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The evolution of a viscous vortex pair is investigated through the use of a heuristic model. The
model is based on the linear superposition of two Oseen vortices of opposite circulation spaced a
distance 2b apart. The vortices are allowed to evolve through viscous diffusion and their mutual
induction. The motion is unforced and as a consequence the total hydrodynamic impulse is
exactly conserved for all time. In the model the total circulation in the upper half plane is assumed
to remain initially constant. This constraint is applied up to a finite time when the model solution
reaches its asymptotic form corresponding to a drifting Stokes dipole dominated by interdiffusion
of vorticity across the plane of symmetry. The drift velocity of the vortex pair is determined by the
condition that the integrated pressure force vanishes on the line of symmetry at all times. Atlarge
time this leads to an asymptotic value of the drift velocity which scales with the similarity
properties of the Stokes solution. To provide a more rigorous foundation for the drift, the
asymptotic behavior of the flow for large time is investigated through an expansion of the solution
in inverse powers of the time. First the second-order pressure is determined as a solution of a
Poisson equation with the source term generated by the first-order flow field. Surprisingly, the
solution turns out to be independent of the drift. Nevertheless, an exact condition for the drift is
found by considering the limiting form of the second-order pressure at infinity where the flow is
irrotational and the pressure can be computed directly from the first-order velocity field using
Bernoulli’s equation. In this latter approach the far field pressure is determined up to an unknown
function of time which upon comparison with the Poisson solution is identified as the drift. The
exact drift obtained in this fashion differs by only 10% from the value obtained using the pressure
field of the heuristic model. Finally, it is shown that the existence of the complete second-order
asymptotic solution of the Navier—Stokes equations requires the inclusion of the same drift in the
first-order solution that was found from the examination of the pressure. The second-order
vorticity and streamfunction are determined; the latter contains a free constant to accommodate

conditions at earlier times. Prospects for the existence of higher-order asymptotic terms are

discussed.

I. INTRODUCTION; DEFINITION OF THE HEURISTIC
MODEL

This study grew out of a desire to simulate the behavior
of time-dependent high Reynolds number flow through the
superposition of discrete viscous vortices. Each vortex ele-
ment begins as a point of circulation surrounded by a sea of
potential flow. For a finite time after the initiation of the
motion and before significant overlap of adjacent rotational
regions occurs, the flow can be regarded as closely approxi-
mating a solution of the Navier-Stokes equations. In this
manner one can study some aspects of the effect of viscosity
on the stability and behavior of point vortex arrays. To test
this idea we chose to study the decay of a viscous vortex pair
using the exact solution of Oseen' as our vortex element.
This is the simplest nontrivial configuration we could think
of and is representative of a flow which is commonly ob-
served as an aspect of more complex flows.

During the course of our study we were deflected some-
what from this initial objective when we discovered that the
simple superposition of Oseen vortices contained much use-
ful information about the low Reynolds number, fully over-
lapped, flow field which prevails at large time. We were led
to confront the problem of constructing an asymptotic ex-
pansion about the Stokes solution for a vortex pair in order
to understand better the large time behavior predicted by the
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heuristic model. An attempt of this sort was carried out by
Kambe and Oshima® for the case of a vortex ring. Expanding
in inverse powers of the time about the Stokes solution of
Phillips® they found a type of nonuniformity at large radii
similar to the well-known Whitehead’s paradox which arises
when the Stokes solution for steady flow past a sphere is
extended to second order. Following the procedure used for
the sphere, they improved their solution by the method of
matched asymptotic expansions. A similar problem arises in
the expansion of the vortex pair. Guided by the results of the
heuristic model we find that it is possible to construct a uni-
formly valid expansion to second order by adding a drift to
the first-order Stokes solution.

The velocity components u, v and the vorticity ® of the
Oseen vortex solution are given by

u= — (Ly/2ar%) (1 — e~ 7/*"),

v=(Tx/27P)(1 —e~ """,
o = (I'/4mvt)e = 774, 2)

(1)

The flow invariant is the circulation at infinity, I, and the
Reynolds number is I'/v.

The subject of the present investigation is the problem of
the decaying vortex pair flow in the plane. First a heuristic
model is established. Use is made of the fact that the Oseen
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FIG. 1. Schematic drawing of the heuristic model showing moving Oseen
centers with coordinates a(¢) and + b(¢). Att=0,a=0,and b= b,.

vortex solution fulfills both the Navier—Stokes equations and
the Stokes slow-flow equations. This is a consequence of the
fact that along circular streamlines, the nonlinear vorticity
convection terms have no effect. Upon superposition this
property of the Oseen solution is lost. However, such a solu-
tion still fulfills the Stokes equations that are linear.

Figure 1 depicts the heuristic model in which we consid-
er the superposition of two equal but counter-rotating Oseen
vortices, I' and — I, situated at x =a and y = + b. The
model parameters I, @, and b are allowed to be functions of
time and the vortices are free to move under their mutual
induction. The model flow field is given by

u=(—(y—br/{27[(x—a)*+ (y — b)*1})
X (1— e~ -+ (y-b)’]/m})

+{+b5)T/27l(x —a)* + (v + 5)71})
X(l__e—{[(x—a)’+(y+b)’}/4vt}), 3
v=((x—a)[/{27[(x —a)>+ (y — 5)*1})

X (i —e x—a+ (- b)=1/4w})

—((x —a)T/27[(x —a)* + (y + 5)*]1})

X (1 — g~ (=@ + G+ &7 Vavdy )
o = (T/4mvr) (e~ H&x— a7 + =571/ 4v}
__e—{{(x—a)z+(y+ b)Z]/4vt}). (5)

The above flow satisfies the Navier-Stokes equations in
the limit z— 0, where the vorticity field is confined to a pair of
vanishingly small circles near (x,y) = [a(0), 4+ b(0)]. The
assumption that the system is force-free requires that the
motion for ¢ < 0 corresponds to a pair of point vortices trans-
lating at their inviscid speed of mutual induction. At =0
viscosity is “turned on” and the vortex pair decays.

For the slow flow emerging at #— o, a similarity solu-
tion is expected. Such a solution is obtained from (3) to (5)
by letting & go to zero while keeping the product I'b con-
stant, i.e., by the classical procedure to obtain a dipole. In
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terms of the similarity variables

E=r/(4v)'%, O=tan"'[y/(x—a)], (6)
the result of this procedure is

u=/[I/p)/8mvt]

X[(1 —2sin? @) (1 —e—¢')/E2 + 2sin* Ge 7],
(N
v=[(I/p)/8mvt]
x{2sin@cos O[(1 —e~¢)/E2—e=%1}, (8)
o = [(I/p)/m][2/(4v1)**]sin Ofe ¥, 9)

where u and v are Cartesian velocity components and
P=(x—a)+).

The usefulness of the model hinges on the fact that, even
though the connecting solution is only approximate, it can
be assured that the limiting expressions for t =0and ¢t = «
belong to the same solution, by noting that the hydrodynam-
ic impulse I /p in the x direction remains the same for all
times. Its value can be obtained by considering the flow at
infinity associated with the creation of a vortex pair. The
well-known result is

I + o +
—=f f udxdy =2T(8)b(t) = 2T4b,, (10)
P —w Jew

and implies an inverse relationship between the model pa-
rameters I'(¢) and b(?), which are yet to be detemined.
Here, T, is the initial magnitude of the circulation for one
vortex and 2b, is the initial spacing of the vortices. That the
impulse is conserved in the presence of viscosity can be easily
shown using a control volume analysis.* The time-depen-
dent Reynolds number, in the sense of Cantwell,* becomes

Re = (I/p)*t='3/w. (11)

Actually, the heuristic model represents a crude match-
ing (or just a “patching”) of the two limiting solutions:
There is no finite region of overlap. However, the only one
logical “matching point” can be found. To determine this
point, the integrated vorticity or circulation in the upper half
plane

+ o + oo + oo
C(t) =f f wdydx = f u(x,0,t)dx
—x JO — > ’

is calculated for the two limiting solutions. Note that the
model parameter I'(#) and the circulation C(¢) are equal
onlyat¢t=0:

For small time, C is constant as all vorticity is concentrated
in the core.

For large time, C becomes time dependent as a conse-
quence of the dominant effect of vorticity diffusion across
the plane of symmetry. Its asymptotic behavior is obtained
by an elementary integration of ( 12) with @ introduced from

(9): L] 4 I/p
C,(t) = f f dydx = —+——.
@ —wJo i (4mve)'/?
The obvious matching point is the time 7 *, where C, = C,,
that is,

(12)

(14)
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FIG. 2. Unsteady behavior of the heuristic model; (a) postulated time de-
velopment of total circulation in the upper half plane, C(¢); (b) corre-
sponding path of Oseen centers. See also Fig. 8.
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FIG. 3. Unsteady structure of the heuristic model; (a) Svs t/t*, (b) the

function b(¢) and the trajectories of the y coordinates of the point

of maxi-

mum vorticity and point of flow reversal in a frame of reference moving with

the vortex pair.
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FIG. 4. Vorticity contours for the heuristic model. Here 7 = ¢/t *.

3215 Phys. Fluids, Vol. 31, No. 11, November 1988

B. Cantwell and N. Rott

3215

Downloaded 08 Nov 2007 to 171.64.160.102. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



=01

40

B = 2.8 40 /—’-—__\ t= 0.8

B =059

20 ° 2.0 ~20 ° 20
/ T b
t=02 M ﬁ t=15

FIG. 5. Streamlines for the heuristic model in a frame of reference moving with the vortex pair. Here r =t /2 %.

t*=b2/mv, (15)

and the value of C to be used is C; or C, (¢), depending on
whether ¢ is smaller or bigger than ¢ * (see Fig. 2). The heu-
ristic model is now defined.

Next the function C(¢) is evaluated from (12) using the
general expression for u(x,0,t) from (3):

u(x,0,t) = {(I/p)/27[(x —a)* + b?]}
X(l ___e——[(x——a)3+b3]/4w). (16)
With the variables
B=>b/(4vt)"?, (= (x—a)/b, (17)
the expression for C becomes

C) = [U/p)/2mb |F\(B), (18)
where F, (/) is given by the integral
e pra+eny __db
Fl(ﬂ)=f_w (1—e” * )ng- (19

Differentiation of F, (/) with respect to § gives an elemen-
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tary integral that can be evaluated and then integrated with
respect to 3; the result is

8
FB) = 2&?] =7 dB = 7 erf(B). (20)
(¢}

The value of C for >t *, C,,, is immediately recovered by
approximating F,(8) = 28(m)"/? for 0. Then (18) be-
comes identical with (14). For t <t *, Cin (18) is identified
with C, in (13). This gives an implicit equation for b:

b /by = erf(B), (21)

that is solved as a function of time by introducing ¢ * in the
definition of 5

B=_\/i(£)1/2£. (22)
2 \¢ b,

The resulting curve of B vs ¢ /t * is plotted in Fig. 3(a). The
curveof b /b, vst /t *is plotted in Fig. 3(b). The slow change
of b /b, for t £t * is reasonable, but the abrupt decrease to O at
t = t *, with a vertical tangent, is evidence of the inadequacy
of the model around 7= r*, where the asymptotic value
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b = Oisreached prematurely. Flow patterns drawn in Figs. 4
and 5 using these results show the transition to the final
Stokes similarity pattern by the combined effect of the
spreading and merging of the two vortex cores. These flow
patterns can be compared with the trajectories of the vor-
ticity maximum and point of zero streamfunction given in
Fig. 3(b). The fore and aft symmetry of the vorticity and
streamfunction patterns in these two figures is further evi-
dence of the inadequacy of the model which does not permit
any straining or distortion of the finite size vortex cores ex-
cept for a flattening that occurs along the plane of symmetry
as the vortices begin to overlap. Note that the horizontal
coordinate is measured in terms of [x — a(¢) ]/b,and a(z) is
not yet determined.

. CALCULATION OF THE DRIFT FROM THE HEURISTIC
MODEL

The determination of a(¢) from the heuristic model that
now follows has led to some unexpected results; the search
for a more rigorous foundation of these results has in turn led
to a systematic approach to the problem, to be treated in the
subsequent sections. First, however, the heuristic approach
is brought to a conclusion.

At time £ == 0, each of the concentrated force-free vorti-
ces moves in the x direction with the velocity that is induced
by the other vortex, namely, I'y/47b,. As the determination
of the drift velocity by the induction law becomes very in-
volved in viscous flow, it will be calculated here in a different
way, namely, by use of the momentum balance in the y direc-
tion, applied to the upper half plane.

In plane incompressible flow in which (i) there is a sym-
metry line (the x axis, say); (ii) the flow is at rest at infinity;
(iii) there are no external forces or submerged bodies that
can support a force; and (iv) the velocity is finite every-
where, it is found that the resultant force on the symmetry
line in the y direction, F,, is zero. Upon accounting for the
conditions (i)-(iii), the pressure-momentum balance in the
y direction gives for this quantity,

dJ
F =—, 23
» = ‘ (23)
where J is in the y component of the hydrodynamic impulse
in the upper half plane

J o + o0 o
—=J J- vdxdy:J Vdy, (24)
p 0 — o 0
and Vis given by
“+ oo
Vpt) = f vGeptdx, V(02) =0, (25)

Conditions (ii) and (iv) permit the evaluation of d¥ /dy as

—dx=u(— o) —u(+ ) =0,

av _ J‘“"au
ay —w Ox

(26)
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and in consequence, J = 0 and F, = 0, that is,

+ o
f ( —p(x0,t) + u ‘—79) dx
w ay

+ o
= ._J p(x0,8)dx + plu( + o) —u( — )]

— o

+
- f p(x,0,0)dx =0. 27

To apply this result to the flow defined in Sec. I, the
pressure is calculated from the momentum equation on the
symmetry line.

1 dp _du du

—_— +u—— vV,

p Ox at ax

with u inserted from (3). The expression for du/dt contains
three terms:

(28)

du Jdu du ; du
e a—+b—. 29
at  Otlas da + b 29
It is a property of the heuristic model that
ul v, (30)
3t ab

because keeping a and b constant defines a system fixed with
the Oseen vortex elements. In such a system Eq. (30), which
is the linear slow-flow equation, is fulfilled at every point.
The second term represents the contribution of the field
translation, relative to the fluid at rest at infinity, with the
velocity da/dt= U:

o Gh)
da ox
The third term, found from (3) after a brief calculation, is
j,ﬂ _pu b _@’_‘_ (32)
ab b x—a dx

This expression remains finite as du/dx = O for x = a, and is
symmetric with respect to x — &, in contrast to (31), which
is antisymmetric. Thus (32) produces [in contrast to (31) ]
an antisymmetric pressure distribution, which does not have
a net contribution to the integral (27). The moment about
x = a associated with this term is infinite, a reminder that
inevitable flaws of the heuristic model do exist. On the posi-
tive side, however, is the fact that the whole distribution
(32) vanishes fort = 0and t = — oo; thus its omission does
not affect the limits that are securely connected by the use of
the flow invariant I /p.

The upshot of this discussion is an approximation to
(28) in which all terms are eliminated except those that oc-
cur also in the inviscid case, so that p fulfills Bernoulli’s
equation

p(x,0,t) = p(Uu — 3u?). (33)

Introducing this result in (27), and with  given by (16), the
following formula for U emerges:

U= [I/p)/4mb?|F,(B)/F (), (34)
where
“+ oo e N dg
F( )=J (1_ B(l+§))2 . 35
2 B W e (1 +§2)2 ( )
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FIG. 6. Drift velocity of the vortex pair, U = da/dr; U, is the inviscid veloc-
ity.

Differentiating F, () with respect to /3 gives

i”;;;iﬂmﬂ(ﬁﬂ) —F(®] (36)
[see also (20)]. Integrating (36) gives
Fy(B) = \F,(\2B) — F5(B), (37)

2 (P . 2 .
Fy(B) = (287 — 1)—f e~ dB + 2 pe7".
’ J7 Jo Jr
(38)

This is used together with (20) and (21) for the numerical
evaluation of (34).

The limiting value U, for ¢ = 0 is obtained for S = «,
F, =1, and F, =, and is in agreement with the inviscid
convection speed:

Uy= (I/p)/8mb3 . (39)

The limiting function U, for - «, f—0 is obtained from
(34) using the approximations

F.(B)=Q2/m)B,

(40)
F(B)=QNT)(4/3) (2 - D>
With the definition (17) of B, it follows that
U, = [U/p)/12mvt (2 = 1). (41)

The existence of this “asymptotic drift,” which is dimension-
ally and physically compatible with the asymptotic slow-
flow solution, is an unexpected flow property of the heuristic

~ In (t/t*)

00 —

.0 .5 1.0 1.5 20
t/t*

FIG. 7. The total displacement of the vortex pair. Note that the total dis-
placement is proportional to the initial vortex Reynolds number.
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FIG. 8. Trajectory in space of the Oseen centers.

model. Its examination based on a more rigorous analysis
appears desirable.

It is interesting to note that U,; has been expressed in
(41) without the explicit use of ¢ *, the matching point of the
heuristic model. In Fig. 6, however, U /U, is plotted against
t/t*. From (34), with (39) and (15), it follows that

U _2b% F(B) _ 2FB)

- (42)
U, b* FB) [FBY)
and the asymptotic value is
U - * *
__*‘i=_____27(‘/§ D1* _ng7tt (43)

U, 3 t ot
At the matching point ¢ = ¢ *, Uis continuous but has ajump
in slope.

The total displacement of the vortex pair since the onset
of the motion is found by integrating U with respect to ¢ to
give (a/by) (v/T'y) shown in Fig. 7. The resulting trajectory
of b(t)/b, vs a(t)/b, is shown in Fig. 8. For ¢ > ¢ * the total
displacement is given by
an _ [0.024 +0.0221n (-’—)] Lo

b, t* v
which expresses two important properties of the heuristic
model: first, that the total displacement of the vortex pair at
a given time is linearly proportional to the initial vortex
Reynolds number; and, second, that the displacement in-
creases logarithmically without limit.

The positioning of the origin of coordinates under the
vortex center in Figs. 4 and 5 implies that the flow variables
plotted in these figures are represented in a moving frame of
reference whose origin is located at x = a(¢). In this frame
there is an opposing wind — da/dt that causes the vortex
pair to be enclosed in a circular streamline of finite radius.
The data in Fig. 6 have been used to provide the drift velocity
at various times required for the streamfunction plots in Fig.
5. When plotted in this fashion, Figs. 4 and 5 are “universal”
in the sense that they are independent of the physical con-
stants of the flow. The instantaneous streamlines plotted in
the absolute coordinates of the heuristic model represent a
Stokes dipole without a closed streamline.

The first step toward a more rigorous treatment of the
drift is taken in the next section, by the accurate calculation
of the second-order pressure.

(44)
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lll. CALCULATION OF THE SECOND-ORDER
PRESSURE FIELD

The viscous incompressible time-dependent flow equa-
tions are written for plane flow in terms of the streamfunc-
tion:

9

u= s . 45)
dy ox (
The vorticity is
du v
= —— 4t —= V4 46

@ e + ™ L4 (46)
With the help of the quantity

P=p/p + (4’ + 1), (47)

and with @ defined in (46), the Navier—Stokes equations are
written in the form

—%=%+vv2u—m, (48)
—%:%l/—+vv2v+uw (49)

It follows by using (45) and (46) that P fulfills the Poisson
equation

V2P=w2_ﬂ§2_ﬂéﬂ, (50)
dx dx dy 9y
By use of the identity
v2(¢w)=¢v2m+mv2¢+2(ﬂa—“’+ﬂi“i), (51)
dx dx dy

a more convenient form of Eq. (50) is obtained:

ViP* = |(0* + YV0), (52)
where
P*=p/p + }(4’ + V* + o). (53)

The flowis determined by the convection—diffusion equa-
tion for the vorticity obtained from (48) and (49) by elimi-
nating P:

szw——éa—)=u@- ua—w.

ar dx dy
For Stokes flow, the vorticity fulfills the linear part of Eq.
(54), i.e., a homogeneous diffusion equation:

wWo, — 9o, _ 0,
ot
and the streamfunction follows from (53).
Linearization reduces Eqgs. (52) and (53) for the pres-
sure to

V?p, =0. (56)

In the case where no singularities are admitted and there are
no bodies submerged in the flow, (56) has only the trivial
solution p, = const, or a linear function of space to be dis-
cussed presently. The viscous vortex pair problem for 7> 0O is
in this category, and the nontrivial leading-order pressure is
the quadratic approximation, p,. All terms in (52) and (53)
are quadratic except the pressure; thus the quantity p, fol-
lows from these equations upon introduction of the linear

(54)

(35)
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solution (subscript 1) in all other terms. Let p, be split into
two parts. The first part corresponds to the homogeneous
solution of (52), which is P¥ = const ( = 0). Thus the cor-
responding part of p, is

(1/p)pa, = — §(ui + 01 + o19)). (57)

The second part of p, is obtained from the particular solution
of the inhomogeneous equation (52) for P¥. Thus this part
of p, is governed by the equation

(1/p)Vp,, = (] + ¢, V?0,). (58)

For the problem at hand, namely, the asymptotic similar-
ity Stokes flow solution with the vorticity (9), the stream-
function ¢, is found by differentiation with respect to y of the
Oseen vortex streamfunction. Thus ¢, is proportional to the
x velocity component of the Oseen flow, given in (1). With
an additional term added to accommodate the drift antici-
pated in Sec. I, ¢, is written in terms of the similarity vari-
ables (6) as follows:

¥ = [ /p)2mfavt [ [(1/E) (1 — e~ ¢7) + ¢of ]sin 6.
(59)

The drift is proportional to the constant ¢, which is not yet
determined. The velocity vector has the radial and circum-
ferential components

Lo _ _Iip (__1_ 1—e ¢ ) )
“n = r 30 2w(4wt) §2( e ) tajcost,
(60)
_ _9%
“o = ar
I/p 1 _ g2 _ g2 .
= 2n(dve) (}_Z(I_e Rk _c")sme’
(61)

and the vorticity (9) renamed w, is given here again for
completeness:

w, = [QI/p)/m(4vt)>?]f,sin 0, fi=£Ee 5. (62)

The meaning of the constant ¢, requires some clarifica-
tion. The system used in (59)—-(62) has its origin in the cen-
ter of the Stokes dipole, and the drift appears as a relative
wind, uniform at infinity. The velocity and vorticity fields of
the heuristic model (3)—(5) are written as functions of the
coordinates (x — a(?),y), where x is measured from an origin
fixed in an inertial frame with the fluid at rest at infinity. The
vortex pair moves in the frame (x,y) with the velocity da/dt.
Thus in effect we have made in (59) a change to a system'in
which there is a relative wind, — da/dt, a system that has
been already defined at the end of Sec. II'by coordinates used
in Figs. (4) and (5). As the relative wind, — da/dt, decays
with time, the system is noninertial, and in consequence the
deceleration of the uniform wind must be balanced by a de-
caying pressure field

(1/p)p, = [T /p) /27 (4v) "%t 3/2]cof cos 6. (63)

This is a linear function of x that is a solution of the homoge-
neous equation (56). Upon transformation back to the iner-
tial frame, the first-order pressure is restored to zero.

It remains to introduce (59)-(62) in the pressure equa-
tions (57) and (58). For the first part, straightforward alge-
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bra gives

1 1/p)* [ 1
p=(/p)[

— —_ (11— —&%y2
%7 (4ave)? 8§4( ")

+ 4?2 (1 —e%)cos 20
1 &2 1 _gz _E2
e e (l—e ¢
+(4 P ( e”s")

+% (1 +§2)e’52) (1 —cos 20)] . (64)

The first two lines of this equation contain the terms consid-
ered in Sec. II; the other terms vanish on the symmetry line
y = 0. Introduction of this part of the pressure in the condi-
tion (27) for vanishing force on the symmetry line leads to a
value of ¢, corresponding to the drift given in Sec. ITby (41),
namely,

co=3%H2—-1)= —0.276. (65)

The determination of the second part of the pressure
involves a solution of the Poisson equation. This operation
has no counterpart in the pressure calculations of Sec. II.
The discussion of this significant point is deferred: first, the
calculation of p, is completed.

In calculating the inhomogeneous term in (58), it is
advantageous to replace V2w, by dw,/dt, using (55). The
resultant equation is

(1/p)Vz6(py)
= [(I/p)¥/(4mvt)*1V,(£)(1 — cos 26), (66)
where
V,(£) =2e % —2e%
+ (1 =2cy)E% 5 4 cfe ¢ (67)

The Laplacian in (66) has been transformed to the similarity
)

1 U/p)? [ 1 e 1
1, _ ey
o P st T T T
1 1 1
16£° 4 3

This result contains a genuine surprise, namely, that all
terms resulting from the drift, i.e., those multiplied by ¢,
have canceled! This means that p, is the same for all values of
the drift.

The first step in the discussion of (75) is the verification
of two immediate consequences. First, the pressure integral
along the whole symmetry line (27) has to vanish for p, as
given by (75). This is easily verified, particularly as the less
common integrals that occur have already been evaluated in
previous sections. Second, the formulas for the pressure,
(47) and (50), must be invariant under translations of the
frame of reference, including the case of nonuniform motion.
For the full Navier—Stokes equations this is known to be
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(1 —e~2%7) ——-e—§2+——e‘252+—;—§2f (e 5 —e— %Y %)COSZH].
4

coordinates. The solution of (66) is anticipated in the form
(1/p)py, = [ /p)*/ (4mvt)*1[ho(§) — hy(£)cos 20 ],

(68)
where h, and A, fulfill the equations
d*h, 1 dh,
+——=V, s 69
FTEIATT » (&) (69)
d’h, 1dh, 4
— 22— —h,=V,(&). 70)
& Tea e e (
The function A, is determined by the two integrations
Ho= [ &V, de ho=[&Hode, ()

and with the help of the homogeneous solution of (70), & ~2,
the inhomogeneous solution is obtained, using standard
methods, by the integrals

H2=f§—'V,, de, h2=§‘2f§3}12d§.

Constants of integration are determined by the requirement
that no singularities occur for £ =0. The result of the
lengthy calculation is

h0= _i.f (e_gl_e‘zgz)_d.é;
2 Jg

(72)

§
+%e‘§l+%(l+§z)e‘52 (73)
and
h2=%§2j: (e“fz—e‘zfz)ii;ﬁ—+-é-e‘25’
N uslg2 (1—e™)
+%(1+§2)e‘§2— 4°§°2 (1—e %), (74)

The sum of the two parts determined thus far gives the final
formula for p,:

(e—fz_e—zg’)_i_%f (e—gz_e—zgz)_d_g__’_( 1 (e ¢ —e— %)
¢

§  \47

(75)

true.>® The verification for the present case is straightfor-
ward, using (47) and (50).

IV. THE EXACT VALUE OF THE ASYMPTOTIC DRIFT
VELOCITY

It seems, at first, that the plan to find an improved value
for the drift by the determination of p, has failed. Moreover,
the results cast serious doubt on the usefulness of the heuris-
tic model. The way out for both difficulties is found by con-
sidering the second-order pressure p, at infinity.

It is noted that at infinity the flow is not vortical, in spite
of the presence of a steadily growing vortical region. Outside
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this region contaminated by vorticity, potential flow is
found; the potential flow pattern drifts relative to the fluid at
rest, but is otherwise not disturbed by the unsteadiness
caused by the growing vortical region of fixed impulse. The
first-order potential ¢,  that corresponds to the stream-
function ¢, given by (59) evaluated at infinity is now written
in the inertial frame as’

I/p x—a(t) _1/p cosb
2r [x—a®))*+y* 27 '

¢lco (x’y!t) = — r

(76)
The pressure is given by the classical Bernoulli equation,
that is,

£= _ﬁ—_;_(uz‘i_!ﬂ)=Uasu—-_;—(u2+vz);

P at
(77)

where U,, = da/dt has been introduced. The second-order
pressure at infinity is now obtained from the first-order ve-
locity components. With the velocity derived from the di-
pole potential (76), Eq. (77) gives the second-order pres-
sure at infinity as
Pre _y 1/p cos20 (1/p)?
p 22 P 8t

The quadrupole component of the pressure contains the un-
known drift.

Now the pressure (78) is compared with p, at infinity
found from (75), an expression that is valid over the whole
vortical field. At infinity, (75) gives

P2o — (I/p)?* cos 26 _ (I/p)2
p 64r*vt 8t

In this expression the coefficient of the quadrupole term is
determined. Its value is part of the pressure solution ob-
tained from the Poisson equation (52). Comparison of (78)
and (79) gives the result

U, = UU/p)/32mvt. (80)

This exact result has to be compared with (41). In terms of
the coefficient c,, which is a nondimensional measure of the
drift, the exact valueis ¢, = — 4, whichis only 10% less than
the value (65) obtained from the heuristic model.
Actually, the fact that the heuristic model allows for the
drift is the explanation, in retrospect, for its usefulness. The

(78)

(79

02
01
(L 2y 0
v p -01
e? -02
-03
-04
-05
-06
-07
.08 U N . . . PR
-5. -4 -3. -2. -1. 0. 1. 2. 3 4. 5.
x - aft)
172
(avt)

FIG. 9. Pressure distribution along the plane of symmetry (y =0). The
pressure derived from the heuristic model [Eq. (64)] is shown by the dot-
ted line for ¢, = — 0.25 and by the dashed line for ¢, = — 0.276. Solid line
is the exact second-order pressure [Eq. (75)].
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specific value of the drift is obtained by applying Bernoulli’s
equation (77) on the symmetry line, where it is expected to
give a rough approximation only. Nevertheless, this pres-
sure, together with the condition that the resultant force on
the symmetry line vanishes, leads to an error of only 10% in
the drift. Therefore the distribution of p, on the symmetry
line according to the exact result (75) and the pressure de-
rived from Bernoulli’s equation, that is, (64) for 6 =0,
should show reasonable agreement. This is confirmed in Fig.
9.

The result (80) can be confirmed using the drift velocity
derived from the integral representation of the vortex cen-
troid in the manner of Kambe and Oshima?® or of Stanaway,
Cantwell, and Spalart.® However, from the point of view of
the present analysis of the whole asymptotic field, the logical
next step is to solve the second-order vorticity transport
equation and to show that the existence of this solution re-
quires the same drift as was found from the far field pressure.

V. THE SECOND TERM OF THE ASYMPTOTIC
SOLUTION

Thefirstapproximationtothe vorticity, @,,isasolutionof
the homogeneous diffusion equation (55). The second-order
vorticity @, has to balance the convection terms in (54) asso-
ciated with the first-order solution. Thus w, fulfills the inho-
mogeneous equation

dw, _ . Ow,
ot ox dy

The second-order streamfunction ¢, follows then from the
Poisson equation

V2¢2 = — a)z. (82)

The solution has to fulfill the condition that the vorticity
vanishes exponentially at infinity.

This scheme involves the solution of two linear equa-
tions: the inhomogeneous diffusion equation first, and the
Poisson equation second. It turns out that a different method
in which the order of these operations is reversed offers con-
siderable advantages. The method is first given here in full
generality, starting with the Navier—Stokes equations in the
form (48) and (49). Let a flow quantity B be defined as
follows:

wWp, — (81)

B=~a£+vw=%f——vvzz//. (83)

at

With the help of this quantity, (48) and (49) are rewritten
as follows:

— é.l_, — a_B_ — Vo, (84)
ox dy
9P _9B _ o (85)
dy ox
Elimination of P leads to a Poisson equation for B:
dw dw
VB =u— — 86
o + £ (86)

It is noted that if P is known as the solution of the Poisson
equation that results from the elimination of B, i.e., as a
solution of Eq. (50), then inserting those values of Pin (84)
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and (85) gives equations for B that fulfill the integrability
condition. Thus the perfect differential dB is known, and it is
possible to obtain B by only one integration from either (84)
or (85), without the need of solving (86). Conversely, when
Bisknown from (86), then P can be found with one integra-
tion only.

It is not intended to take advantage of this connection
between P and B here for the analysis that follows, but is
pointed out that any condition that was found to be neces-
sary for the existence of P will have its counterpart in a con-
dition for B. This assures that the subsequent analysis using
B will lead to the same value for the drift as was found in Sec.
IIL.

The equations (86) and (83) for the second-order quan-
tities B, and ¢, are

V232=u,-é-w—‘+v,~€9)~l—,

ox a
J
'VV2¢72 - -“9’%‘% = — Bz, (88)

(87)

and it is seen that now the operation that ultimately leads to
the determination of the second-order streamfunction in-
volves first the solution of a Poisson equation and then the

solution of the inhomogeneous diffusion equation.
The inhomogeneous term in the first equation (of both
schemes) is
dw,

“ dx T

do, _ (T/p)>

89
dy (4mve)3 (89)

V(&)sin 26,

where
V&)= (1/EDH (1 —e e 5 —e 5 —cf%e 5. (90)
This suggests a solution of (87) of the form

B, = (T/p/4mvt)’q,(£)sin 26. on

The resulting differential equation for ¢, has the same homo-
geneous part as Eq. (70) for h,; the inhomogeneous term in
the equation for ¢, is V' defined by (89) and (90), which
replaces ¥V, in (70) defined by (66) and (67). The solution is
obtained by use of the scheme (72), and the result is

q2=—-}4'52+i(1 : )e“zf’

4 8\ 22

Lot [Teroemny £
+— (e7° —e™ ") —=

2§ £ 3
‘%%(1+‘;‘z‘)e‘§l+c;§2+c2§—z. (92)

The last two terms are the homogeneous solutions. The
choice of the fixed limit of the integral in (92) at infinity
assures B,( o) = 0 for ¢, = 0. Regularity at the origin re-
quires that

C2=]16+Co/4. (93)
For nonvanishing ¢,, the leading term of B, at infinity decays
algebraically:

B, =c,[(T/p)?/4mvt | (sin 26) /7. {94)
One more condition to be fulfilled by the solution is given by
the relationship between B and # at infinity, which accord-
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ing to (83) holds for all orders when the vorticity at infinity
vanishes exponentially:

= a¢2w
2o at *

Looking at (94) and (95) makes it clear that a nonvanishing
constant ¢, means logarithmic variation of i, with time,
which is impossible. Thus ¢, = 0, a condition that can be
fulfilled thanks to the drift term in (93) by setting ¢, = — }.
This agrees with the result of Sec. IIL

The possibility that (95) implies a time variation of ¥,
which is caused by moving coordinates, is excluded, as such
a term would be varying with 36 and thus affecting the third
harmonics. For the same reason, the drift implies a correc-
tion of the first-order streamfunction ¢, given by (59), and
this affects the solution of the second-order equation (88)
for ¥,. From the point of view of a systematic asymptotic
expansion, the drift is a type of second-order effect which
resembles what has been called elsewhere’ a “switchback,” a
first-order effect determined by a second-order condition.

The expression (91) for B, suggests the following form
for the solution ¥, of (88):

¥, = [(T/p)?t /(4mvt)?]g,(£)sin 260 = ve’g,(£)sin 26.
(96)

The quantity € defined by the second expression for ¢, is

€= (I'/p)/2mw[dvt = (1/4m)(Re)*/% 97)

The second expression for € in (97) uses Re defined in (11).
The first-order streamfunction (59) has, in terms of ¢, the
form

¥, = veg,(£)sin 6, (98)

so that € is the small parameter of the asymptotic expansion.
Introduction of (96) and (91) in (88) leads to the fol-
lowing differential equation for g,:

g+ (1/E+26)g +4(1 — 1/EDg = —4q,.

Two homogeneous solutions are £ ~Z and a solution that is
regular everywhere:

8, = (V/EH(1—e ) —e 5 (100)

The solution (100) is recognized as a Stokes quadrupole,
which is obtained from the dipole solution by differentiation
with respect to x. It is a valid part of the second-order
streamfunction, and has an unknown coefficient. Its value is
affected by a shift of the origin of the first-order streamfunc-
tion in the x direction, as can be seen by the following expan-
sion for a function ¢, that is shifted by x,:

(95)

(99)

It
1 (x = Xoh?) = U, (ED,) — %o %S;’Ll SO (1))
The second term on the right-hand side is a Stokes quadru-

pole.
The inhomogeneous solution of (99) is obtained by the

following scheme:

Gz=e~¢’f§—*e§’q2d§, g = —4§~2J§3sz§,
(102)

where g, has to be introduced from (92) withc, =¢, =0,
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¢, = — 1. As the homogeneous solution exhausts the per-
missible algebraic behavior of the second-order streamfunc-
tion, it is no loss of generality to require that the particular
inhomogeneous solution of (99) given by the operations
(102) should have exponential decay at infinity. The corre-
sponding function g,, obtained after lengthy calculation, is

2 2 1 2 2
e ¢ —e % —— (e~ —2e %
82 ( )+ ) ( )

T g2
l 2(_[‘5 —-52_ _251 ié‘———l—l 2)
+4§ o (e ¢ ) I3 2 o8

3
1 f (e=¢'—e-x") &

T £

T+ L —ng ey 9
Lioga(L 1oy —e-s)
+16log2(§_2 (1—e *)—e . (103)

Thisanalysis completely bypasses the use of the vorticity,
yet the expression for the second-order vorticity might be of
some interest. The simplest way to obtain it is by the intro-
duction of the known solution ¢, into Eq. (82). The appro-
priate form for w, expressed with the help of €, Eq. (97), is

w, = (1/)€,(£)sin 26. (104)

This expression and (96) are introduced in (82), and give

g+ (1/6)g; — (4/6%)g, = — 4f;. (105)
The combination of (105) and (99) gives
28g; +48, =4, — q2), (106)
5
4
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FIG. 10. First- and second-order vorticity functions f,(£) and f,(£).
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FIG. 11. First- and second-order streamfunctions g, (£) and g,(£).

which is solved for f:
1 d
ﬁ=qz+—2—§—d—§(§2gz)- (107)
The result is
1/ o 1 _,
fi= =gt
b (e e )
16¢£2
1 z_ng ey dE
——£&%e (1—e *)—=
8§ o 3
3 1 2 g2

The vorticity functions F; and F, and the streamfunctions G,
and G, are plotted in Figs. 10 and 11.

VI. OUTLOOK

The next question that arises is whether the same
scheme that was followed for the determination of the sec-
ond-order term permits the continuation of the asymptotic
expansion to higher orders. The need of a “switchback” at
second order clearly shows that the continuation is not a
matter of routine. A sufficient number of degrees of freedom,
i.e., undetermined constants, is needed at every level to make
the continuation possible. However, not every free constant
can be used when the need for a switchback arises. The free
constant obtained at second order was interpreted as the in-
determinacy of the first-order solution. It can be shown that
this constant cannot be used to assure the existence of the
third-order solution, and that it remains undetermined even
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in the hypothetical case that the third-order solution exists.

That the need for switchback continues can be seen from
the discussion of the Poisson equation for B, Eq. (86). The
inhomogeneous term in this equation vanishes exponentially
at infinity, and it can be easily verified that its integral over
the whole flow plane is always zero. Thus a solution of the
Poisson equation exists; tofind it, a harmonic analysis of the
inhomogeneous term with respect to the angular coordinate
6 has to be performed first. To each harmonic component
belongs a term in B that decays algebraically at infinity. Ac-
cording to Eq. (95), a corresponding term appears in the
streamfunction; it is found by integration with respect to
time and thus decays slower with time than the correspond-
ing term in B. The critical question is whether this time be-
havior is admissible. This was the difficulty encountered at
second order, and a more detailed discussion shows that the
same problem will arise at all orders, Actually it turns out
that for the odd and even orders of B all odd and even har-
monics occur in the inhomogeneous term up to the order of
B. Thus, at third order, a new type of switchback is found: a
solution appears that is proportional to the first harmonic,
i.e., to the dipole, unless its coefficient happens to be zero or
is canceled by a free constant that is disposable. Certainly no
time-dependent dipole component is admissible, as the di-
pole moment is proportional to the impulse.

In an asymptotic analysis, it is not sufficient to show the
existence of higher-order solutions; the possibility is needed
to accommodate more and more information from earlier
times. The only information used in the asymptotic analysis
presented here is the fact that the impulse is an invariant.
Thus the flow might have been caused not only by a vortex
pair, but also by any superposition of vortex pairs that were
produced before a certain time ¢ = 0. An attempt to reach
this multiplicity of possible solutions going backward in time
is certainly hopeless.

What hasbeen shown in this paper is that for all flows that
are force-free for ¢ > 0, the leading-order asymptotic solution
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involves the drift, and that a second-order solution exists,
which already contains a certain indeterminacy connected
with the positioning of the origin of the asymptotic first-
order solution. This information is particularly useful as a
final check on a numerical analysis that was performed pro-
gressing forward in time.

Work applying the same kind of analysis to the vortex
ring is in progress. Both Kovasznay and Lee® and Kambe
and Oshima? anticipated the asymptotic drift of vortex rings.
Recent numerical calculations by Stanaway, Cantwell, and
Spalart® show that the large time solution approaches the
drifting Stokes dipole. The computed drift velocity is unique
for a variety of initial conditions and is equal to 0.003 7038
X (I /p)/(vt)*'?. Using the expansion procedure outlined in
this paper, the asymptotic drift of a vortex ring was deter-
mined tobe (7/2407/22'/2) (I /p)/(vt)*'?, which agrees to
five significant figures with the computed value. This excel-
lent agreement strengthens our faith in both the computa-
tion and the analysis.
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