, “A universal velocity profile for turbulent wall flows,” AIAA Paper
No. 2021-0061, 2021 and M. A. Subrahmanyam, B. J. Cantwell, and J. J. Alonso, “A universal velocity profile for turbulent wall flows includ-
ing adverse pressure gradient boundary layers,” J. Fluid Mech. (unpublished) (2021)] The universal velocity profile is uniformly valid from
the wall to the free stream at all Reynolds numbers from zero to infinity. At a low Reynolds number, the profile approaches the laminar chan-
nel/pipe flow limit. The primary measure of the Reynolds number used in this work is the friction Reynolds number Rs ¼ usd=�. It is a little
unusual to use Rs for the boundary layer since it requires that the velocity profile be cutoff using an arbitrarily defined overall boundary layer
thickness, d. Because of the slow approach of the velocity to the free stream, different conventions used to define the thickness lead to differ-
ent values of Rs assigned to a given flow. It will be shown in this paper that, through its connection to channel/pipe flow, the universal veloc-
ity profile can be used to define a practically useful, unambiguous, measure of overall boundary layer thickness, called here the equivalent
channel half height, dh. For Rs >� 5000, the universal velocity profile defines a Reynolds number independent shape function that can be
used to generate explicit expressions for the infinite Reynolds number behavior of all the usual integral boundary layer measures; displace-
ment thickness, momentum thickness, energy thickness, overall boundary layer thickness, and skin friction. The friction coefficient Cf ðRd2Þ
generated by the universal velocity profile accurately approximates data over a wide range of momentum thickness Reynolds numbers col-
lected by Nagib et al. [“Can we ever rely on results from wall-bounded turbulent flows without direct measurements of wall shear stress?,”
AIAA Paper No. 2004-2392, 2004]. The universal velocity profile is used to integrate the von Ka�rma�n boundary layer integral equation
[T. von K�arm�an, “Uber laminaire und turbulente reibung,” Z. Angew. Math. Mech. 1, 233–252 (1921)] in order to generate the various thick-
nesses and friction velocity as functions of the spatial Reynolds number, Rx ¼ uex=�.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
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I. INTRODUCTION

The simplification of the incompressible Navier–Stokes equations
in the early 1900s to the boundary layer approximation for high
Reynolds number flow over a wall by Prandtl6 and his students was
one of the most important advances in the history of mechanics.
However, at the time, only limited methods were available for solving
the boundary layer equations that, though simpler than the

Navier–Stokes equations, were still challenging because of their non-
linearity. So a number of simplified approaches were developed to pro-
duce approximate solutions suitable for estimating the drag of
complex aerodynamic shapes such as airships and wings. These meth-
ods all used the von Karman5 boundary layer integral Eq. (1) derived
by integrating the boundary layer equations over the height of the
boundary layer.
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¼ 0: (1)

The function ueðxÞ is the free stream velocity and

us xð Þ � sw
q

� �1=2

; (2)

is called the friction velocity.
The displacement thickness is defined as

d1 xð Þ ¼
ðd

0
1� u

ue

� �
dy: (3)

The momentum thickness is

d2 xð Þ ¼
ðd

0

u
ue

1� u
ue

� �
dy; (4)

and, for completeness, the energy thickness is

d3 xð Þ ¼
ðd

0

u
ue

1� u
ue

� �2
 !

dy; (5)

where d is a suitably defined boundary layer thickness. For laminar
boundary layers, the most well known integral methods are due to
Pohlhausen7 and Thwaites.8

There are also a limited number of methods that integrate the
Karman equation for turbulent boundary layers. One of the simplest
to apply is the method due to Head.9 He assumes the existence of two
universal functions, F and G, for the turbulent boundary layer. The
first function relates a modified boundary layer shape factor to the
conventional shape factor, and the second relates the conventional
shape factor to the entrainment velocity at the outer edge of the
boundary layer. When these functions are combined with the friction
law of Ludweig and Tillman,10 all of the basic characteristics of the
boundary layer can be determined. The main weakness is that the
functions F and G are determined from experimental correlations that
exhibit very limited universality. In the words of Head9

“2.3. Determination of Functions F and G. For this purpose the
experimental data of Newman and of Schubauer and Klebanoff have
been used. In each case, values of d were obtained from tables of the
measured profiles, d being arbitrarily defined as the value of y for which
u=U ¼ 0:995. From the values of d and the corresponding values of
H; h;U , and x, the quantities ð1=UÞd=dx½Uðd� d�Þ� and Hd�d� were
obtained and are shown plotted in Fig. 1 and 2. If the assumptions
made in the previous sections had been correct, and if both the analysis
and the experimental data had been entirely free from error then, of
course, the points obtained from the two sets of results should have

coincided with common curves defining the two functions. In fact, how-
ever as will be seen from the Figures there is considerable scatter of the
points, and in Fig. 1, there is a fairly marked and consistent discrepancy
between the two sets of results, which makes the drawing of a hypotheti-
cal common curve, representing the function FðHd�d� Þ, a somewhat
arbitrary procedure.”

II. BOUNDARY LAYER FLOW AND THE UNIVERSAL
VELOCITY PROFILE

In this paper, a boundary layer integral method utilizing the uni-
versal velocity profile is used to generate the integral properties of the
boundary layer on a wall. Zero, positive, and negative pressure gradi-
ent cases suggested in Fig. 1 can be addressed. However, in the present
paper, we will restrict our attention to the zero pressure gradient case
with a focus on the high Reynolds number limiting behavior of the
flow.

At a high Reynolds number, the flow over a flat plate is accurately
described by the boundary layer approximation (6)

20
@

@x
ðuuÞ þ @

@y
ðuvÞ þ @

@y
ðu0v0 Þ þ 1

q
dpe xð Þ
dx
� � @

2u
@y2
¼ 0;

@u
@x
þ @v
@y
¼ 0;

(6)

subject to the no-slip and free stream conditions

u 0ð Þ ¼ v 0ð Þ ¼ 0; u dhð Þ ¼ ue: (7)

At Reynolds numbers large enough to produce turbulence, the
no-slip condition imposed by viscosity leads to elongated three-
dimensional convective motions near the wall that tend to align with
the flow as a highly unsteady array of stream-wise eddies generating
very strong convective and viscous wall-normal transport of x-
momentum. The effect of this balance of viscous and convective
stresses is to produce a well-defined wall layer with a very steep veloc-
ity gradient at the wall over a length scale comparable to the scale of
the eddies just described. The mean velocity variation over this
viscous wall layer scales with the friction velocity, Eq. (2). Most pro-
duction of turbulent kinetic energy takes place within the wall layer.
Above the wall layer, viscous stresses become small, and momentumFIG. 1. Flat plate boundary layer notation.

FIG. 2. The universal velocity profile at Rs ¼ 1; 10; 100; 1000; 104; 105; 106, and 107.
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transport is dominated by turbulent eddying motions over a length
scale comparable to the thickness of the boundary layer. The large
scale eddies produce wall-normal convection of the turbulence gener-
ated at the wall leading to a changing velocity profile that can be com-
pared to the growth and decay of the thickness and velocity deficit of a
plane wake. The velocity changeover this outer layer scales with the
aptly named defect velocity (ue � us).

A. The universal velocity profile

The universal velocity profile comes from the solution of the
channel (or pipe) flow equation,

@

@y
u0v0 þ 1

q
dpe xð Þ
dx

� � @
2u
@y2
¼ 0; (8)

where the pressure gradient is a constant. Express Eq. (8) in wall nor-
malized coordinates.

yþ ¼ yus

�
uþ ¼ u

us
sþ ¼ � u0v0

us
2
: (9)

Integrate (8) with respect to yþ from the lower wall of the channel.
The result is

sþ þ duþ

dyþ
� 1� yþ

Rs

� �
¼ 0: (10)

The turbulent shear stress is modeled using classical mixing length
theory (von Karman;11 see also Prandtl12 and Driest13) Let

sþ ¼ k yþ
� � duþ

dyþ

 !2

: (11)

When (11) is substituted into (10), the result is a quadratic equation
for duþ=dyþ. We use the positive root.

duþ

dyþ
¼ � 1

2kðyþÞ2
þ 1

2kðyþÞ2
1þ 4kðyþÞ2 1� yþ

Rs

� �� �1=2

: (12)

Equation (12) is integrated from the wall to yþ to obtain the velocity
profile in the form of an integral dependent on the non-dimensional
mixing length function kðyþÞ at a given Rs.

uþðyþÞ ¼
ðyþ
0
� 1

2kðsÞ2
þ 1

2kðsÞ2
1þ 4kðsÞ2 1� s

Rs

� �� �1=2
 !

ds:

(13)

At a low Reynolds number, (13) approaches the laminar pipe/channel
flow solution

lim
Rs!0

uþ ¼ yþ 1� yþ

2Rs

� �
; (14)

where, in the laminar limit, Rs ¼ ð2ued=�Þ1=2 where d is the pipe
radius or channel half height. The mixing length model introduced by
Cantwell1 to approximate pipe data is

kðyþÞ ¼ kyþ 1� e�
yþ
a

� �m� �

1þ yþ

bRs

� �n
 !1=n

: (15)

This model contains five free parameters. The constant k is closely
related to the K�arm�an constant. The parameter a constitutes a wall
damping length scale. The wall model is similar to the exponential
decay proposed by van Driest13 except for the exponent m that deter-
mines the rate of damping. The outer flow model includes a length
scale b proportional to the fraction of the wall layer thickness where
wake-like behavior begins, as well as an exponent n that helps shape
the outer part of the profile. Near the wall

lim
yþ!0

k ¼ kyþ 1� e�
yþ
a

� �m� �
: (16)

The relatively small optimal value of b ¼ 0:1771 and relatively large
optimal value of n ¼ 2:4331 for the boundary layer shown in Table I
lead to the following approximate limiting behavior of the mixing
length as the free stream is approached:

lim
yþ!Rs

k � bkRs: (17)

This formulation of the velocity profile has several useful
features.

• The velocity profile (13) with the mixing length model (15) is
uniformly valid over 0 � y � d and 0 � Rs <1. So, there is no
need for a buffer layer function, and there is no discontinuity in
the velocity derivative at the outer edge of the boundary layer. At
a low Reynolds number, the velocity profile reverts to the laminar
solution.

• There is no presumption of logarithmic dependence of the veloc-
ity profile outside the viscous wall layer and so the profile can
accurately approximate low Reynolds number wall layers.

• The profile is directly connected to a model of the turbulent shear
stress that can be used in computations based on the full
Reynolds Averaged Navier Stokes equations.

• Choosing optimal values of the model parameters ðk; a;m; b; nÞ
at a given Rs enables subtle Reynolds number effects to be
detected and compared. For example, in Table I there is a consid-
erable variation in the parameter b between flow geometries indi-
cating that the wake region in the boundary layer begins much
closer to the wall than in channel or pipe flow. Distinct variations
in the parameters k and a occur in pipe flow at low values of Rs

indicating an underlying change in turbulent structure. Similar
variations do not seem to occur in the boundary layer although
the data are limited.

• Nevertheless for a given flow geometry, the Reynolds number
dependence of the model parameters ðk; a;m; b; nÞ tends to be
quite weak, and so average values of the model parameters can
provide a good approximation to the velocity profile over a wide
range of Reynolds numbers. This is true in pipe flow in spite of

TABLE I. Average model parameters for basic wall flows.

Flow �k �a �m �b �n

Channel 0.4086 22.8673 1.2569 0.4649 1.3972
Pipe 0.4092 20.0950 1.6210 0.3195 1.6190
ZPG boundary layer 0.4194 24.8462 1.2043 0.1771 2.4331

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 085108 (2021); doi: 10.1063/5.0061535 33, 085108-3

VC Author(s) 2021

https://scitation.org/journal/phf


the variations just described. This can be seen by examining Figs.
7, 13, and 14 in Cantwell.1

• Reynolds number scaling of various parts of the velocity, shear
stress, and turbulent kinetic energy (TKE) production profiles is
easily determined.

• The universal velocity profile defines an unambiguous overall
thickness for the boundary layer. This will be called the equiva-
lent channel half height, dh of the boundary layer. Throughout
this paper, Rs is defined as

Rs �
usdh
�

: (18)

The equivalent channel half height concept will be described in
detail in Sec. V.

• The universal velocity profile defines a threshold Reynolds num-
ber, Rs >� 2000=k � 5000, that distinguishes between high and
low Reynolds number wall flow. State-of-the-art DNS computa-
tions can reach this range.

• With appropriate modeling, the universal profile can be applied
to the wide range of turbulent diffusion problems involving the
transport of temperature or a passive scalar where the transport
equations are uncoupled from the velocity field.

• The accuracy of the fit to the velocity profile is such that extrapo-
lation to Reynolds numbers beyond the range of available data
can be used to explore the structure of the velocity profile in the
limit of infinite Reynolds number.1,14,15 This is the main topic of
the present paper.

A final point: One of the most important problems in Large Eddy
Simulation of wall flows has to do with the conflict between the need
to reduce grid resolution near the wall in order to reduce computa-
tional cost and the requirement to accurately determine the wall fric-
tion at a given free stream velocity and wall position. The LES grid
inevitably under-resolves the fine scale motions near the wall described
in Sec. II that are responsible for generating the viscous layer and the
wall shear stress. Efforts to resolve the viscous wall layer using empiri-
cal wall functions inevitably encounter the “log-layer mismatch” prob-
lem.16,17 The universal profile provides an accurate value of the mean
stream-wise and wall-normal velocity components, as well as the
velocity derivative, wall friction, and turbulent shear stress throughout
the viscous wall layer without assuming a log or power law profile and
may provide a useful alternative to the current approach. Importantly,
according to Subrahmanyam et al.,3 the wall parameters (k, a, m) do
not change in the presence of an adverse pressure gradient.

B. Optimal parameters

The accuracy of the universal velocity profile for pipe flow was
demonstrated by Cantwell.1 Similar accuracy for channel flow is dem-
onstrated by Subrahmanyam et al.2 In the case of a boundary layer on
a flat plate, the flow variation in the stream-wise direction does not
vanish and the boundary layer Eq. (6) does not simplify to one that is
easily integrable. Although the universal velocity profile is not a solu-
tion of this equation Subrahmanyam et al.2,3 show that the profile
accurately fits DNS and experimental data for zero pressure gradient
boundary layers as well as the adverse pressure gradient data of Perry
and Marusic.18

The model parameters ðk; a;m; b; nÞ for the mixing length func-
tion (15) are selected by minimizing the sum of total squared error
between a given data profile and the universal velocity profile, (13),
using the cost function

G ¼
XN
i¼1
ðuþðk; a;m; b; n;Rs; y

þ
i Þ � uþi ðyþi ÞÞ

2: (19)

Parameter values, ð�k; �a; �m; �b; �nÞ, averaged over a wide range of
Reynolds numbers, for a smooth wall channel, pipe, and zero-
pressure-gradient boundary layer flow are shown in Table I from
Subrahmanyam et al.2 Throughout this paper, the model constants are
assumed to be the boundary layer average values shown in Table I,
ð�k; �a; �m; �b; �nÞ ¼ ð0:4194; 24:8462; 1:2043; 0:1771; 2:4331Þ. Although
the universal profile was used to fit experimental data, the reason for
using averages of only the DNS data here is that these profiles gener-
ally extend all the way to the wall and have lower uncertainty com-
pared to experiments that generally do not resolve the lower part of
the viscous wall layer. The boundary layer thickness reported by the
various investigators who generated the DNS data were d0:99, and this
was used by Subrahmanyam et al.2 to define dh and generate Table I.
In Sec. V, it will be shown that a slightly larger value, 0.994, would
actually produce slightly lower error in the fit of the universal velocity
profile to the DNS data.

It should be noted that various constants given in this paper,
such as those in Table I, are provided with a large number of signifi-
cant figures so an interested reader can, if so desired, accurately repro-
duce the results presented here.

Figure 2 shows how the shape of the universal velocity profile
becomes fuller as Rs is increased by seven orders of magnitude. At
the lowest Reynolds numbers, the profile is essentially the laminar
channel/pipe velocity profile. At the highest Reynolds number, large
increases produce very small changes in the velocity profile. At
extreme Reynolds numbers, the velocity profile approaches plug flow,
but astronomically large values are needed to approach this state.1

Figure 3 shows the shape of the wall-normal velocity component non-
dimensionalized by the friction velocity. The fraction v=us decreases
by a factor of about 5 as Rs is increased by five orders of magnitude.

FIG. 3. The universal velocity profile, wall-normal velocity component at
Rs ¼ 100; 1000; 104; 105; 106, and 107.
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Generally speaking, the parameters ðk; a;m; b; nÞ depend weakly
on the Reynolds number for a given flow geometry, and at a high
Reynolds number, the dependence appears to be especially weak. The
best evidence for this is the Princeton Superpipe data19 that span three
orders of magnitude in the Reynolds number.

Data for the boundary layer cover a much more limited range in
comparison. Existing boundary layer evidence indicates that the
parameters ðk; a;m; b; nÞ depend at most weakly on the Reynolds
number. However, the data are still quite limited, and flat plate data at
a much higher Reynolds number are very much needed.

III. HIGH REYNOLDS NUMBER: THE TURBULENT
BOUNDARY LAYER SHAPE FUNCTION

Equations (13) and (15) are repeated here with the full depen-
dence on (k; a;m; b; n;Rs) shown.

uþ k; a;m; b; n;Rs; y
þ� �

¼
ðyþ
0

� 1

2k2
þ 1

2k2
1þ 4k2 1� s

Rs

� �� �1=2
 !

ds ; (20)

where

k k; a;m; b; n;Rs; y
þ� �
¼ kyþ 1� e�

yþ
a

� �m� �

1þ yþ

bRs

� �n
 !1

n

: (21)

Equations (20) and (21) admit a highly useful scaling that can be used
to reduce the number of independent model parameters by one
and determine the high Reynolds number limiting behavior of the
boundary layer.1,20 Use the group, u=u0 ! ku=u0; yþ ! kyþ, and
Rs ! kRs to define a modified wall-wake mixing length function by
multiplying and dividing various terms in (21) by k.

k k; a;m; b; n;Rs; y
þ� �
¼ kyþ 1� e�

yþ
a

� �m� �

1þ yþ

bRs

� �n
 !1

n

¼ kyþ 1� e�
kyþ
ka

� �m� �

1þ kyþ

b kRsð Þ

� �n
 !1

n

¼ ~k ka;m; b; n; kRs; ky
þ� �
: (22)

In the reduced space, k and a are not independent parameters.
Multiply both sides of (20) by k and insert the modified mix-
ing length function (22). Choose the integration variable,
a ¼ kyþ.

kuþ ¼
ðkyþ
0

� 1

2~k
2 þ

1

2~k
2 1þ 4~k

2
1� a

kRs

� �� �1=2
 !

da: (23)

Equation (23) can be viewed as a k independent model velocity profile,
kuþ, with four model parameters, (ka;m; b; n) in a boundary layer at

the scaled friction Reynolds number, kRs. Now, define the boundary
layer shape function.

U ka; b;m; n; kRs; ky
þ� �

¼
ðkyþ
0

� 1

2~k
2 þ

1

2~k
2 1þ 4~k

2
1� a

kRs

� �� �1=2
 !

da� ln kyþ
� �

:

(24)

Note that kyþ ¼ ðy=dhÞkRs where dh is the boundary layer over-
all thickness, to be defined precisely a little later. The shape function,
(24), has the remarkable property that, for fixed ðy=dhÞ, it approaches
a constant value as kRs !1.

lim
kRs!1

U ka; b;m; n; kRs; y=dhð ÞkRsð Þjy=dh¼const

¼ / ka; b;m; n; y=dhð Þ: (25)

Importantly, the limit is approached quite rapidly, and for
kRs > 2000, the limit is fully established over almost the entire thick-
ness of the boundary layer except very close to the wall. Figure 4 illus-
trates this behavior. The limiting shape function, /, is shown in Fig. 5.
Figure 5 is essentially a cut through Fig. 4 at some value kRs consider-
ably larger than 2000. We will use (25) in two ways: first to develop an
easy-to-use expression for the outer flow velocity profile at a high
Reynolds number and second, to determine the high Reynolds num-
ber behavior of the integral properties of the flow. The condition
Rs > 2000=k � 5000 is an inherent property of the universal velocity
profile and can be understood as defining a threshold between high
and low Reynolds number wall flow.

IV. THE FRICTION LAW AND BOUNDARY LAYER
INTEGRAL MEASURES AT A HIGH REYNOLDS NUMBER

According to (23)–(25), at Reynolds numbers larger than kRs

ffi 2000 or so, the velocity profile can be accurately approximated by

lim
kRs>2000

uþ ¼ 1
k
ln kyþ
� �

þ 1
k
/ ka;m; b; n;

y
dh

� �
: (26)

FIG. 4. Boundary layer shape function, Eq. (24), at various values of y=dh. For
kRs > 2000 the shape function is independent of Rs except very close to the wall.
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Evaluating (26) at the boundary layer edge generates the high
Reynolds number friction law.

ue
us
¼ 1

k
ln kRsð Þ þ 1

k
/ ka;m; b; n; 1ð Þ;

ue
us
¼ 2:384359 ln Rsð Þ þ 8:731260:

(27)

Divide (26) by (27) and let kyþ ¼ ðy=dhÞkRs. The result is

lim
kRs>2000

u
ue
¼ / ka;m; b; n; y=dhð Þ þ ln y=dhð Þ þ ln kRsð Þ

/ ka;m; b; n; 1ð Þ þ ln kRsð Þ : (28)

The high Reynolds number form of the velocity profile (28) can be used
to generate the high Reynolds number behavior of all the integral mea-
sures of the boundary layer as functions of Rs. Let g ¼ y=dh. The
needed relevant constants generated by /ðka;m; b; n; gÞ are as follows.

C1 � / ka;m; b; n; 1ð Þ ¼ 4:530802;

C2 �
ð1
0

/ ka;m; b; n; gð Þdg ¼ 3:861861;

C3 �
ð1
0

/ ka;m; b; n; gð Þ2dg ¼ 15:149878;

C4 �
ð1
0

/ ka;m; b; n; gð Þ3dg ¼ 60:327378;

C5 �
ð1
0

ln ðgÞ/ ka;m; b; n; gð Þdg ¼ �3:459397;

C6 �
ð1
0

ln ðgÞ/ ka;m; b; n; gð Þ2dg ¼ �12:092035;

C7 �
ð1
0

ln ðgÞ2/ ka;m; b; n; gð Þdg ¼ 6:578894;

C8 �
ð1
0

ln ðgÞ2/ ka;m; b; n; gð Þ2dg ¼ 21:719529:

(29)

As noted earlier, the constants listed in Eq. (29) and elsewhere in this
paper are presented with a large number of significant figures, so an
interested reader can accurately reproduce the results presented. The
constants generated by the boundary layer shape function will be used
to determine the high Reynolds number behavior of the integral mea-
sures of the boundary layer as functions of Rs. We also need integrals
of powers of the logarithm,

Ð 1
0 ln ðgÞdg ¼ �1;

Ð 1
0 ln ðgÞ2dg ¼ 2;Ð 1

0 ln ðgÞ3dg ¼ �6. Integrals of the first three powers of the velocity
profile can now be generated.

lim
kRs>2000

ð1
0

u
ue

� �
dg

¼ us

kue

ð1
0

/ ka;m; b; n; gð Þ þ ln gð Þ þ ln kRsð Þ
� �

dg

¼ us

kue
ln kRsð Þ þ C2 � 1ð Þ ¼ ln kRsð Þ þ C2 � 1

ln kRsð Þ þ C1
: (30)

lim
kRs>2000

ð1
0

u
ue

� �2

dg

¼ us

kue

� �2ð1
0

h
/ ka;m; b; n; gð Þ2 þ ln gð Þ2 þ ln kRsð Þ2

þ 2 ln kRsð Þ/ ka;m; b; n; gð Þ þ 2 ln kRsð Þ ln gð Þ

þ 2 ln gð Þ/ ka;m; b; n; gð Þ
i
dg

¼ us

kue

� �2

ðln kRsð Þ2 þ 2ðC2 � 1Þ ln kRsð Þ þ 2þ C3 þ 2C5Þ

¼ ln kRsð Þ2 þ 2ðC2 � 1Þ ln kRsð Þ þ 2þ C3 þ 2C5

ðln kRsð Þ þ C1Þ2
: (31)

lim
kRs>2000

ð1
0

u
ue

� �3

dg

¼ us

kue

� �3ð1
0

ln kRsð Þ3 þ 3 ln kRsð Þ2/þ 3 ln kRsð Þ/2
�

þ/3 þ 3 ln kRsð Þ2 ln gð Þ þ 6 ln kRsð Þ ln gð Þ/þ 3 ln gð Þ/2

þ 3 ln kRsð Þ ln gð Þ2 þ 3 ln gð Þ2/þ ln gð Þ3
	
dg

¼ us

kue

� �3

ðln kRsð Þ3 þ 3C2 ln kRsð Þ2 þ 3C3 ln kRsð Þ

þC4 � 3 ln kRsð Þ2 þ 6C5 ln kRsð Þ þ 3C6

þ 6 ln kRsð Þ þ 3C7 � 6Þ

¼ ln kRsð Þ3 þ 3ðC2 � 1Þ ln kRsð Þ2 þ 3ðC3 þ 2C5 þ 2Þ ln kRsð Þ
ðln kRsð Þ þ C1Þ3

þC4 þ 3C6 þ 3C7 � 6

ðln kRsð Þ þ C1Þ3
: (32)

This process could be continued to include the integral of any power
of ðu=ueÞ generating additional powers of ln ðRsÞ in the process.

Use Eq. (30) to form the displacement thickness.

FIG. 5. High Reynolds number limit of the boundary layer shape function, Eq. (25).
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lim
kRs>2000

d1
dh
¼ lim

kRs>2000

ð1
0

1� u
ue

� �
dg ¼ 1þ C1 � C2

ln kRsð Þ þ C1

¼ 1:668940
ln kRsð Þ þ 4:530802

: (33)

Use Eqs. (30) and (31) to form the momentum thickness.

lim
kRs>2000

d2
dh
¼ lim

kRs>2000

ð1
0

u
ue

1� u
ue

� �
dg

¼ ð1þ C1 � C2Þ ln kRsð Þ � 2� C1 � C3 � 2C5 þ C1C2

ðln kRsð Þ þ C1Þ2

¼ 1:668940 ln kRsð Þ þ 2:735444

ðln kRsð Þ þ 4:530802Þ2
: (34)

Use Eqs. (30) and (32) to form the energy thickness.

lim
kRs>2000

d3
dh
¼ lim

kRs>2000

ð1
0

u
ue

1� u
ue

� �2
 !

dg

¼ 2ð1þC1�C2Þ ln kRsð Þ2

ðln kRsð ÞþC1Þ3

þ ð�6� 2C1þC1
2þ 2C1C2� 3C3� 6C5Þ ln kRsð Þ
ðln kRsð ÞþC1Þ3

þ 6�C1
2þC1

2C2�C4� 3C6� 3C7

ðln kRsð ÞþC1Þ3

¼ 2ð1:668940Þ ln kRsð Þ2þ 3:767969 ln kRsð Þþ 20:960809

ðln kRsð Þþ 4:530802Þ3
:

(35)

Note that d1=dh; d2=dh and d3=dh all vary as 1= ln ðkRsÞ as Rs !1,
suggesting an extremely slow decrease at a high Reynolds number.
This accounts for the very slow changes in the velocity profile at a high
Reynolds number seen in Fig. 2.

The thickness ratios (33) and (34) can be used to generate the
high Reynolds number behavior of the momentum shape factor,
d1=d2,

lim
kRs>2000

d1
d2
¼ ð1þ C1 � C2Þðln kRsð Þ þ C1Þ
ð1þ C1 � C2Þ ln kRsð Þ � 2� C1 � C3 � 2C5 þ C1C2

¼ 1:668940ðln kRsð Þ þ 4:530802Þ
1:668940 ln kRsð Þ þ 2:735444

(36)

with an infinite Reynolds number limit of 1. Use (35) to generate the
inverse of the energy shape factor d1=d3 at a high Reynolds number.

lim
kRs>2000

d3
d1
¼ 2ð1þC1�C2Þ ln kRsð Þ2

ð1þC1�C2Þðln kRsð ÞþC1Þ2

þ ð�18�2C1þC1
2þ2C1C2�3C3�6C5Þ ln kRsð Þ

ð1þC1�C2Þðln kRsð ÞþC1Þ2

þ 6�C1
2þC1

2C2�C4�3C6�3C7

ð1þC1�C2Þðln kRsð ÞþC1Þ2

¼ 2ð1:668940Þ ln kRsð Þ2þ3:767969ln kRsð Þþ20:960809

1:668940ðln kRsð Þþ4:530802Þ2
;

(37)

with an infinite Reynolds number limit of 2. The inverse Eq. (37) is
presented simply because it can be written as three separate terms over
a common denominator to fit the column format.

A. The friction law and thickness Reynolds numbers vs
Rs in the range 0 � Rs � 107

The friction law and thickness Reynolds numbers generated by
the universal velocity profile over the entire range of Reynolds num-
bers are shown as solid lines in Figs. 6–15. These results will be used in
Sec. VII to integrate the Karman Eq. (1) in order to generate the inte-
gral boundary layer properties in x. The dotted lines in these figures
are the Blasius solution for comparison with the low Reynolds number
and transitional behavior of the boundary layer. The dashed lines are
the high Reynolds number behavior of each of the quantities dis-
played. Note that in all cases, high Reynolds number behavior is clearly
reached for Rs >� 5000.

1. The friction law

The boundary layer friction law,

ue
us
¼
ðRs

0
� 1

2kðsÞ2
þ 1

2kðsÞ2
1þ4kðsÞ2 1� s

Rs

� �� �1=2
 !

ds�F1 Rsð Þ ;

(38)

is shown in Fig. 6. The high Reynolds number limit given in Eq. (27) is
indicated by the dashed line in Fig. 6.

2. Displacement thickness Reynolds number

The displacement thickness Reynolds number expressed in wall
units

Rd1 ¼
ued1
�
¼ ue

us

ðRs

0
1� us

ue
uþ

� �
dyþ � F2 Rsð Þ; (39)

FIG. 6. Friction law generated by the universal velocity profile, F1ðRsÞ. The dotted
line is the Blasius solution. The dashed line is the high Reynolds number limit given
in Eq. (27).
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is shown as the solid line in Fig. 7. The high Reynolds number,
kRs > 2000, limit of (39) is generated from (27) and (33) as follows:

lim
kRs>2000

Rd1 �
ued1
�
¼ kue

us

d1
dh

Rs

k
¼ 1þ C1 � C2

k
Rs ¼ 3:9794Rs:

(40)

Equation (40) is plotted as the dashed line in Fig. 7 and shows the
highly interesting result that at a high Reynolds number, Rd1 is linearly
proportional to Rs with no logarithmic factor present. Using (40), we
can write

lim
kRs>2000

dh
d1
¼ k

1� C1 � C2

ue
us
¼ 1

3:9794
ue
us
; (41)

providing a direct connection between the friction velocity and d1 at a
high Reynolds number.

3. Momentum thickness Reynolds number

The momentum thickness Reynolds number can also be written
in terms of wall units as

Rd2 ¼
ued2
�
¼
ðRs

0
uþ 1� us

ue
uþ

� �
dyþ � F3 Rsð Þ; (42)

and is shown in Fig. 8.
The high Reynolds number momentum thickness is constructed

as follows:

lim
kRs>2000

Rd2�
ued2
�

¼kue
us

d2
dh

Rs

k

¼ ð1þC1�C2Þln kRsð Þ�2�C1�C3�2C5þC1C2

ln kRsð ÞþC1

� �
Rs

k

¼ 1:668940ln kRsð Þþ2:735444
ln kRsð Þþ4:530802

� �
2:384359Rs: (43)

The momentum shape factor, H12 ¼ d1=d2, is shown in Fig. 9.
Note the very slow approach of H12 to one due to the logarithmic
behavior in Eq. (43).

FIG. 8. Momentum thickness Reynolds number, F3ðRsÞ generated using the uni-
versal velocity profile. The dotted line is the Blasius profile. The dashed line is the
high Reynolds number limit given in Eq. (43).

FIG. 9. Momentum shape factor generated by the universal velocity profile. At low
Reynolds number, the shape factor approaches the channel flow value,
Hchannel ¼ 2:5, which can be compared to the Blasius value of 2.604. The high
Reynolds number limit is 1.0.

FIG. 7. Displacement thickness Reynolds number, F2ðRsÞ generated using the uni-
versal velocity profile. The dotted line is the Blasius profile. The dashed line is the
high Reynolds number limit given in Eq. (40).

FIG. 10. Energy thickness Reynolds number generated using the universal velocity
profile. The dotted line is the Blasius profile. The dashed line is the high Reynolds
number behavior (45) determined from the shape function.
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4. Energy thickness Reynolds number

The energy thickness Reynolds number in terms of wall units is

Rd3 ¼
ued3
�
¼
ðRs

0
uþ 1�

�
us

ue

�2

uþ2

 !
dyþ � F4 Rsð Þ: (44)

At a high Reynolds number

lim
kRs>2000

Rd3 �
ued3
�
¼ kue

us

d3
dh

Rs

k
¼ 2ð1þC1�C2Þ ln kRsð Þ2

ðln kRsð ÞþC1Þ2
Rs

k

þð�6� 2C1þC1
2þ 2C1C2� 3C3� 6C5Þ ln kRsð Þ
ðln kRsð ÞþC1Þ2

Rs

k

þ6�C1
2þC1

2C2�C4� 3C6� 3C7

ðln kRsð ÞþC1Þ2
Rs

k

¼ 2ð1:668940Þ ln kRsð Þ2þ 3:767969 ln kRsð Þþ 20:960809

ðln kRsð Þþ 4:530802Þ2

	 2:384359Rs: (45)

FIG. 11. The energy shape factor d1=d3. At a low Reynolds number, the shape fac-
tor approaches the channel flow value, H13channel ¼ 105=66, which can be com-
pared to the Blasius value of 1.579. The high Reynolds number limit is 1/2.

FIG. 12. Derivative of the momentum thickness Reynolds number, Eq. (48). The
dashed line is the derivative of the high Reynolds number approximation Eq. (43).

FIG. 15. Equivalent channel half height Reynolds number, Eq. (55), generated by
the universal velocity profile. The Blasius thickness, d0:998228, equates the friction
Reynolds number of the channel flow and Blasius profiles. The dotted line is the
Blasius profile. The dashed line is the friction law Eq. (27) multiplied by Rs.

FIG. 13. Integral of Eq. (47) relating Rx to Rs generated by integrating Eq. (47).
The dotted line is the Blasius profile. The dashed line is the integral (53).

FIG. 14. Function F6 relating Rs to Rx generated by integrating and inverting Eq.
(47). The dotted line is the Blasius profile.
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The energy shape factor, H13 ¼ d1=d3, is shown in Fig. 11.
Similar to the momentum shape factor, the very slow approach of H13

to the limit 1/2 is due to the logarithmic behavior in Eq. (45).

5. Relationship between Rs and Rx

To determine how the boundary layer grows in space, we now
integrate the zero pressure gradient form of the von Ka�rma�n equation.5

dd2
dx
¼ Cf

2
¼ us

ue

� �2

: (46)

Equation (46) can be rearranged to read

dRx ¼
dRd2

dRs

ue
us

� �2

dRs ¼ F1
2F5

� �
dRs: (47)

The derivative,

dRd2

dRs
� F5 Rsð Þ; (48)

is shown in Fig. 12. The high Reynolds number limit of Eq. (48) is

lim
kRs>2000

dRd2

dRs
¼ 22:72919þ 17:63638 ln Rsð Þ þ 3:97935 ln Rsð Þ2

ð3:66187þ ln Rsð ÞÞ2
;

(49)

shown as the dashed line in Fig. 12. Note how rapidly the full integra-
tion of the universal profile (solid line) approaches the high Reynolds
number limit (dashed line) in this figure.

The integral of (47) is shown as the solid line in Fig. 13. The high
Reynolds number limit of the integral can be determined by combining
(27), (43), (47), and (48). The high Reynolds number form of Eq. (47) is

lim
kRs>2000

dRx

dRs
¼ aþ b ln ðRsÞ þ clnðRsÞ2; (50)

where

a ¼ 1
k3
ð2� 2C1C2 þ C2

1C2 þ C3 � C1C3 þ 2C5

�2C1C5 � ð2� C1
2 þ C3 þ 2C5Þ ln ðkÞ

þ ð1þ C1 � C2Þ ln ðkÞ2Þ

b ¼ 1
k3
ð�2þ C2

1 � C3 � 2C5 þ 2ð1þ C1 � C2Þ ln ðkÞÞ

c ¼ 1
k3
ð1þ C1 � C2Þ:

(51)

The integral of (50) is

lim
kRs>2000

Rx ¼ ða� bþ 2cþ ðb� 2cÞ ln ðRsÞ þ clnðRsÞ2ÞRs: (52)

Evaluating the constants, the result is

lim
kRs>2000

Rx ¼ ð3:2798þ 2:4320 ln ðRsÞ þ ln ðRsÞ2Þ22:6233Rs; (53)

shown as a dashed curve in 13. The integral of (47) also generates the
inverse relation between Rs and Rx shown in Fig. 14, which we will
need in Sec. VII.

Rs ¼ F6 Rxð Þ: (54)

The functions F1; F2; F3, and F4 define the integral properties of the
flow while F5 and F6 provide the required equations needed to charac-
terize the spatial evolution of the boundary layer along the wall. What
remains is simply to replace Rs with F6ðRxÞ in F1; F2; F3, and F4.
However, before doing so, it is necessary to precisely define the overall
boundary layer thickness, dh.

V. THE BOUNDARY LAYER EQUIVALENT CHANNEL
HALF HEIGHT

It is clear from the results so far that the friction Reynolds num-
ber, Rs, is the natural choice for characterizing wall-bounded flows.
However, Rs is often avoided because the thickness of the boundary
layer is not well defined. As noted earlier, it requires that the boundary
layer is cut off at some point in the velocity profile where u=ue ¼ 0:99
or 0.999 or some other arbitrary choice leading to a considerable varia-
tion in the overall thickness, d, used to characterize the layer. This
does not need to be the case, and it will be shown in this section that
when the universal velocity profile is used to approximate the velocity
profile an outer length scale for the boundary layer is effectively
defined.

Multiply both sides of Eq. (38) by Rs, so it reads

uedh
�
¼ RsF1 Rsð Þ � F7 Rsð Þ: (55)

The function F7 is plotted as the solid line in Fig. 15. The dh that
appears in (55) is the channel half height of the profile and uedh=� will
be called the equivalent channel half height Reynolds number of the
boundary layer, Rdh . Figure 15 shows how this Reynolds number
depends on Rs.

The main takeway from Figs. 6–15 is that all of the integral mea-
sures of the turbulent boundary layer at a high Reynolds number
except the displacement thickness are directly proportional to a factor
involving ln ðkRsÞ multiplied by Rs. In addition, all the asymptotic
behaviors, Eqs. (27), (39), (43), and (45) are reached close to, or even
slightly below, the threshold Reynolds number of kRs > 2000, which
is not all that high in the scheme of things and, as pointed out earlier,
can be reached by DNS computations today.

A. The laminar pipe profile compared to Blasius

The basic idea behind dh is to choose the value that minimizes
the error between the universal velocity profile and the data. The
details of this discussion as regards the turbulent boundary layer will
be filled in shortly, but first it is necessary to look at the laminar por-
tion of the flow.

Notice that in Fig. 15, the channel flow half height Reynolds
number is compared with the Blasius thickness Reynolds number cor-
responding to a very specific laminar thickness where
u=ue ¼ 0:998228. The reasoning behind this is as follows.

In the boundary layer integral method presented here, the univer-
sal velocity profile will be used throughout, including in the laminar
boundary layer near the origin of the flow. In Figs. 6, 7, 8, 10, and
13–15, the Blasius limit is provided for comparison. However, what
Blasius profile is this? In particular, what boundary layer thickness is
used to make the comparison, what is the corresponding skin friction
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comparison, and how is the Blasius boundary layer Reynolds number
related to the equivalent channel flow Reynolds number?

At small values of Rs, the limiting behavior of F1 and F5 is the
channel flow limit.

lim
Rs!0

F1 ¼
Rs

2
; (56)

and

lim
Rs!0

F5 ¼
2Rs

15
: (57)

In this limit, Eq. (47) becomes

dRx ¼
Rs

3

30
dRs: (58)

Near the origin of the flow, at small values of Rs and Rx , the universal
velocity profile inserted in (47) leads to

lim
Rx!0

Rschannel ¼
usdh
�
¼ 1201=4

uex
�

� �1=4

¼ 3:30975
uex
�

� �1=4

: (59)

The Blasius profile can also be expressed in terms of Rs, and here is
where d0:998228 comes in. With this choice, the Blasius thickness
Reynolds number is

ued0:998228
�

¼ 5:743355
uex
�

� �1=2

: (60)

The Blasius friction law, Cf ¼ 0:6641854=Rx
1=2, can be expressed in

terms of the friction velocity as

us

ue
¼ ð0:3320927Þ1=2 uex

�

� ��1=4
: (61)

The Blasius friction Reynolds number is the product of (60) and (61)
generating

lim
Rx!0

RsBlasius ¼
usd0:998228

�
¼ 3:30975

uex
�

� �1=4

; (62)

which precisely matches Eq. (59). This approach matches the channel
flow friction Reynolds number to the Blasius friction Reynolds num-
ber throughout the laminar part of the flow. However, it should be
noted that at the same freestream velocity and streamwise position,
the two flows do not have the same wall shear stress. To clarify this,
Eqs. (55), (56), (59), and (61) can be combined to show that

us

ue

� �
channel

us

ue

� �
Blasius

¼ 2
1:90733

¼ 1:04859: (63)

Since

RsBlasius ¼ Rschannel ) uschanneldh ¼ usBlasiusd0:998228; (64)

the thicknesses must also be in the ratio

d0:998228
dh

¼ 1:04859: (65)

The point in the d0:998228 Blasius velocity profile corresponding to the
point dh in the channel profile where uchannel=ue ¼ 1 is
uBlasius=ue ¼ 0:996798. The corresponding channel and Blasius pro-
files are shown in Fig. 16 with these details identified. The upshot of
this is that using the universal velocity profile in the laminar region
overestimates the wall shear stress by about 10%.

In his classic textbook on fluid mechanics, White21 teaches a
method used by von K�arm�an to generate approximate solutions for
the integral properties of the laminar boundary layer. The method is
essentially the same as the one used here where the approximations
are all generated from the exact laminar quadratic channel/pipe flow
velocity profile,

u
ue
¼ y

dh
2� y

dh

� �
; (66)

where ue is the pipe or channel centerline velocity and dh is the chan-
nel half width or pipe radius. The main difference is that in White21

and in other text books where von K�arm�an’s simplification is pre-
sented, the Blasius boundary layer thickness used for the integration is
the point where u=ue ¼ 0:99 rather than u=ue ¼ 0:998228 used here
to ensure that both flows have the same Rs.

This subject has been revisited recently by Majdalani and Xuan,22

who develop improved higher order polynomial approximations to
the Blasius profile for application to integral analyses of laminar vis-
cous and thermal problems. They provide a detailed comparison
between several methods for approximating the Blasius solution.

It should be noted here that the “Blasius constant,”
r ¼ 0:46959999,22 which is essentially the normalized wall shear stress
can be determined to arbitrary accuracy by using the invariance of the
Blasius ODE under a one parameter dilation group. The procedure is
described in detail on page 292 of Cantwell.20 The idea is to carry out one
high precision computation of the Blasius equation as a Cauchy initial value
problem with an arbitrary initial choice of r, say r ¼ 0:2. The computed
(too small) free stream velocity is used to evaluate the group parameter
needed to scale the numerical solution to the exact free stream boundary
condition u=ue ¼ 1. A refined value of the Blasius constant generated
using the group approach is r ¼ 0:4695999883610133540656761. To

FIG. 16. Blasius velocity profile compared to channel flow at the same value of Rs.
The dashed line is the Blasius profile.
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determine this value, the Blasius equation is integrated out to 5a0:99 where
a ¼ yðU=2�xÞ1=2 is the Blasius similarity variable.

B. The equivalent channel half height for the turbulent
boundary layer

The fact that the universal velocity profile accurately fits a given
turbulent boundary layer data set enables the boundary layer equiva-
lent channel half height, dh, to be determined. The equivalent channel
half height defines a point where u=ue ¼ 1 and @u=@y ¼ 0 at
y=dh ¼ 1. Since the universal profile is fundamentally a pipe/channel
profile, it does not extend beyond this point into the free stream. This
accepts a small error compared to the actual value of the boundary
layer edge velocity, ue=U�1 at y=dh ¼ 1, where U is the true free
stream velocity reported with the data.

The procedure for determining dh for a given data set is illus-
trated in Figs. 17 and 18 using the Rs ¼ 1989 DNS data of Sillero
et al.23 The dependence of the accuracy of the fit on the choice of
ue=U is shown in Fig. 17. The least error occurs for ue=U ¼ 0:994. If
ue=U > 0:994, the error increases rapidly because multiple points at
the boundary layer edge are being used where the velocity is virtually
constant. The optimization procedure will try to fit these points, and
this will tend to degrade the fit over the rest of the profile increasing
the error. If ue=U < 0:994, the data are being cut off short of the
boundary layer edge and the condition duþ=dyþ ¼ 0 at dh is being
applied where the derivative is not quite zero, leading to a more gentle
increase in the error. Figure 18 shows the dependence of Rs on
the choice of ue=U . This is, in effect, the dependence of dh on ue=U .
The value Rs ¼ 1989 reported with the data corresponds to
ue=U ¼ 0:990. The new value of Rs used to fit the universal velocity
profile to the data is Rs ¼ 2088:5.

The effects of these choices on the fit of the universal velocity
profile to the Sillero et al.23 data are shown in Figs. 19 and 20. The
impact is, as expected, mainly in the outer flow where the universal
profile comes in a bit too high or somewhat too low compared to the
data. Figures 21 and 22 show the profile with the lowest error in linear
and log coordinates. Figure 23 shows the log-indicator function for the
lowest error case which is a particularly sensitive way to identify

differences between the universal velocity profile and the data.
The accuracy of the fit is excellent with uþrms ¼ 0:032, on the order of
0.1%, compared to uþrms ¼ 0:047 for ue=U ¼ 0:990. The optimal
parameter values that achieve this accuracy are ðk; a;m; b; nÞ
¼ð0:4289;25:9290;1:1480;0:1696;2:2516Þ compared to ðk;a;m;b;nÞ
¼ð0:4187;24:9525;1:1982;0:1760;2:3713Þ for ue=U¼0:990 from
Subrahmanyam et al.2 Due to the relatively low Reynolds number
of the simulation, there is no significant logarithmic region of the
profile in Fig. 23. The parameter values used to construct the inte-
gral boundary layer properties throughout this paper are those
listed in Table I that are averaged over seven ZPG boundary layer
simulations.2

VI. FRICTION LAW COMPARISONS

Recently,4 the skin friction was measured on a flat plate in the
range 10 000 < Rd2 < 70 000 using an innovative thin oil-film inter-
ferometry method. They presented their data along with selected older
data and with a variety of widely used classical friction laws from vari-
ous authors which they corrected to a common set of experimental

FIG. 17. Root-mean square error in uþ between the DNS data of Sillero et al.23 at
Rs ¼ 1989 and the universal velocity profile. Minimum error is achieved for dh cho-
sen to be at ue=U ¼ 0:994.

FIG. 18. Variation of Rs with the choice of ue=U. With dh chosen to be at
ue=U ¼ 0:994; Rs ¼ 2088:5, about 10% larger than the value Rs ¼ 1989 at
ue=U ¼ 0:990.

FIG. 19. Data from Sillero et al.23 (open red discs) compared with the universal
velocity profile with ue=U ¼ 0:980. The arrow indicates the error at the boundary
layer outer edge where the blue solid line is too low.
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data. Figure 24 shows the friction coefficient generated by the universal
velocity profile overlaid on their collected data in the Reynolds number
range of their experiments. The agreement is quite good. They also
used the collected data/friction laws to extrapolate the friction coeffi-
cient out to Rd2 ¼ 108. Figure 25 shows their extrapolation compared
to the friction coefficient generated by the universal velocity profile.
Again, the agreement is quite good although the value of Cf

¼ 2ðus=ueÞ2 predicted by the universal velocity profile is slightly
higher than the extrapolation in their Fig. 9. For example at Rd2 ¼ 108,
the universal velocity profile predicts Cf ¼ 0:00081 compared to the
range 0:00069 < Cf < 0:00076 in Nagib et al.4 While the disparity is
quite small, it could indicate a possible weak dependence of the bound-
ary layer velocity profile parameters on the Reynolds number.

VII. EVOLUTION OF THE BOUNDARY LAYER IN SPACE

The function Rs ¼ F6ðRxÞ, Eq. (54), generated by integrating Eq.
(47), is shown in Fig. 14. The inverse function is shown in Fig. 13.
Once F6 is generated from the universal velocity profile, the rest of the
spatial behavior of the boundary layer is easily produced. Figures
26–29 depict the stream-wise evolution of all the integral measures of
the spatially developing boundary layer. The spatial friction law is pre-
sented in Fig. 30.

FIG. 20. Data from Sillero et al.23 (open red discs) compared with the universal
velocity profile with ue=U ¼ 0:999. The arrow indicates the error at the boundary
layer outer edge where the blue solid line is too high.

FIG. 21. Data from Sillero et al.23 (open red discs) compared with the minimum
error universal velocity profile with ue=U ¼ 0:994.

FIG. 22. Data from Sillero et al.23 (open red discs) compared with the minimum
error universal velocity profile with ue=U ¼ 0:994 in log-linear coordinates.

FIG. 23. Log indicator function with data from Sillero et al.23 (open red discs) com-
pared with the minimum error universal velocity profile with ue=U ¼ 0:994.

FIG. 24. Friction coefficient determined from (38) and (42) overlaid on Fig. 7 from.4

Blue circles are generated from the universal velocity profile.
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FIG. 25. Friction coefficient determined from (38) and (42) overlaid on Fig. 9 from.4

Blue circles are generated from the universal velocity profile.

FIG. 26. Spatial evolution of the displacement thickness Reynolds number.

FIG. 27. Spatial evolution of the momentum thickness Reynolds number.

FIG. 28. Spatial evolution of the energy thickness Reynolds number.

FIG. 29. Spatial evolution of the equivalent channel half height Reynolds number.

FIG. 30. Spatial evolution of the flat plate zero pressure gradient friction law.
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The evolution of a turbulent boundary layer is often characterized
by power law behavior. According to Eq. (53), to a leading order at
extreme Reynolds numbers, Rx � ln ðRsÞ2Rs. This nearly linear relation
between Rx and Rs explains why Figs. 26–29 all display nearly straight
line, i.e., almost power-law, behavior at large values of Rx. However, the
curves in Figs. 26–29 really cannot be approximated by a power law
except by choosing a narrow range of Reynolds number and changing
the power law exponent when the range changes. In actuality, there is no
need for a power-law fit when Rs ¼ F6ðRxÞ is a known function.

The spatial friction law generated using (38) and F6ðRxÞ is pre-
sented in Fig. 30. Given the position x, free stream speed, ue, and kine-
matic viscosity �, the friction velocity, us, is immediately determined.

VIII. CONCLUSION

The universal velocity profile developed originally for pipe flow1

has recently been shown to provide a very accurate approximation to
channel flow and boundary layer flow with zero and adverse pressure
gradient.2,3 The profile is uniformly valid over the entire range, 0 � y
� dh and 0 � Rs <1. Choosing the boundary layer thickness that
minimizes the error between velocity profile data and the universal pro-
file defines, in a practical sense, an overall boundary layer thickness, dh,
thereby avoiding the usual ambiguity in the identification of the bound-
ary layer edge. The calculations presented here as solid lines in Figs.
6–15 and 26–30 are generated by integrating the universal velocity pro-
file from Rs ¼ 0, in other words, from the plate leading edge. In the low
Reynolds number limit, the universal velocity profile approaches the
laminar channel/pipe flow shape. The Blasius solution with a thickness
corresponding to u=ue ¼ 0:998228 is provided for comparison in all
the figures. This choice matches the channel and Blasius friction
Reynolds numbers, Rschannel ¼ RsBlasius , while accepting about a 10% higher
wall shear stress in the laminar part of the flow. These calculations also
use the transition from laminar to turbulent flow inherent in the univer-
sal velocity profile. There is no particular need to do this, and an alterna-
tive approach that matches the Blasius profile, followed by a preferred
transition model to the turbulent universal velocity profile, is an option.

At Reynolds numbers, kRs > 2000, the universal velocity profile
defines a Reynolds number independent shape function discussed in
Sec. III and shown in Figs. 4 and 5. Figure 5 can be thought of as a cut
through Fig. 4 at some large value of Rs greater than about 5000. Equation
(26) enables the high Reynolds number limiting behavior of all the integral
measures of the boundary layer, as well as the skin friction law to be deter-
mined as functions of Rs and as functions of Rx. The various limiting
functions, Eqs. (27), (40), (43), (45), (49), and (53), are all shown as dashed
lines in the appropriate figure. These figures confirm the rapid approach
with the Reynolds number of the full integration of the universal velocity
profile (solid line) to the high Reynolds number limit (dashed line). The
prevalence of terms involving ln ðRsÞ in these limits accounts for why the
flow changes so slowly at extreme Reynolds numbers.

Cantwell1 conjectured that the functional form of the velocity
profile given in (26) and (28) holds in the limit of infinite Reynolds
number for pipe flow. This conjecture is extended here to include the
boundary layer on a flat plate.
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