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Vortex drift. he flow potential surrounding a drifting vertical region 
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(Received 28 August 1992; accepted 18 February 1993) 

The potential flowfield surrounding a vertical flow domain is investigated. The vertical region is 
restricted to a three-dimensional finite domain in an unbounded incompressible viscous fluid 
that is at rest at infinity. The vector streamfunction of the flow is obtained by the integrals over 
the given vorticity field, expressing the Biot-Savart law. In the approach proposed here, the 
asymptotic vector streamfunction in the far field is expressed by integrals that represent the 
moments of the vorticity vector field. The asymptotic far-field potential is then determined by an 
integration that is analogous to the procedure well known in two dimensions, where the 
conjugate potential is found in the case that the streamfunction is known. In three dimensions, 
no general formula was found but an explicit expression for the asymptotic potential was 
constructed for the far-field dipole and quadrupole. The integrability conditions that permit the 
determination of the potential from the vector streamfunction are interpreted as the consequence 
of the requirement that the underlying vorticity field- has to be source free. The asymptotic 
potentials are discussed first using only the inherent symmetries of the general dipole and the 
quadrupole fields. The results are then specialized to the case of axial symmetry. It will be shown 
that (i) the dipole strength is invariant and that (ii) the strength of the flow quadrupole remains 
constant while it moves together with the dipole with the drift speed already postulated in Part 
I. The role of the pressure in the flow generating process is also briefly noted. 

I. INTRODUCTION 

In Part I,’ (I) the drift motion of a confined vertical 
region in an unbounded viscous incompressible fluid was 
treated. Use was made of the fact that the vertical region is 
surrounded by irrotational flow where a potential exist, so 
that Bernoulli’s equation is valid. Thus, by determining the 
pressure in the far field from its Poisson equation, the time 
rate of change of the potential was found. However, for the 
solution of the drift problem, the potential itself also has to 
be known to a sufficiently high order. The potential of the 
leading order dipole was found in I using the classical 
formula of Lamb.’ The argument given in I for the deter- 
mination of the drift also calls for the determination of the 
asymptotic quadrupole potential. The purpose of this paper 
(Part II) is to present a new method for the determination 
of the farfield potential that surrounds the vertical region. 
The closing argument on the drift will be given later. 

The problem is solved by determining the vector 
streamfunction first, with the help of the integrals over the 
vortex components of the flow, from the Biot-Savart law. 
This, naturally, is the classical approach. Here, a variation 
is considered: The asymptotic terms of the streamfunction 
components are calculated by making the expansion of the 
integrand kernel first; the integrations are performed sec- 
ond. Then all results are obtained in terms of harmonic 
functions, with coefficients that are integrals over the vor- 
ticity. At the level of the dipole and the quadrupole, the 
coefficients are given in terms of the first and second mo- 
ments of the vorticity components, respectively. 

In the next step, the potential in the far field is deter- 
mined. One finds the velocity from the vector streamfunc- 
tion and sets it equal to the gradient of the potential. In two 
dimensions this defines the potential as the “conjugate har- 

monic” of the streamfunction. In three dimensions, it turns 
out that the three equations will lead to one and the same 
potential only if the divergence of the streamfunction vec- 
tor vanishes. This “integrability condition” leads to a set of 
relations between the vorticity moments; they are inter- 
preted as conditions that have to be fulfilled by the vortic- 
ity components to make its divergence vanish. Only a 
source-free vertical field leads to a solution to the problem 
considered, and the relations that emerge are considered as 
expressions of this restriction, obtained a posteriori. 

The classical way to ensure a source-free vorticity field 
is to consider it as an assembly of thin closed vortex fila- 
ments. Lamb’s formula that was used in I is based on this 
concept. The implementation of this idea calls for integra- 
tions over surfaces enclosed by the filaments first and inte- 
grations over the volume containing the filaments second. 
In contrast, the method proposed here uses simple volume 
integrals over the vorticity that are subjected to certain 
conditions. Its results will always be checked by the appli- 
cation to the classical example of a single thin filament. It 
will be seen that this check might lead to some additional 
constraints that are not obvious from the integrability con- 
ditions. Results of practical interest up to the quadrupole 
level will not be affected by such problems. Particularly 
encouraging are results that can be expressed by integrals 
over only two components of the vorticity vector field. 

The analysis will be carried out assuming the existence 
of a preferred direction-that of the impulse-but without 
further restrictions by initial symmetry. This permits the 
consideration of cases with a possible “precession” about 
the impulse axis. Such terms are carried along for com- 
pleteness as they lead to certain results at the quadrupole 
level which might be of interest in the future. They are 
dropped in the final analysis. 
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Classical treatments of the streamfunction vector em- 
phasize that the velocity is only determined up to addi- 
tional gradients of arbitrary harmonic functions. These are 
the homogeneous solutions of the Poisson equations for the 
streamfunction vector. However, any such homogeneous 
solution is a solution of Laplace’s equation that is valid in 
the whole infinite unbounded flow domain and therefore 
has to have a singularity somewhere in the flow. We have, 
however, the right to demand regularity everywhere. The 
applicability of the analysis to viscous flow is an important 
part of this argument. We will define, before the expansion, 
the particular solution of the Poisson equation that gives 
the streamfunction vector that fuhills all boundary and 
regularity conditions and is, therefore, the unique solution. 
This remains true for the expansion in the asymptotic do- 
main. 

II. VORTEX-FIELD KINEMATIC, FIRST ORDER 

The complete initial solution of the flow problem, in 
which at t=O a vorticity vector field w is imposed on an 
incompressible fluid at rest, is given by the Biot-Savart 
law. Necessary condition for the solubility is, however, that 
the assumed vorticity field is source free: 

div w=O. (1) 
Then the velocity u follows from a vector streamfunction A 

u=rot A (2) 
such that A fulfills the Poisson equation 

V=A=--w (3) 
provided that 

div A=O. (4) 
The necessary condition for the existence of such an A field 
is div o=O. 

The fluid is assumed to be incompressible but not nec- 
essarily to be inviscid. The physical effort needed to create 
a given vorticity in a fluid does depend on its viscosity, but 
the initial flow kinematic depends only on the assumed w. 

The solution of the Poisson equation (3) in an un- 
bounded infinite domain is 

A= 
J 

(47rR) -‘w(~‘y’z’)dV, (5) 

where 

R= &x--x’)‘+ (y--y’)‘+ (z-z’)‘, 

dV=dx’ dy’ dz’. (6) 

It is noted that in (5) there are no provisions to enforce the 
condition ( 1) so that there is no a priori guarantee for the 
fulfillment of (4), which is the necessary condition for the 
validity of (5). 

We restrict our attention to unbounded flow fields in 
which a vertical region is completely surrounded by poten- 
tial flow. Region(s) of vorticity are then found only inside 
of a sphere with a certain finite radius. The w field has to 
fulfill the condition 

o dV=O. (7) 

It is proposed here to investigate such flows by carrying out 
the following two steps: (i) to find, from (5), asymptotic 
functions A(*), A(“, AC2)... that represent A far from the 
vertical region, and (ii) to determine the potential func- 
tions 4(O), #(‘), etc., that are valid there. 

The expansion of an integral of the type (5) has al- 
ready been carried out in I. The application to (5) on 
components of A will lead to vector streamfunctions in an 
irrotational flow (!). All components will be represented 
by linear combinations of harmonic functions, so that 

v2 A(‘) =o (8) 

However, no provisions were made to assure that the con- 
ditions 

div A(‘) ~0 (9) 

are met, which relates all three components of the A”‘. It 
will be seen that (9) is the integrability condition needed to 
determine the potentials +(i) from the relations 

rot A”) ==grad 4(i) (10) 

by actually carrying out the operations for i up to 2. 
No direct general proof of the necessary and sufficient 

role of (9) was found. Besides, there might be a limit on i 
for the validity of the integration of (lo), caused by a 
restricted region of convergence for the expansion of 
(4?rR)-‘, given by Eqs. (18) and (19) of I. The whole 
algorithm that emerges for the integration of ( 10) is based 
on these equations. Their introduction in (5) is not carried 
out here in detail as it follows exactly the procedure used in 
I. The results are given in terms of the normalized source 
potential q (with the source strength 1) and its derivatives 
which are normalized dipoles, quadrupoles, etc. To each 
such group belongs an asymptotic vector streamfunction 
indexed with the degree of the differentiation of q. The 
leading term is A’*’ = ~Jw dV which has to vanish accord- 
ing to the condition (7). This confirms what we already 
know. The subsequent terms have coefficients that are vol- 
ume integrals representing moments of the vorticity vector 
components. 

Before proceeding, a convenient notation is introduced 
for the coefficients. For the first moments of the vorticity 
components we write 

Mz= 
J 

w,yd dV, etc., M;= 
J 

cog’ dV, etc., 

(11) 

where the superscript of M indicates the component of o, 
and the subscript of M shows the moment that has to be 
taken. The notation is suitable for the extension to higher 
moments, e.g., 

iUp J w/z’ dV, etc., (12) 

to be used later. 
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The introduction of the basic expansion of (6) in (5 ) 
gives the components of A(‘): 

P=MXfp +MxqJ +M”g, x x x Y Y z 2) 

ti:l’=My~,+lK~~y-l-M~~=, (13) 

A;“=MT;4)X+Myqy+M>Z. 

The integrability condition div A(‘)=0 leads to the rela- 
tions 

M;===M;=M; 

and 

(14) 

M;=-M;, M;=-M;, M;=-M;. (15) 

A nonzero common value of the terms occurring in (14) 
has no influence on the velocity derived from A”’ and can 
be safely ignored; presently it will be argued that this value 
is zero. What remains then is an antisymmetric tensor that 
can be represented by the vector A(‘). 

The conditions ( 14) and (15) permit indeed the de- 
termination of 4 “‘:Using the integral of z&r) as the defi- 
nition of 4(l) we obtain 

$(l)=M”q +&f z x dPY-M:9Z* (16) 

The main part of the far field is expected to consist of a 
dipole aligned with the impulse, which is assumed to be 
parallel to the x axis. Thus the potential 

@‘= -f(tiy-M;)q, (17) 

with a coefficient properly antisymmetric in y and z, is 
recognized as the part of (p (l) that represents such a flow 
field. The same potential was found in I, Eq. (37)) and the 
coefficient of the normalized dipole --pX is the invariant 
impulse I. 

The last two terms in ( 16) can be made to vanish by a 
proper choice of the coordinate system, namely, by align- 
ing the x axis with the resultant direction of the vector A(*) 
that represents the antisymmetric tensor ( 13). However, 
we have already assumed that the x direction is that of the 
impulse and (16) shows that in the presence of nonvan- 
ishing vorticity components parallel to the x direction 
there could be a contribution to the potential of the follow- 
ing form [obtained by using the relations (15)] 

&” = M;cp,- M;qy (18) 

This might, in the absence of axial symmetry, represent a 
precession about the x axis. There is a “remainder” that 
still has to be added to give ( 16)) but 

&‘=~(M;+2Mz,)q,=O (19) 

equals zero according to the conditions ( 15). 
The final analysis will be restricted to the case where 

(p$‘) also vanishes, but it might be of interest to see later 
that the quadrupole can also contain a term that corre- 
sponds to (18). 

The moments are now evaluated for the classical ex- 
ample of the thin closed vortex tube. Let ds be a vector 

with the components dx’, dy’, dz’. The integrands in the 
moments are changed by the transformation 

o dV=-K ds, (20) 

where the constant K is the product of 101 and the tube 
cross-section area. One obtains 

MC== 
s 

co, x’ dV=/c 
I 

x’ dx’=O, etc., (21) 

M;=K 
I 

z’ dy’= -K 
I 

y’ dz’ = -M;, etc. (22) 

The result (21) goes beyond the requirement ( 14)) but as 
noted before, this does not affect the usable part of the 
solution. The integrals (22) are the projection areas of the 
directed space curve, which is the spine of the vortex tube, 
on the three planes containing the coordinate axes. The 
areas have to be counted positive or negative depending on 
the sense of the contours of the projected areas, while the 
sense on the space curve is fixed. The tensor character of 
the moments proves that an orientation of the axis x (say) 
can be found such that the projected area of the closed 
space curve on the yz plane reaches the highest possible 
value, namely, the invariant length of the vector whose 
three components are the three projected areas. Then the 
projected‘areas are zero for all parallel projections in di- 
rections perpendicular to the x axis. In all cases actually 
studied thus far, this is also the axis of the impulse. 

111. VORTEX-FIELD KINEMATIC, SECOND ORDER 

To write down the components of A@) is tedious but 
straightforward using the notation introduced in ( 12). 
Here only the relations are given that the triple-indexed M 
have to fulfill so that div At2) =O: 

M~~=2M~~3-M~;=2Mt,+M,z, (23) 

M;,,==2M$+My,=2M;y+M:X, (24) 

M;Z=2M;Z+~y=2A4&I,f&, (25) 

M&+M’U(+M$=O. (26) 

The starting point for the discussion of #(‘) is again the 
form that is obtained by integrating the expression for the 
x component of the velocity. In this expression, there are 
no moments of w, among the coefficients: 

~‘2’=M;x~yy-MywQ)z+ (JfZ+f;$pyz 

+I(M:,-M~y)~,+~(M~=-M~)~~=. (27) 

The first two terms are rearranged with the help of La- 
place’s equation, 

M~~~yy-M~~~=4(M~-~y~)~~~ 

+%My,+M;J (qyy-pzJ. (28) 

This corresponds to the first step in the rearranging of the 
expression for H (2) Eq. (23) in I. It permits to identify in , 
the solution (27) a first part that represents the axisym- 
metric quadrupole: 
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IV. THE WIPULSE AND THE DRIFT 

The only results needed to give the extended informa- 
tion on the far-field pressure, to be used for the closing 
argument for the dynamic drift definition given in I, are the 
coefficients of the axisymmetric dipole and quadrupole. 
The essence of the argument was already given in com- 
menting on the result (29), and the evaluation of the in- 
tegrals that give the coefficients was already performed in I 
in cylindrical coordinates. Nevertheless, a brief evaluation 
of the integrals in Cartesian coordinates is given here, 
which makes Part II self-contained. The purpose of this 
presentation is to illustrate the following general conclu- 
sion: The time rate-of-change of the far-field potential is 
obtained in terms of the moments of the vector q=uXw, 
while the farfield potential itself is expressed by analogous 
terms using the moments of the vorticity vector o. The 
analogy of the operations on o to those performed on q in 
I will become evident. 

The coefficient of the normalized dipole potential (17) 
was already recognized as the impulse: 

21= (yw,-zwy)dV 
I 

(34) 

and the value of this integral is independent of the choice 
of the origin of the Cartesian coordinate system. 

The time independence of I follows from the dynamic 
vorticity equation 

LW&--YV20=r0t q==rot[uXw]. 

The time derivative of 2I is 

(35) 

This contribution to the far-field potential can be made to 
vanish, by the simple strategem of shifting the plane x=0 
such that it contains the centroid of the coefficient of the 
quadrupole (29). The expression for the velocity of this 
centroid gives the “kinematic” definition of the drift, to be 
discussed presently> 

First, however, the question is discussed whether the 
coefficients of pxy and qxz in (27) can be brought into a 
form that shows their relationship to the terms in the par- 
ticular dipole potential ( 18). This can be done by intro- 
ducing to the relations (23)-(26) two more constraints, of 
a dynamic nature. They express that the two components 
of the flow angular momentum perpendicular to the x axis 
vanish. Such a constraint puts the x axis on the, line of 
action of the impulse. (A momentum about the x axis is 
not affected.) These additional relations are, according to 
Lamb3 

M;x+My,=O, M=,+M;,,==O. (30) 

There are four second-order moments that are affected 
by the shift of the origin in the directions y and z. They are 
the moments in which only y and z appear, both in super- 
scripts and subscripts. They are found in the middle of the 
expressions of Eqs. (24) and (25). Evaluation of these 
expressions for a thin closed vortex tube gives the addi- 
tional information that 

(31) 

so that the three expressions that are equal to each other in 
(24) and (25) are actually equal to zero. With the help of 
(24), (25), (30), and (31) one can put the last two terms 
of (27) into the form 

4:“’ = - 2M&xy + 2MZyq, (32) 

which shows the expected relationship with $4” given by 
(18). 

Finally, the “remainder” of the potential +(2) is gath- 
ered in the expression 

(33) 

Here, both coefficients have been changed by the use of the 
relations (24) and (27) such that only moments extended 
over u, occur, just as in (32). There seems to be no simple 
way to judge the possible significance of these terms. It is 
recalled that 1 o, dV=O has been presupposed, but the 
formulas should remain valid for a nonvanishing angular 
momentum about the x axis, even for vanishing x impulse. 
The terms might also occur when the x component of the 
angular momentum vanishes but the axial symmetry is dis- 
turbed. 

The continuation of the investigation of higher-order 
poles at infinity would involve considerable effort but could 
shed more light on the problems that arise in the absence of 
initial symmetries. 

j- [ye) -z@ j]dJ, 
= j- [y($)+$+($)-z($)]dV 

+Y 
s 

(y V2 w,--z V2 w,,)dV=O. 

The vanishing of the first right-hand side (rhs) term 
follows upon partial integration [see I, Eq. (21)], as 
y(aq,/ay) =a(yqJ/ay--qx, etc., and J qx dV==O, etc. The 
viscous term also vanishes as y V’w,= V2(yw,) - 2&+/ay, 
etc. 

The integral that gives the coefficient of the quadrupole 
(29) differs from the integral in (34) by a factor x in the 
integrand. Thus it is possible to make this coefficient vanish 
by shifting the origin to xc (say) that is defined by the 
equation 

s 
(yw,-zay)x dV=xc 

s 
(ym,-zw,>dV. (37) 

Taking the time derivative on both sides leads to the de- 
termination of dx,/dt. Now the same kind of replacements 
by (35) and subsequent partial integrations are used as 
above. But xy(q/&) =6’(xyqy)/dx-yq,, etc., and the in- 
tegrals over the first moments of the q components do not 
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vanish. The viscous terms, however, give zero upon inte- 
gration as before. The result of the integration is, therefore, 

dxc 
21x= 

s 
( -yqy-zqz+2xqx)dV=2S, 

where the second equal sign indicates the identity of the 
integral with S, defined in I by Eq. (30). Thus the centroid 
speed is S/I, the same as the drift speed of the dipole origin 
that was postulated in I. 

The flow picture at infinity that finally emerges is very 
simple. The leading term in the flow potential is a drifting 
dipole. The next term is a quadrupole with constant. 
strength that is drifting with the same speed. Any constant, 
time-independent difference in the ‘Lorigin” of these singu- 
larities is asymptotically irrelevant. In other words, the 
velocity quadrupole strength vanishes when its origin is 
properly positioned. Thus the leading term of,the asymp- 
totic pressure is a quadrupole that is caused by the drift of 
the dipole flow field, as found in I. 

V. FLOW GENERATION 

The quantity 1, generally written in the form 

I=: (rXo)dV, 
I 

(39) 

is called the impulse of the vortex system. It is important, 
however, to realize that this is the generating impulse that 
is needed to create the flow by a force field distributed in 
space and acting locally to generate impulsively the local 
speed. The impulse is the integral of this force in space and 
over the time of its duration. 

The linear momentum of the flow in an infinite domain 
is asymptotically equal to the linear momentum associated 
with its farfield dipole $,,, with the potential ( 17): 

cjm = -ICp,=Ix/4z-(x2+12>3’~. (40) 

Its value is calculated as the momentum of a sphere of fluid 
in uniform motion that has the far-field potential (40), 
with the radius R = (x’+u?) 1’2 of the sphere tending to 
infinity. The radius and the velocity are found by super- 
posing a uniform parallel stream to the dipole field. The 
linear momentum obtained in this way, however, is only 
two-thirds of I. 

In the interpretation of Cantwell,” the reason that only 
a fraction of the generating impulse becomes flow impulse 
is found in the fact that a pressure field is created during 
the generation process that resists the flow-creating forces. 
The impulse in the creation phase is a function of time, and 
the pressure in the far field is obtained by taking the time- 
derivative of I in (40) and ignoring the drift of the dipole. 
The resultant instantaneous force resisting the acceleration 

is now calculated over the same infinite sphere that con- 
tains the flow impulse. We set in (40) x=R cos a, 
r=R sin a, and the surface element on the sphere pro- 
jected onto the yz plane equal to 27rR2 sin a cos a da, and 
obtain for the resisting force 

IdI r 

s 

1 dI -- 
2dt o 

cos2 a sin a da =T z (41) 

so that only (2/3) dI/dt is left to accelerate the fluid. 
Once the flow is established, the dipole pressure field 

disappears and the quadrupole pressure due to the drift 
becomes the dominant term. The impulse in the pressure 
pulse associated with (l/3) dI/dt is radiated away with 
the speed of sound ( = CO, say) while the dipole flow field 
is established inside the sphere covered by the pulse. 

In two dimensions it has to be noted that 1, defined 
again as the generating impulse, has no factor (l/2) in 
front of the integral when given in the form (39). The 
resultant resisting pressure force is found to be ( l/2) dI/dt 
in plane flow for a cylindrical pulse, so that (l/2) 1 is the 
flow-field impulse. 

The generating impulse gives the farlield dipole 
strength both in three and in two dimensions, in case that 
the dipole potential is normalized as -q,., where rp equals 
1/47rR in three dimensions, and equals - ( 1/2r)log r in 
the plane case. 

VI. SUMMARY 

The potential field surrounding a restricted domain of 
vertical flow in an infinite unbounded fluid turned out to be 
a boundary region that can be gainfully studied, as it re- 
flects essential properties of the whole flow. Absence of 
solid boundaries permits the simplest possible representa- 
tion of the vector streamfunction by the vorticity vector, 
and the regularity requirement excludes the occurrence of 
additional harmonic functions. A scheme is proposed to 
determine the far-field potential and pressure from the vec- 
tor streamfunction. The question remains open whether 
such a method can be useful in the absence of axial sym- 
metry. 

Results further restricted to simple rings and tori were 
not considered here. Several important examples in this 
area are noted in a recent survey article by Shariff and 
Leonard.’ 
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