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Vertical flow, restricted to a finite domain (in three dimensions) in an unbounded 
incompressible viscous fluid that is at rest at infinity, is investigated by the consideration of the 
dynamics in the potential flow region that surrounds the vertical domain. The evolution 
equations are considered for a flow that is given at an initial time t. The potential change in the 
far field is connected to the pressure, which in turn is expressed as the solution of a Poisson 
equation with sources distributed over the whole flow field. The leading term of the pressure at 
infinity is a quadrupole, which is caused by a drifting dipole field with a constant strength that 
is given by the impulse. This “dynamic” value of the drift is then identified with the classical 
“kinematic” definition as the speed of the impulse,centroid. The main new result obtained by 
this method is the solution of the asymptotic drift problem in three dimensions, complementing 
the corresponding solution of Cantwell and Rott [Phys. Fluids 31, 3213 (1988)] for plane flow. 
The connection to the solution of the classical drift problem for a vortex ring is also established. 

1. INTRODUCTION 

In a recent paper, Cantwell and Rott’ discussed the 
time decay of a vortex pair in plane viscous flow by use of 
a “heuristic model.” From the initial state, given by a pair 
of concentrated point vortices, to the final stage, which is a 
dipole in slow (Stokes) flow, the flow was modeled for all 
times by a superposition of two decaying Oseen vortices. 
The total circulation in the half-planes separated by the 
symmetry line was kept constant first but Was joined 
smoothly for later times by the law valid for the Stokes 
‘dipole, which is a decay with t- 1’2, The distance between 
the two Oseen vortex centers was determined by the re- 
quirement of a constant impulse. The drift was then found 
with the help of a pressure requirement. The fact was used 
that the materialized symmetry plane does not sustain a 
resultant force when the vortices are moving free, i.e., 
when they are not subject to any force. This is the corollary 
to the statement that if the vortices sustain a force (like a 
bound vortex creating the lift of an airplane), then the 
pressure integral over the symmetry plane is equal to the 
lift. The heuristic model provided an approximation to the 
pressure on the symmetry line, and the results obtained for 
the drift were found to be satisfactory. 

For the final stage of the tlow, Cantwell and Rott’ 
intended to find an exact asymptotic value for the drift, 
with the help of the second order pressure in Stokes flow 
which follows from the velocities as a solution of a Poisson 
equation. However, this method determines the pressure 
correctly in any moving system, a point that will be dis- 
cussed again later. Thus the resultant of the pressure on the 
symmetry line came out correctly, namely, equal to zero. 
Nevertheless, the effort to find the pressure from the Pois- 
son equation was not in vain. The asymptotic pressure 
obtained in the far-field region, where there is no vorticity, 
has to be equal to the pressure obtained from Bernoulli’s 
equation. This determined the exact value of the velocity of 
the vortex system. 

The advantage of this conceptually simple idea be- 

comes fully evident only after realizing that a “shortcut” is 
possible in the classical situation where a confined vertical 
region moves in an unbounded fluid that is at rest at infin- 
ity. From the representation of the pressure as a solution of 
the Poisson equation (which is valid both in inviscid and in 
viscous incompressible flow) it suffices to find the leading 
term for the asymptotic expression in the far-field potential 
flow region that surrounds the vertical domain. The lead- 
ing pressure terms are solutions of Laplace’s equation; they 
consist of quadrupoles, with different orientation of the 
axes. The coefficients for these harmonic functions are 
given by volume integrals extended over the components of 
the cross product between velocity and vorticity. The drift 
follows by identifying the pressure quadrupole with the 
pressure caused by the motion of a dipole whose coefficient 
is an invariant-the impulse. 

The need for a definition of the drift which goes be- 
yond the classical terms was first encountered by Cantwell 
and Rott’ in their effort to improve the asymptotic Stokes 
flow solution that emerges at the final stage of the viscous 
decay of vertical flow. The correction needed to account 
for the nonlinear terms of the NavierStokes equation is 
obtained by solving consecutively two second-order linear 
inhomogeneous differential equations: a diffusion equation 
for the vorticity and a Poisson equation for the streamfunc- 
tion. The drift emerges as the necessary condition for the 
existence of regular inhomogeneous solutions. A method 
for the determination of the drift in any phase of the flow 
will be based on a variation of this approach, to be dis- 
cussed presently. In the asymptotic Stokes flow region, the 
drift problem has different character in two and in three 
dimensions. The discussion of this interesting point will be 
given at the end of the paper. 

The proposed generalization is based on a strategem 
used by Cantwell and Rott’ which permits to reverse the 
order in which the inhomogeneous problems are solved. A 
new intermediate variable, to be called the rate streamfunc- 
tion (short for time-rate-of-change-vector streamfunction, 
or the evolution streamfunction) is introduced; it is to be 
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determined as the solution of a Poisson equation. The vec- 
tor streamfunction itself follows then as a solution of a 
diffusion equation. Then the drift appears already as the 
necessary element for the solution in the first step. 

The reformulation and generalization of the problem is 
considered now in terms of an initial value problem. Let 
the velocity field of an incompressible fluid, regular but 
otherwise unrestricted, be given at t=O; find the stream- 
function for the rate of change of the velocity such that the 
flow evolves fulfilling the laws of motion as given by the 
Navier-Stokes equations. The determination of the rate 
streamfunction is already a difficult task. However, in the 
case in which the vertical flow region is surrounded by 
potential flow at infinity, the rate streamfunction and the 
rate potential have to describe the same flow at infinity. 
The rate potential, i.e., the time rate of change of the po- 
tential, is connected to the pressure. The pressure quadru- 
pole is determined by the Poisson equation and will be 
interpreted as a dipole of fixed strength moving with the 
drift velocity. 

This dynamic approach makes it evident that all for- 
mulas for the drift give basically an instantaneous value; 
only for steady or self-similar flows can a result be obtained 
that is valid for extended time intervals. 

The connection between the dynamic view and the 
classical %nematic” definition of the drift as the motion of 
the impulse centroid will be established. 

There remains one unresolved question: Is the dynamic 
interpretation of the drift given here unique? To answer 
this question one needs to determine the far-field potential 
itself that corresponds to the vector potential at infinity. 
This turns out to be a difficult task beyond the dipole level; 
it is the subject of a separate paper.2 Here we take advan- 
tage of the fact that the determination of the rate-potential 
at infinity does not require the explicit determination of the 
rate-streamfunction. 

II. THE TIME-EVOLUTION PROBLEM FOR A FLOW 
VELOCITY FIELD 

We consider the evolution of a given velocity field u in 
incompressible viscous flow, that is restricted at the time 
t=O only by the condition 

div u=O. (1) 
To assure that this condition is fulfilled, let u be derived 
from a streamfunction, or more generally, from a stream- 
function vector A: 

u=rot A. (2) 
It can not be said a priori that a solution of the Navier- 
Stokes equation will emerge for all A, but evolution equa- 
tions can be established and the construction of the solu- 
tion will answer the question of existence. 

The tinal analysis will be restricted to flows for which 
a scalar streamfunction can be defined, but the use of A is 
appropriate in Cartesian coordinates. Also, one can imag- 
ine that two components of A are chosen freely and the 
third is determined by the condition 

div A=0 (3) 

which ensures that the components of the vorticity w and 
of the streamfunction A are connected by the Poisson 
equations 

w=rot u= -V2 A. (4) 

The first solution to the problem posed starts with the 
determination of o and of the vector 

q=uxw 

from the initial data. Then the vorticity equation 

(5) 

is the time-evolution equation for w, with the right-hand 
side (rhs) given at some tied time t. This statement is 
obviously true for inviscid flow. It is proposed here to put 
the viscous term on the “unknown” left-hand side (lhs), as 
is done routinely for all step-by-step solutions of the full 
Navier-Stokes equations. Thus the determination of GM& 
involves the solution of the inhomogeneous linear diffusion 
Es. (6). 

As basic homogeneous solutions are known for Eq. 
(6), the particular inhomogeneous solution can be found 
analytically by the method of the “variation of constants.” 
However, then the problem is not yet completely solved. 
The change in the streamfunction vector still has to be 
determined, by solving the Poisson equation (4) for the 
rate of change of A, i.e., 

aA a0 v2 -=-- 
at at * (7) 

This can be achieved by the same technique that has been 
proposed here for (6), but the solution of the Poisson 
equation by an integral which expresses source superposi- 
tion is preferable. It leads to explicit results directly and in 
a shorter way. Then, dA/dt is used to update u, w, and q. 

The evolution equations for A are now established; two 
inhomogeneous second-order partial differential equations 
have to be solved. Existence problems are reduced this way 
to the classical problem of the solution of inhomogeneous 
equations. 

A simple and viable alternative to this scheme was 
noted by Cantwell and Rott.’ It leads again to the solution 
of the same two equations, but the order in which they are 
solved is reversed. In this scheme, a new “intermediate” 
flow quantity is introduced instead of the vorticity w. Let it 
be called the “rate-streamfunction” vector B. It is defined 
by the equation 

so that 

Replacing the rhs by use of the Navier-Stokes equations 
gives 
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rot B+grad H=uXw=q, 

where 
(10) where 

R= \~(x-x’)~+ (~--y’)~+ (z-z’)‘, 
H=p/p+ ( 1/2)u2 (11) 

is the total pressure function. We obtain a Poisson equation 
to be solved for B by applying the operator rot to Eq. ( 10) : 

V’B=-rotq (12) 

with the restriction div B=O, in analogy to (4). This is 
now the equation which has to be solved first, instead of 
(6). Once B is determined, A follows as a solution of the 
diffusion equation (8). Thus indeed in this new procedure 
the Poisson equation ( 12) is solved first and the diffusion 
equation (8) second. 

Both schemes were discussed and tried by Cantwell 
and Rott,’ and the examples showed clearly that the drift is 
needed as a free parameter; its proper choice assures the 
solubility of the problem at hand. However, results were 
obtained by actually calculating the solution of the two 
inhomogeneous linear second order equations, and it is 
disappointing to obtain results of limited applicability by 
this tedious process. Here, the aim is to find results of 
general validity. 

dV=dx’ dy’ dz’, 
(17) 

and div q is given in terms of x’y’z’. Now (47%) - ’ is 
expanded about the origin of the xyz system. It is to be 
expressed with the help of the “harmonic source function” 

~=(4~J-G%-FGQ-* (18) 

so that 

(4?rR)-l=g,+~~‘+~~‘+~~’ 

+ (l/2) [Q)xx~‘2+q$Y’2+Q&‘21 
+ q+‘Y’ + q&&z + qpY’z’, (19) 

where the subscripts on cp stand for differentiations; thus 9 
and its derivatives are simply symbols for the normalized 
potentials of poles, dipoles, quadrupoles, etc. They occur in 
groups that are homogeneous in the ith powers of the ex- 
pansion coordinates; to each such group belongs a set of 
asymptotic terms H”‘. It is immediately seen that H”‘=O 
as s div q dV=O, a trivial result. The next term is 

III. FAR-FIELD DYNAMICS 

The second scheme offers the possibility for a general 
expression for the drift in the case of a limited vertical 

-H(‘) zrp x s 
x’ div q dV+cp, 

s 
y’ div q dV 

domain moving in an unbounded fluid that is at rest at 
infinity. In this case, the vertical region is surrounded by 
irrotational flow and Eq. (8) for A reduces there to 

+cpz s 
z’ div q dV=O. (20) 

aA The vanishing of H (l) follows as Lamb3 has proven that 
B,=+. (13) 

It would be much simpler to deal with the potential at s 
qdV=O (21) 

infinity that exists both in inviscid and in viscous flow. The 
determination of this potential in general is a major prob- and partial integration of the terms in (20) leads to 
lem, to be treated later in a separate paper.2 However, 
there is a simple way to determine not the potential itself 
but the “rate potential” &$/dt that corresponds to the rate s 

x’ div q d V= 
s 

div(x’q)dV- 
s 

qx dV=O, etc. 

streamfunction B. It follows from the equation that is ob- (22) 

tained by applying the operation div to Eq. ( 10): The result H(i)=0 expresses the known fact that the pres- 
V2 H=div a. (14) sure at infinity does not contain a dipole field (Cantwell, 

The far-field solution H, is connected to the potential 4, 
1986). Thus the leading term of H turns out to be ti2’. 

by Bernoulli’s equation 
Partial integrations applied to the coefficients of Hc2) give 

(15) s 
d2 div q dV= 

s 
div(x’2q)dV-2 

s 
x’q, dV, etc., 

(22a) 
in the system in which the fluid is at rest at infinity. The 
generalization of this relation between H, and 4, such 
that the pressure comes out correctly in a moving system is s 

x’y’ div q d V= 
s 

div(x’y’q)dV 

simple, but to avoid confusion, all operations are now car- 
ried out in the system in which the fluid is at rest at infinity 
and where p, -0. 

- Wq,+y’q,MV, etc. 
s 

(22b) 

The solution of (14) is 

H= - 
s 

(45-R)-’ div q dV, (16) 

Now the linear moments of the components of q appear 
and these do not vanish. The expression for H(‘) that fol- 
lows from (16) and (19) is 
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ti2’ =pxx s xqx dV+pyy J -vqy dV+cp, J zqz dV 

-I- Pxy J 
(xqy+.wxWVfqxz (xqz+zq,W 

J 

+pyz hz+zq,W. J (23) 

This result does not show the true symmetries of ti2’ as 
the number of independent terms in (23 ) is only five: three 
quadrupole elements are connected by Laplace’s equation 

4?uc+Pyy+%=o* (24) 
Symmetry is obtained after choosing a privileged direction 
6rst (the x axis, say, to be identified later with the impulse 
direction). By use of (24) in the form 

qyy= - ( 1/2hx+ (l/2) (~yy-q&z), GW 

q&z= - (l/2)%- (l/2) (pyy-pzJ, (24b) 
the number of terms in (23) is reduced to five. It is noted 
that the terms qXy and pXZ represent the same flow except 
for a rotation around the x axis by ?r/2; the terms qyy---cpZ 
and 2pYZ are related in the same way, by rotation by ?r/4. 
The final result is 

+‘pxv 
J 

(xq,+yq,)dV+qx (xqz+zq,)dV 
J 

+;byy-~1 (yq,--zqzMV 
J 

f Pyz 
J 

(yqz+zq,)dV. 

It can be shown that among the integrals occurring in 
(25), the following relations hold 

J 
(yqz--zq,W=O, 

J 
(zqx--xqz)dV+, 

J 

(26) 
(xq,--yqJdV=O. 

They express the conservation of angular momentum. 

IV. USE OF POLAR COORDINATES. RESULTS FOR 
AXISYMMETRIC FLOW 

Results are presented now by using polar coordinates 
r, 6 in the yz plane: 

y=rcos8, z=rsin6. (27) 

The components of q are now expressed in this system: 

qx=uIws--~~r, qr=US~x--x%, 

To be introduced in (25 ) are qX and 

qy=q,cos a--q8 sin 6, q==q,sin 6-l-q+ cos 6. (29) 

We evaluate the coefficient of 4pX. in (25) and obtain 

St xqx-;(yg,+zg,~ dV 
) 

= J (xu,+&+o,y dv 

- J (xo,+$+, dv=s---S*, 
where the first integral S is the only part left in axisym- 
metric flow u*=O. We also ignore all nonaxisymmetric 
terms in (25). Then the leading term in ( 15) is 

a4, af = --P2’ = -q& 
This form of the evolution equation for the axisymmetric 
far-field potential is valid in the system in which the fluid at 
infinity is at rest. 

Certain results specific to the axisymmetric case are 
now derived. The vorticity equation (6) becomes (with the 
subscript 8 for w omitted) 

ati ah.4 +a(244 ~- 
at+ ax ar * 

(32) 
Integration of (32) over a meridional xr plane gives 

&( JJ wdxdr)=-vj.TI ($+;)rSodx (33) 

showing that the vorticity integral over the half-infinite xr 
plane is invariant only in inviscid flow. 

The formula sqX dV=0 [see (21)], with qX given by 
(28) and dV=2m dx dr, states that 

JJ 
upr dx dr=O. (34) 

Multiplying (32) by 3 and integrating again over the xr 
plane gives, by use of (34)) 

JJ 
w? dx dr=const, (35) 

as the integral over rr times the viscous terms of (32) 
vanishes. [They can be brought into the form of the rhs of 
(32) by replacing w with 02, and changing the coefficient 
of the last term to - 3.1 The invariant (35) will be related 
presently to the impulse. 

V. THE DRIFT: DYNAMIC INTERPRETATION 

It is impossible to find I$.,, from a#,/& without the 
use of further information. However, only two potential 
functions that have a regular zero at infinity can give (3 I), 
namely, a dipole qX and a quadrupole qXX. Each term can 
contribute to &$,/at in two ways, namely, (i) by drifting; 
then the order of the pole in the time derivative is raised by 
one so that this effect is only to be considered for the 
dipole; and (ii) by the change of the coefficient of these 
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terms. As the dipole strength is known to be a constant 
( =impulse), this second kind of contribution can come 
only from the quadrupole qxr. 

It will be shown that the interpretation of d+,/dt be- 
ing generated to leading order by the drifting dipole poten- 
tial alone agrees with the classical definition of the drift as 
the velocity of the impulse centroid. The question of 
uniqueness will be considered in Paper II.2 

The determination of the dipole potential itself follows 
here the theory of Lamb, who states that’ “...the velocity 
potential at any point, due to a single reentrant vortex, is 
equal to the product of K/~P into the solid angle which a 
surface bounded by the vortex subtends at that point.” For 
a circular ring we have K=W dr dx and the solid angle in 
the far field is equal to the surface a? projected normal to 
a ray with the components x, r, and divided by 
x2+3( =R2). The potential of the ring is thus 

(4rr)-‘wdrdxv?(x/R)(1/R2)=-(l/2)wrdVpX, 

(36) 

where dV=2m dr dx and the dipole potential is normal- 
ized in accordance with the definition Q, = (47rR ) - ‘, intro- 
duced in ( 18). Thus the farfield potential of an axisymmet- 
ric vortex configuration is 

4,=---Q&> 

where 

(37) 

I=; 
J 

wrdV (38) 

is recognized as the invariant impulse [proportional to 
(35)]. The potential is given in a coordinate system fixed 
with the dipole configuration, i.e., x in (37) is 
X(suid sxed) -x0(t). Thus from (37) we have 

Comparison with (3 1) gives the final result for U=dxddt: 

u~~~ss(Pux+~~,)~drdx 
r .f.fr%drdx ’ (40) 

where S and I have been introduced from (30) and (38), 
with dV=2m dr dx. The integration is to be extended over 
a meridional plane. 

The formula (40) has the proper independence of the 
choice of the origin of x, which remains arbitrary at any 
time. According to Eq. (34)) it is permissible to change the 
value of x [which occurs in the numerator of (40)] to 
x-x0=x’, without affecting the result. This also holds for 
u,; replacing u,(x)dx by uX(x’)dx’ has no effect. How- 
ever, the operation has to be performed in a system in 
which the fluid at infinity is at rest, so that u,( CO ) =0 is an 
essential and necessary condition for the validity of our 
results. Replacing U, by u: = u, + uogives U’= U+u,, i.e., 
the formula fails. 

It seems then for a moment that the result given by 
‘(40) is useless, as knowing the velocity u, that vanishes at 
infinity apparently means to know everything. However, 

this is not the case. The correct interpretation of U is that 
it gives the instmtaneous velocity with which the whole 
vortex configuration moves. The instantaneous character of 
the drift is evident as only time-rate equations were needed 
for the derivation. The velocity is associated with a partic- 
ular flow element of the configuration, namely, the asymp- 
totic dipole. It remains to be shown that this is also the 
velocity of the centroid of the integral that represents the 
invariant impulse I of the flow. 

VI. THE DRIFT: CLASSICAL DEFINITION 

To derive the classical formula for the drift in inviscid 
flow, first the simple argument used by Lamb3 will be 
given, which has its roots in the approach initiated by 
Helmholtz6 in his basic paper of 1858. Then, the verifica- 
tion of this result for viscous flow will follow, which was 
first presented by Saffman’ in 1970. 

Lamb3 introduces a second invariant which exists only 
in inviscid flow, obtained from (33) when its rhs vanishes 
for Y=O so that the meridional vorticity integral becomes 
a flow constant. Let it be connected to (35) by a new 
constant r,, defined by the relation 

JJ 
o dx dr=ro2 

JJ 
wl’ dx dr=const. (41) 

Now let x0 be defined as the centroid of the impulse inte- 
gral, given by the equation 

JJ 
o?(x-xo)dx dr= 

JJ 
(?-x-ro2xo>w dx dr=O. 

(42) 
The drift U=dxddt is obtained by differentiating (42) 
with respect to time. The first possibility is to introduce 
&o/at in the integrand in (42). However, it is also possible 
to keep w dx dr constant and to differentiate the bracket in 
the second form in (42) with respect to time. This is a 
change from the Eulerian to the Lagrangian point of view, 
which Lamb supports (following Helmholtz6) by discretiz- 
ing the integral in (42) and introducing individual vortices 
of the strength w dA. Differentiation of the second integral 
(42) gives in this sense 

JJ 
w(2xru,+rh,--@J)dx dr 

z 
JJ 

[2xu,+r(u,- U)]wr dx de0 

so that (40) reappears in the form 

(43) 

U 
JJ 

o? dx dr= 
JJ 

u+a? dx dr 

+2 
JJ 

ugoxr dx dr. (44) 

Both Helmholtz and Lamb consider this result as incom- 
plete, as further analysis is needed for the solution of the 
classical vortex ring problem (to be discussed later). It is 
noted that (41) and the introduction of r. is not really 
needed for the derivation of (44), which can also be based 
solely on the first form in (42). This removes one para- 
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doxical aspect of this short derivation, which gives a result 
valid in viscous flow by using arguments valid only in in- 
viscid flow. 

However, the second step in the derivation of (44), 
namely, the Lagrangian differentiation of (42), is also valid 
only in inviscid flow. Thinking of the discretized definition 
of the integrals, the Lagrangian differentiation is admissi- 
ble only if the thin elementary rings are always formed by 
the same particles. The Helmholtz theorem which states 
that this is a permissible assumption is valid only in invis- 
cid flow. 

The proof of (44) for viscous flow has to revert to the 
first idea mentioned above, namely, to the evaluation of the 
integral J J (a~/&)& dx dr based on the first integral in 
(42) [without using (41)], and inserting dw/& from (32), 
which follows from the Navier-Stokes equations. Then it is 
found that no viscous effect is manifest in the result as the 
operation JJ* * -t&?’ d d x r, w h en applied to the viscous 
term in (32), gives zero, both for m=O [the case consid- 
ered for the derivation of the invariance of the integral 
(35)] and for m = I, needed in (42). The operations with 
the inviscid terms are simple and confirm (44). This veri- 
fication is the essence of Saffman’s proof. 

Thus it has been shown that the drift (44) of the im- 
pulse centroid is the same as the drift of the dipole poten- 
tial that represents the flow asymptote at infinity, both in 
inviscid and in viscous flow. 

The classical approach to the ring problem requires 
further analysis, as already noted, because the system in 
which u,( CO > =0 is not a priori known. Conversely, how- 
ever, if such an information does exist, then (40) has to 
suffice for the determination of U. Such is the case for the 
determination of the asymptotic drift, given by Cantwell 
and Rott’ for the terminal stages of plane flow generated 
by a vortex pair; the derivation of the analogous result in 
three dimensions now follows. 

VII. THE ASYMPTOTIC DRIFT 

The general result is now applied to the flow that rep- 
resents the final stage of decay of a vertical flow region of 
limited extent in a viscous fluid. In the case that there is an 
initial impulse, the flow field that prevails for t+ CO is given 
by the dipole solution of the time-dependent linear Stokes- 
flow equation. Its streamfunction is (Phillips’) 

9=$,W), 

where 

(45) 

I), =Ii2/4%-(;2+x2>3’2 (46) 

is the streamfunction in the far-field potential flow region, 
corresponding to the potential 4, given by (37), and I is 
the impulse (38). The function G depends on the variable 

g=r(4vt)-l12 (47) 

which is the similarity variable of the diffusion equation. 
The function G is 

G(C) = (48) 

It is noted that G( CO ) = 1, and that G=O(g3) for small 6. 
According to the new point of view that has been the 

starting point of this paper, we do not “iterate” or “im- 
prove” on the asymptotic solution given by Eqs. (45)- 
(48). Instead, we determine U from Eq. (40) which as- 
sures that the flow given by Eqs. (45)-(48) at an initial 
time f will evolve in accordance with the laws of motion 
that are given by the Navier-Stokes equations. In general, 
U would be found as an instantaneous value and the proper 
evolution is assured only for a small time step dt. However, 
we are dealing with a similarity solution in which time is 
absorbed in the spatial similarity variable c given by (47). 
Thus the result will give the time dependence of U in the 
range of validity of the similarity solution. 

With the streamfunction given, velocity and vorticity 
follow; they have to be inserted in the formula (40). The 
evaluation of U requires lengthy operations with elemen- 
tary integrals. The result 

U=(7/15)1(8vvt)-“‘2 (49) 

has already been published (without proof) by Cantwell 
and Rott’ and was tested by numerical experiments of 
Stanaway, Cantwell, and Spalart,’ who have found a four- 
digit agreement with (49). Their step-by-step method in 
time is a numerical experiment for a theory using time 
evolution. 

Cantwell and Rottt have derived the asymptotic drift 
velocity in plane flow in several different ways; the result is 

I 
lJ=----- 

32avt’ I= 
J-J- we& & (50) 

for the impulse aligned with the x axis. The integral for I 
has to be extended over the whole xy plane. 

VIII. APPLICATION OF LAMB’S IDENTITY 

The theory as presented thus far is adequate in the 
course of a step-by-step calculation of a vertical velocity 
field at any time, and was used in this sense by Stanaway 
et a1.s For the classical initial value problem in the sense of 
Helmholtz, however, only the initial vorticity is postulated 
at the time t=O, and the direct connection to the result 
given by (40) can be established only after the velocity 
field is also known. This process can be simplified by a 
relation in which the integrals that determine U are con- 
nected directly to the streamfunction. Such a relation was 
already found by Helmholtz” for axisymmetric flow. The 
general formula of Lamb3 is valid for any geometry in 
which a vertical region of finite extent moves in an un- 
bounded three-dimensional incompressible (and possibly 
viscous) fluid which is at rest at infinity. Lamb gives the 
following “useful expression”” for the total instantaneous 
kinetic energy: 

(ui+u;+uZ)dV= 
s 

[u*(rXw)]dV. (51) 
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The usefulness of this relation becomes evident when ing the continuity of the velocity (and thus of the pres- 
combined with the expression for E by the vector stream- sure) on the separating streamline $’ =0 between the vor- 
function A: tical and the potential flow regions. 

6; s (A*w)dV. (52) 

In axisymmetric flow, A can be expressed by the Stokes 
streamfunction +: 

In summary, it is seen that Lamb’s identity is not 
needed whenever the drift is determined in a flow field 
where at the time considered and in the system used the 
velocity is known to vanish at infinity. This result holds for 
all times for a step-by-step caiculation which is properly 
started at t=O. 

&=O, A,= -z+/?, A,=y*/? (53) 

so that 

w w ru,=ay, += -ax - (54) 

Then equating the expressions (5 1) and (52) leads to the 
relation 

Is 

1 
(xru,-rh,)w dx dr=s 

J-J 
I@ dx dr. (55) 

This is used to eliminate U, in the integrands, in the rela- 
tions (40) and (44). The new result that emerges is 

1 
U al-? dx dr=- 

2 
T&O dx dr+3 xrup dx dr. 

(56) 

Saffman7 derived this result directly from the inviscid 
equations of motion and confirmed later its validity for 
viscous ilow. 

The applicability of (56) hinges on information avail- 
able on the behavior of the streamfunction q at infinity, 
just as (44) needed information on u,( CO ) . Thus the con- 
dition 

tcI(co)=O (57) 

is an integral part of the results of this analysis. This con- 
dition is fulfilled by the asymptotic streamfunction (45), 
and the drift can be obtained either from (44) or from 
(56). For the vortex ring, the derivation of tc, starts with 
the determination of the flux through the ring in a system 
in which the fluid at infinity is at rest, and (56) permits the 
direct use of $, instead of the velocity component u,. 

In an inviscid fluid, a t-low with a streamfunction I,Y 
(say) can exist which has a steady contour $’ =0 enclosing 
the vertical region, in the system fixed with the vortex 
centroid: Then the streamfunction $ to be introduced in 
(56) is 

+qlr+;urz (58) 

giving 

U 
ss 

w? dx dy=? 2 (s q!fw dx dr+4JJ u,uxr dx dr. 

(59) 

For the Hill vortex of radius a and with w=fir, the 
streamfunction is $‘= (fV10)?(a2--x2-rZ), and one 
finds U= (2/15)&z’. Lamb3 derives this result by express- 

IX. THE PROBLEM OF IMPROVED ASYMPTOTICS 

We are now in the position to investigate the role of the 
drift for expansions in which solutions of the Navier- 
Stokes equations are sought with the Stokes solution as the 
leading term. Such a procedure was applied by Kambe and 
Oshima12 to the asymptotic flow describing the last stages 
of a viscous vortex ring. Cantwell and Rott’ treated the 
analogous case of the vortex pair. They found that a reg- 
ular second order solution does not exist unless the proper 
drift U is introduced first; this served as a means for cal- 
culating U. This issue was not encountered by Kambe and 
Oshima,12 who carried out their analysis in a vortex-fixed 
system. The explanation offered here for the difference in 
the behavior of the two expansion processes is based on the 
different orders of magnitude of U in the two cases. In 
plane flow U varies as t-’ and the asymptotic displacement 
grows as log t. In axisymmetric flow, U decreases with 
te312 and the displacement varies with t-1’2. Now the suc- 
cess of determining a function Y (say) in the “wrong” 
coordinate system depends on the convergence properties 
of the expansion of T(x+a) in powers of a, i.e., 

2 2 

*(x+a)=Y(x)+ 2 .+g;+... . ( ) 
Identifying the displacement with a, it is clear why the 
choice of the proper coordinate system is much more im- 
portant for plane flow than in the axisymmetric case. This 
is one more case in which there is a marked difference in 
the behavior of Stokes flow in two and three dimensions. 

There is a second reason that Kambe and Oshima’” 
were not led to an analytic expression for the drift. They 
did not complete a full cycle leading to a new streamfunc- 
tion; they only determined a new vorticity. It is therefore 
not possible to extract the final drift formula from their 
work, as was maintained originally by Cantwell and Rott’ 
and later by Shariff and Leonard.i3 

This paper provides an advance knowledge of the drift 
which should greatly facilitate the formulation of a method 
that intends to give improved asymptotics. The reconsid- 
eration of Kambe and Oshima’s problem using this point 
of view is a straightforward generalization, but the explicit 
determination of the higher-order flow fields leads to prob- 
lems that are forbidding by the shear bulk of the analysis 
involved. 
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