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ABSTRACT

A class of impulsively started,

dependent point source of momentum are considered.

flows, each initially at rest in an unbounded fluid.

axisymmetric, laminar jets produced by a time

The jets studied are different

The time dependence of the

point source of momentum categorizes the specific type of jet under investigation.

The study of these flows is conducted at three levels of detail discussed below.

1. A generalized set of analytic creeping flow solutions are derived, along with

a method of flow classification.

2. From this generalized set, there are three specific creeping flow solutions

which are studied in detail: the vortex ring, the round jet, and the ramp jet. This

detailed study involves derivation of vorticity, stream function, entrainment

diagrams, and evolution of time lines through computer animation. From the

entrainment diagrams, critical points are derived and analyzed. It was found that

flow geometry was dictated by the properties and location of these critical points.

In addition, these critical points undergo bifurcation and topological transformation

with changing Reynolds number. These bifurcations and transformations represent

a form of transition for which specific Reynolds numbers were calculated. A state

space trajectory was derived describing the topological behavior of these critical

points. This state space derivation was based on continuity, and boundary
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conditions, and was performed prior to actual solution of the momentum equation.

From this state space derivation it was found that three states of motion are univer-

sal for all axisymmetric jets.

3. The third level of study examines the axisymmetric round jet which was

solved numerically using the unsteady laminar Navier Stokes equations. These

equations were shown to be self similar for the round jet. The boundary conditions

used in this numerical solution are the steady solution of the round jet discovered

by Landau (1944), and the unsteady dipole. The numerical method utilized a

second order central difference scheme solved by an implicit matrix method. The

matrix solver was a direct method which used a new forward-backward technique

that greatly reduced storage requirements. The numerical method solved the round

jet up to a Reynolds number of 30 for a 60 X 60 point mesh. From the data gen-

erated, computer animations were produced. These animations showed each of the

three states of motion for the round jet, including the Re -----30 case.
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Chapter I

INTRODUCTION

Fascination with fluid motion has been an activity of mankind since earliest

history. The photograph on the front page of this thesis is from the Newgrange

passage grave in the Boyne Valley, Ireland. The tomb was constructed by preli-

terate rule-of-thumb engineers around 2500 BC (almost as old as the Great

Pyramid of Egypt), and is covered with swirls and spirals that might easily be

described by the topological methods used in this thesis. One can imagine these

ancient engineers looking into the Boyne river not far from the tomb, seeing vortices

and eddies forming in the water, and while contemplating both their beauty and

complexity, reproducing them on the walls of the tombs. Our work is a continua-

tion of this ancient fascination, employing newly developed techniques for under-

standing how and why these shapes are formed.

1. Objectives Of The Research

The fundamental philosophy of the research was to study flows of such simple

geometry that they would be mathematically tractable and yet of sufficient com-

plexity that many of the basic motions of viscous unsteady fluid flow would appear.

This led to the study of an infinite fluid with a point momentum disturbance.

Three simplifying assumptions that were made in studying this flow are:

incompressibility, Newtonian fluid, and axisymmetry.
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2. History Of The Study Of Axisymmetric Jets

The earliest analytic realization of this type of flow was by M.J.M. Hill who

published the spherical vortex solution of the Navier Stokes equations in 1894. The

next major analytic breakthrough was the exact solution of steady round jet found

by L.D. Landau in 1944 with an independent discovery by H.B. Squire in 1951.

Probably the first numerical study of the unsteady round jet was performed by Ma

and Ong in 1971. Their method was formulated in cylindrical coordinates and car-

ried out with the primary aim of computing the propagation of the jet front into

stagnant fluid. Following this work a linearized analytic solution (Stokes solution)

of the unsteady jet was found by C. Sozou in 1979. This was preceded by a numeri-

cal solution in spherical coordinates by C. Sozou and W.M. Pickering (1971) of the

unsteady round jet up to a Reynolds number of 12.5. The work of Sozou and Pick-

ering advanced understanding of the axisymmetric round jet but failed to address

several key aspects of this flow. Most important of these was that, while the flow

had been solved in terms of the unsteady stream function, none of the flow topology

becomes apparent unless the flow is studied in terms of its unsteady particle paths.

It was found by B. Cantwell in 1980 that the topology of particle paths undergoes

critical point bifurcation and transformation at certain key Reynolds numbers. This

discovery was made using the linearized Stokes solution found earlier by Sozou.

The application of critical point theory to fluid mechanics was in itself not a new

idea. Poincare himself had made applications of this theory to fluid study (circa

1880). More recently, Oswatitsch (1958) and Lighthill (1963) classified certain criti-

cal points which can occur near a rigid boundary. A.E. Perry and B.D. Fairlie

(1974} were one of the earliest researchers to use critical point theory in the context
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of A.A. Andronov's (1971) p, q state space maps for studying fluid mechanics.

Cantwell used the p, q map as a means of quantitatively understanding the criti-

cal point bifurcation process as a form of transition. Questions were raised as to

whether the technique could be applied to a numerical computation of the nonlinear

round jet and as to the role of nonlinearity in the transition process. This is where

the present work entered the tale of events.

3. Problem Approach

It was felt early in the study that a different approach from that of Sozou and

Pickering would have to be taken. Our own goal was to fully describe the transi-

tion process and to push the Reynolds number as high as possible based on available

computer resources. Though our method is extremely stable it is also expensive (the

usual tradeoff), and was stopped at Re -- 30.0

could be computed at added cost. This value is

although higher Reynolds numbers

more than double the highest Rey-

nolds number previously reported by Sozou and Pickering, which was Re -- 12.50.

Our prime objective was to apply topological methods to the numerically solved

axisymmetric jet. As with the linearized solution, it was found that the numerical

solution undergoes only two (topological) transitions with Reynolds number, and

after the second and last transition (which occurs at Re ---- 7.54} the topology

remains unchanged at all higher computed Reynolds numbers. It should be

emphasized that this topological invariance is a consequence of the assumption of

axisymmetry, and it is suspected that a non-axisymmetric round jet would be sub-

ject to an infinite sequence of transitions and concomitant great topological com-

plexity. As shall later be discussed, since the round jet has a similarity solution its
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stream function or particle paths for a given Reynolds number can be represented in

a single plot which is valid for all time. Since, at a given Reynolds number, the

entire flow history can be very compactly stored and manipulated, it was apparent

that this flow lent itself well to making computer animations. These computer ani-

mations were found to be indispensable aids in understanding the flow dynamics

and as teaching aids.

4. Cases For Study

Another aspect of the study was that, with the exception of autonomous flows

like the round jet and special cases like the Hill's spherical vortex, jet flows cannot,

in general, be represented by self similar coordinates. On the other hand, it was

found that all jet flows are self similar in the creeping (Re --_ 0) approximation

where the Navier-Stokes equations reduce to the Stokes equations. This discovery

essentially opened up a whole new line of inquiry in devising solutions to these

creeping flows. In this thesis, two creeping flows were studied in considerable detail,

along with the round jet. These flows are the vortex ring and its complementary

flow, the ramp jet. The family of creeping flows was also studied in a wider sense

and generalized solutions for an infinite variety a flow types are provided. The

discovery of these generalized solutions, coupled with the capability of computer

animation, has now provided the investigator with a new form of fluid experimen-

tation. Though the computer can never replace the laboratory in studying fluids,

the computer can provide very "clean" flows in the context of no outside perturba-

tions or unwanted boundary conditions.
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Chapter II

PROBLEM DEFINITION

1. Fundamental Assumptions and Equation Formulation

The Navier Stokes equation is cast in the following form:

D._._ __ -V___P + _.+ v V 2 ii* (2.1)
Dt p

where _ is the velocity vector, _ is pressure, p is density, _" is the body

force vector, and v is kinematic viscosity. Equation (2.1) already contains

assumptions of incompressibility, and a Newtonian constitutive relation with

constant viscosity. It is desired to convert Eq. (2.1) into a vorticity form so as to

remove pressure and the body force from the equation.

The following vector identities will be used in the development and are given

without proof:

1
y X (V X _r) -- "TV(_ " _)-_" V_" (212)

v x vf = o (2.3a)

v(v x 7) = o (2.3b)

V 2_ = _7 (V'i_)-V X(X7 X 1]) (2.4)
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v x (yx_ = _'(v. z-1-_(v-_')+(_- v)Y-(_" v)_ (2.5)

where y, "2" are vector quantities, and f is a scalar.

For an incompressible fluid the continuity equation becomes

v-_ = o (2.,)

Vorticity is defined as

v x _" = _ (2.7)

Combining equations (2.7} and (2.3b) shows that the vorticity is solenoidal

v •_ = o (2.8)

The body force vector is assumed to be derivable from a potential function

_" = - v _ (2.9)

where ff is a scalar function. Equation (2.2) is employed replacing _ with ii"

and combined with (2.1) via the material derivative convective term. Equation

(2.9) is also combined with (2.1), along with (2.7) giving

a---_-_rx _ = -V[--P +'_+ (iriS)] +vv 2_. (2.10)
Ot p

The curl is taken of (2.10). The identity of (2.3a) eliminates all of the gradient

quantities of (2.10), and use of (2.4) with (2.8) and (2.8) proves that curl and

the Laplacian commute for this particular problem. The result becomes

a t X7 X (_'X U) --" vX72_ • (2.11)
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Equation_(2.5)is now employed with (2.6) and (2.8)

the material derivative, changing (2.11) into

along with the definition of

D__._ --__ (3" V) 7 + u _72 _ (2.12)
Dt

Equation (2.12) is the basic equation for this study in vector notation• Spherical

polar coordinates are selected as the appropriate coordinate system• Let

---- wrer+wO eo +w_ _¢ (2.13)

(2.14)

where er,

uo, and u¢

e0, e_ are spherical polar unit vectors, and cor, we, we, u,

are scalar quantities. In spherical polar coordinates, (2.12) becomes

OW r

Ot
• X7u r- 7" _7 Wr + (2.15)

+tt
,, 2w, 2 O(w o sin O) 2 Ow_ ]\7"w_ r2 r 2 sin 0 O0 r2 sin 0 0¢ J

Ow o
w --'-

Or

"_ • _7uo - 7. Vwo + 1( w_u,- uo_, )
r

+

+ //
Owr wo 2 cos 0

O0 r2 sin 2 0 r2 sin 2 0 oO

(2.16)

0_¢ 1

0"--'/- = _'V%-_"Vw_+--(_u_-uCw_) +
r

(2.17)
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+
cot 0

r
[ wc_uo - wgu _ } +

+ V 2 Owr 2 cos 0 Owo w¢_ ]V2_+ r2sin0 0_b + r2sin20 0¢ r_sin20 J

These equations should be used in conjunction with the vector potential equation

so as to ensure that continuity (2.6) is satisfied. The vector potential is defined

as

= vx . (2.1s)

By identity (2.3b) it can be seen that continuity is satisfied. Equation

(2.18) is expanded into spherical polar coordinates giving

1 [ 0(B_sin 0) OBo ]u r = (2.19)
r sin 0 00 0¢

1 I 1 OBr O(rB4_)]u 0 --- (2.20)
r sin 0 0¢ Or

1 [ O(rBo) OB.]uo -- (2.21)
r Or O0

where

= B, _ + B 0 _0 + B_ _ (2.22)

The definition of vorticity (2.7) is similarly expanded giving
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1 [ O(u_sinO) Ouol= (2.2.3)
r sin 0 O0 04

1 [ 1 Our O(ru¢) ]we -- -- - (2.24)
-- r sin 0 04 Or

1 [ O(ruo) Our]= - (2.25)r Or O0

Equations (2.15) to (2.25) represent the complete set of equations necessary to

solve the unsteady nonaxisymmetric incompressible Navier Stokes problem.

However, it is plain that these equations are very complex and a further

simplification is desirable. This next approximation is the assumption of axisym-

metry

and no swirl

0
-- --- 0
O_

u_ -- 0

Both of these approximations are often lumped together as the assumption of

axisymmetry, without specifically mentioning "no swirl" which in principle could

occur in an axisymmetric problem. With this approximation equations (2.24),

(2.23), (2.21), (2.15), and (2.16) disappear. The remaining set becomes
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-- - ur 0"-"_"+ + + (2.26)Ot r O0 r

+ [cot O wo u o + u V2_%
r r2 sin 2 0

1 O(B¢_ sin 0)
U r

r sin 0 00
(2.27)

U0 ---
1 O(rB¢,)

r Or
(2.2s)

1 [ O(ruo) Our]- - (2.29)-- r Or O0

2. Governing Equations

A further simplification is possible if (2.26) is combined with continuity (2.6)

to eliminate some terms and if the Stokes stream function is defined as

_2(r,O) --- rsin 0 BO (2.30)

To simplify notation, subscripts are dropped with the following redefinitions:

03_b --- _, Ur _ it, U0 --- V.

The equations of motion become

0 0 (r_) + 0
0--7 (rco) + _r -_ (tw) (2.31)

u 1 a 1 O { ¢osinO} + -_( rw}r 00 sin 0 00
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1 O_
u -- (2.32)

r2 sin 0 00

- (2.3_1
r sin 0 Or

0 (rv) Ou (2.34}= o'7 oo

3. Self Similarity

To bring about even further simplification it is desirable to find a self similar

form. Self similarity can be deduced by finding a transformation for which the

Navier Stokes equations and the boundary conditions are invariant. To find this

transformation, (2.1) is cast into a Cartesian tensor form

where x; is a Cartesian coordinate. The Navier Stokes equations can be sub-

jected to a stretching transformation by the following change of variables:

I

u i -- _u s. (2.36)

I

z_" = _x s- (2.37)

t = _ t' (2.3s)

!

p = ; p (2.30)

I

g; -- _g; (2.40)
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One may insert equations (2.36)- (2.40) into (2.35) giving:

0 ui t , Oui,
( ot''5- + o: j

"7

(9 u i
t t+ (;)9/ + _ (9_i °_i

(2.41)

For (2.41) to be invariant under the transformation the following must be

true:

_2 &
5_ --a~ = fi---=_ =--r (2.42)

Replacing (2.42) into (2.36)= (2.40) forms the following Lie group:

t

u i = 5 ui (2.43)

~-l t

x i --- a xi (2.44)

~-2 t

t = ot t (2.45)

-2 r

io = ,_ p (2.40)

gi ---- a gi (2.47)

By the Pythagorean theorem the spherical polar radial coordinate has the

same invariance as (2.44):
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~-1

Combining (2.48) with (2.43) and (2.32) the stream function transformation is

~-1
= a 4' (2.49)

The transformation of (2.43) - (2.49) shows that the Navier Stokes equation

will admit a solution that is invariant under the stretching (2.43) - (2.47). How-

ever not all solutions of the Navier Stokes equation have this property of invari-

ance and to determine whether a particular solution has this property (without

actually solving the equations) one must also examine the invariance properties of

the boundary conditions. The boundary conditions of an unsteady axisymmetric

jet are as follows.

For the far field r --* c_ the solution goes to an unsteady dipole:

¢ -- p2tRe2 sin 2 9 . (2.50)
4_rr

For the near field r _ 0 the solution goes to the steady Landau Squire solu-

tion:

2 sin 2 0 ]¢ = vr A-cos0
(2.51a)

where A is a parameter which depends on the Reynolds number, Re.

Re2 A+4 A A 2 IA+I1
16_r 3 A2-1 2 In A- 1

(2.51b)
[ J
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By inserting (2.48) and (2.45) into (2.50) and (2.51a), it can be seen that

these equations satisfy the transformation of (2.49). It can now be concluded

that an axisymmetric round jet solution can be found that is invariant under the

stretching transformations of (2.43) - (2.47).

The analysis just performed can also be done on the linearized version of

(2.35) which is

coul -1 cOp cO2ul

cO"-f" -- p cOxi + gi + v cOx.i cOxy (2.52)

The analogue of (2.42) for the linear case is

(2.53)

The consequent group is

!

U i _ _ Ui (2.54)

X i --- Xi (2.55)

2

t -- /3 t I (2.56)

P --- mp

/3
(2.57)

gi
?

-- _ g_
/3

(2.5s)
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Without the convective term the problem is underdetermined leaving two

coefficients _ and /_ in the group of (2.54) - (2.58). This is a happy conse-

quence since the additional parameter /_ allows one to satisfy a wider class of

boundary conditions. For this reason the linear (creeping) solutions are invariant

under the two-parameter stretching transformation (2.54) - (2.58). Now that the

invariant group is established it is possible to derive the self similar forms. Both

(2.45), (2.44) and (2.55), (2.56) lead to:

~-l t

Xi Ot Xi
-- constant (2.59)

The Pythagorean theorem with judicious selection of a

(2.59) into the self similar spherical polar radial coordinate

constant transforms

r

= _7 (2.60)

By similar reasoning, (2.49) and (2.45) give

___0 = (; -1¢,
1 1

t7 (&-2t, )7

-- constant . (2.61)

Again by appropriate selection of a constant, (2.61)

dimensionless self similar stream function G (_, 0)

can be converted into a

1 1

_,(r, 0) = t; ,__ t2 c (_,o) (2.62)
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where f in the case of a jet would be the strength of the momentum source.

This process can be performed on all the dependent variables of the

transform group. A more generalized system of self similar dimensionless vari-

ables uses the Stokes solution group of equations, (2.54) - (2.58), where

= _ 2m-, (2.63)

This in turn gives the following dimensionless self similar variables

3 1

u (r, 0) -- /_ v -_ t 'n-_- U(_, 8) (2.64)

3 1

(r,o) = P J_ tm=_v(_, o) (2.65)

1 1

_(r, 0) /_ v- _ t m+_= G (_, 0) (2.66)

oJ(r, 0) = /_ v-2t m-1 W(_,0) (2.67)

4. The Creeping Flow, Re _ 0 Analysis

The variables of (2.64) - (2.67) are equivalent to those derived from the

Navier Stokes solution group of (2.43) - (2.47) for the case m -- 0 and when

inserted into the Navier Stokes equations eliminate the time. This shall be done

in Chapter V where the finite difference equations will be derived. Of more

immediate interest is the Stokes equation. The equations of (2.31) - (2.34) can be

used to describe creeping flow or Stokes flow if the nonlinear convective terms of
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(2°3]) is removed. Theseequations,when combinedwi_._(2.64) - (2.67), give

"I2 w] 1o[ ow10_ _ O_ + _ 3 sin 0-- O_ + sin 0 00

_ + (,,,-I)_2] wsin20
= 0 (2.6s)

1 OG
u = (2.8o)

_2 sin 9 CO9

-1 OG
V ---- (2.70)

sin 0 0_

CO2G c9 [ 1 cOG] (2.71)-_ w - cO_2+ -_ sin 0 cOo

This system of equations can be solved, in general, and this is done in Appendix

A. This chapter will focus only on three particular solutions which are the dipole

form solutions for m ---- -1, 0, 1. The dipole form is assumed; let

W(_,0) ---- sin0S(_) (2.72)

Equation (2.68) with (2.72) substituted becomes

d_"-'_ _ d_ "_ + m- 1 S = 0 (2.73)

Before proceeding with the solution of (2.73) let us define the Reynolds

number which first necessitates examining the particle path equations.
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dr
-- _-_ u (2.74)
dt

dO v

dt r
(2.75)

Substituting (2.60), (2.64) and (2.65) into (2.74)and (2.75) gives

- Re2U--- (2.76)
dr 2

where

dO _. Re 2 __.V (2.77)
dr

r = In t (2.78)

and the Reynolds number is defined as

Re
/_ t"

2
tt

1

2

(2.7g)

With Reynolds number established we now solve (2.73) by means of the Fro-

brenius method. The details of this procedure are lengthy and are described in

Appendix A. The key boundary condition in all three flows is the dipole of

(2.50). The solutions in terms of dimensionless, self similar vorticity and stream

function along with the Reynolds number are provided for cases m --- -1, 0, 1

which correspond to the vortex ring, round jet, and ramp jet. Also provided is

the forcing function F(t) located at the origin, which acts as a point momen-

tum source creating the flow. F(t) is derived by recognizing that impulse is
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integral of constraint was examined in detail by Cantwell (1081). The precise

mathematics for finding F(t) is found in App. A (Eqs. A-94 through A-103).

We can now sta.te the three solutions for m -- -1, 0, 1:

Vortex Ring, m -----1 A

1

I,l l,) //
F(t) --" P o

A

where 6 (t) -- Dirac delta function, and [ -- impulse.

__ I units L4/T (2.81)
P

1

W(5, 0) -- sin 0 5 4 (2.83)
101r v/'_ e

G(5,0) -- sin20 [ I erf[ _) 14-_ -_ v/_ e ,(2.84)

Round Jet, m---0

............
F(t) -- u (t) o

--- J units L4/_ (2.86)
P
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where _ (t) -- Heaviside step function, and J --_ force.

J

Re "--
(2.87)

(2.ss)

c (_,o)

Ramp Jet, m-----I

I7}' o

._ K units L4/ Te
P

(2.8o)

(2.00)

(2.or)

1

Re -'-
(2.02)

sin 0 1 e -T- 1 1

(2.93)



- 21 -

o)
sin20 {[__ +,] [l_erf[_]] + _1 erf[_]

] __2
1 -7-

(2.94)

These equations provide the basis for our analytic studies in this work. In

passing, it should be noted that in (2.87), (the Reynolds number for the round

jet), there is no length scale which can be derived from the governing flow

parameters. This identifies the round jet as a very special case. It should also be

pointed out that the round jet is exempt from the controversy over Eulerian and

Lagrangian frames of reference for observing flow structure. This was shown in

Cantwell (1981) and is a consequence of the invariance of the round jet under a

stretching transform as was shown earlier in this chapter. It should be pointed

out, however, that this property does not exist for the cases of m _ 0, except

in the creeping limit. It is clear now that the round jet is a very special problem

which lends itself well to analysis. Its near and far field behavior are analytic

and because of its self-similar nature it is exempt from many of the mathemati-

cal difficulties encountered in most fluid studies. This makes the round jet an

excellent vehicle for investigating the more complicated aspects of viscous

unsteady flow.
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Chapter HI

STATE SPACE AND CRITICAL POINTS

In this chapter we shall develop techniques for isolating and classifying criti-

cal points. The topology and Reynolds number behavior of these critical points

will be examined. The critical points are derived from the particle path equa-

tions which repeated from (2.76) through (2.79) are

d___ = Re 2 U- _ (3.1)
dr 2

d_.00 = Re 2 V (3.2)
dr

Re

1

(3.3)

1. Description Of Critical Points

Critical points occur at coordinates _c, 0¢ such that (3.1) and (3.2) are

both equal to zero. Equations (3.1) and (3.2) may be expanded in Taylor series

around the critical point as
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d_ - a(_- _) + b(0- 0_) (3.4)
dr

dO
-- = c(_-G)+d(O-o,)
dr

(3.5)

where a,b,c, and d are constants. These equations can be restructured in the

form used by Poincare" and Andronov (1971):

d_ dO= = dr (3.6)
a(_-_¢)+ b(O-Oc) c(_-_c)+ d(O-Oc)

If these equations are autonomous (r does not appear explicitly except in dr), one

may cast the equations into a second order differential equation:

d 2( d_
dv2 + p --_v + q _ -- 0 (3.7)

or

d 20 dO

_:Zard---z-+p-:-+qO = 0 (3.8)

where

p = -(a + a) (3.9)

q -- ad- bc (3.10)

At this point the problem takes on a new perspective since it is recognized

that (3.7) and (3.8) are both equations for the damped harmonic oscillator where
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both equations). The parameters p and q can be found by using (3.9) and

(3.10) and derivatives of (3.1) and (3.2), i.e.,

O [ d_] 5ffi5c (3.11)a= 0-_ T
0--_0,

_[_1_:_ (3.,2)b = gg"-'_ -'_"r
0_0c

_0----0,

= _-_1_1_:_, (3.14)

Equations (3.7) and (3.8) have the same characteristic equation

-2

+p_ + q -- 0 (3.15)

The solution of this quadratic equation is

1 { p:t:V_p 2 4q} (3.16)- -_

Using (3.16) we can divide up p, q space into particular regions which will
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have distinctive topologies. Figure 3-1 shows these particular regions in p, q

space with their critical points displayed. This plot shown in Fig. 3-1 goes by

many different names, i.e., p, q space, stability diagram, Poincare'map, etc.

The four critical points of prime interest in this paper correspond to values

of p __ 0. The first of these is the stable focus which exists for q > p2/4. The

stable focus represents a region in p, q space where (3.16) is imaginary.

Next is the star point for p2 _.. 4q where the radical of (3.16) goes to zero.

The stable node is for p2/4 > q > 0, which represent a real value of (3.16).

Finally, the saddle point is for q < 0.

As an example of how one of these topologies is formed we will examine the

case of the stable focus. In this case the solutions of the two equations (3.7) and

(3.8) are behaving as decaying sinusoidal functions, both equations with the

same frequency and rate of decay. These equations can be coupled together to

form a Lissajou figure where two coordinates decaying as damped sinusoids form

a two dimensional spiral, spiraling inward with time. In the case of the stable

center (p ---- 0) solution (3.7) and (3.8) are not decaying, but are pure sinusoids.

In this case one has a family of concentric closed curves (circles or ellipses).

2. Universality Of The p, q Trajectory

The location and identification of critical points of solution is only part of

the analysis. As shall soon be demonstrated, it is possible to predict the flow
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trajectory in p, q space prior to solution of the momentum equation. Having

such a p, q trajectory, one can anticipate the flow topology and the manner in

which it will change with Reynolds number without having to solve difficult

equations. This method is developed by first combining (3.1) and (3.2) with (3.4)

and (3.5)

v - eRe 2

where a, b, c, and d are as yet undetermined.

Continuity is the principal equation needed for this analysis. In spherical

polar coordinates, continuity is

10_(r:u) + 1 o
r Or sinO O0 (vsin O) = 0 (3.19)

Equation (3.19) is easily converted to nondimensional, self similar form by using

the earlier velocity definitions, giving

0U 0V cos___0 V = 0 (3.20)
2U+ (--_ + _ + sin 0
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We can now take (3.17) and (3.18) with appropriate derivatives and combine

them with (3.20) giving

sin0[2a(_-_¢)+2b(0-0¢)+_(2+ a+d)] (3.21)

+_¢o_0[_(_-_)+d(0-0_)] = o

In examining the p, q behavior of critical points at arbitrary locations in the

physical space of the flow it is sufficient to study three possible cases in the upper

half plane (which is effectively the whole plane, since the problem is symmetric

by definition), namely 0---0, 0< 0< lr, and0--_r for any _.

Case 1:0 c--O

02
cos 0 _ 1 - --

2

sin 0 _ 0

The boundary condition due to axisymmetry

c = 0. Inserting the above into (3.21)

is: V ---- 0 therefore by (3.18)

[3 i [02}2_(_-_)+2b0+_ 2+_+d +_d 1-T. = O .



- 30 -

Now let 0 --_ Oc, _ _ _c, utilize (3.9), the above equation becomes:

3

p = d+ _ (3.22)

Now combining equations (3.9), (3.10), (3.22), and keeping in mind that

c = 0 for this case, we find that

q __-- ( 21 f ]]p__[ ] 3_2p[ (3.23)
_ z j( j2

Case 2:0 < 0c < _"

For this case sin 0 is always nonzero. Let 0 --. 0c, _ -* _c in (3.21)

which becomes:

3

P = 2 (3.24)

Case 3: 0c -- _r

cosO -1+ 2
2

sin 0 _ _r- 0

Boundary condition due to axisymmetry: V --- 0, therefore by (3.18) c --- 0.
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Insert the above in (3.21) and one obtains:

{3 I [ }2a(_-_c)+2b(O-_r)-.I-_. ._+a+d +_ 1 - (n'-0)22 = 0

Now let 0 -.-* 0¢, 6, ..-* 6,c and utilize (3.11) and the above equation becomes

p = d + _3 (3.25)
2

which is the identical result found for the case of

equation as (3.23) will be generated for 0¢- _r.

0c -- 0. Likewise the same

This should be no major

surprise since nowhere in this p, q theory has a direction-of-flow been assumed,

so 0 c _ 0, 0c _ _r should have identical trajectories. The trajectories

derived from (3.23) and (3.24) can now be plotted, see Figure 3-2.

We are now in a position to make some rather sweeping statements about

the flow. For example: The class of axisymmetric flows under study cannot form

unstable nodes, unstable loci, or stable centers. A stable focus will only form

off the axis of the flow (p -- 3/2). Likewise, a star point can form off-axis at

( p, q ) -- (3/2, 9/16) and on axis at (1, 1/4). The latter point corresponds

to zero flow. These statements can be made before the momentum equation is

considered. The results come solely from continuity and similarity which is a

consequence of the nature of the time dependent force which drives the flow.
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Figure 3-2. State Space With Axisymmetric Trajectory
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Figure 3-2 is valid for all self-similar axisymmetric flows.

However, for a specific flow such as the round jet there is some extraneous

information that will have to be removed. (Just as there is in a generalized solu-

tion to a differential equation prior to application of boundary conditions.) In

determining the relevant parts of Figure 3-2 it is recognized that the geometry of

a round jet is bracketed by two limiting aspects: The near field aspect, which is

the steady Landau-Squire solution (2.51a), and the far field aspect, which is the

unsteady dipole (2.50). Each of these solutions can be cast into the particle path

form of (3.1) and (3.2) through (2.69) and (2.70), these equations in turn can be

operated on by (3.11) - (3.14) which provide us p and q through (3.9) and

(3.10). The results are the following.

Landau-Squire Solution:

1 2 _¢sin 2 0

Re 2 A - cos 0 (3.26)

where A is defined in (2.51b), p ---- 5/4, and q = 1/4.

Unsteady Dipole:

sin 2 9
- (3.27)

4_r_

where p _ 7/4, and q ---- -1/2. See also Cantwell (1981, pp. 378-379). Both of
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these points are on the parabola given by (3.23) which describes critical points

on the axis of the flow.

3. Topological Transition

In getting from (p, q) -- (5/4, 1/4 ) to (7/4, -1/2) the trajectory

must pass through (3/2, 0) where the line p -- 3/2 for the case of "off-axis

critical points" intersects the parabola for "on-axis critical points." Now the

question arises whether the line p ---- 3/2 can have negative or positive values

of q for the round jet.

It has been found in other studies on critical points that the total number of

node points subtracted from the total number of saddle points is an invariant of

the flow. If the p, q trajectory starts out at (5/4, 1/4) with a stable node

and ends at (5/4, 1/4) with a saddle point, then somewhere in route two node

points will have to be produced so that the total remains unchanged. The inter-

section at (3/2, 0) provides such an opportunity since just as the on-axis para-

bola crosses from the node domain to the saddle domain in Fig. 3-2, it can pro-

duce through bifurcation new stable nodes on the p --3/2 line. However,

one should recognize that the two off-axis stable nodes actually represent a single

critical line centered on the axis of the jet. When viewed from a perspective

looking along the axis of the jet, the off-axis critical line is a ring whose parame-

ter increases with Reynolds number. So the process of bifurcation involves the
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splitting of a single on-axis stable node critical point into an off-axis stable nodal

line. This change in the topology of the flow represents a form of transition since

the changes occur at specific values of the Reynolds number.

If we redraw Fig. 3-2 for the specific case of the round jet, see Fig. 3-3, we

see that at q -- 9/16 the off-axis critical point (line) becomes a star point and

then for q ) 9/16 the off-axis critical point becomes a stable focus. This topo-

logical transformation at (p, q) -- (3/2, 9/16) represents a second transition

after the first transition already mentioned.

4. The Three Flow States For The Round Jet

It is now recognized that the round jet has three possible topologies or states

which are partitioned by two transition Reynolds numbers Re 1 and Re 2. Let

us describe these states:

State 1: 0 _ Re ( Re 1

One on-axis stable node.

State 2:

State 3:

Re I __ Re < Re 2

One on-axis saddle point and, one off-axis stable node crit-

ical line forming a ring around the axis of symmetry.

Re 2 < Re
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One on-axis saddle point and, one off-axis stable focus crit-

ical line forming a ring around the axis of symmetry.

As the reader can now see, the method of p, q analysis is very powerful, for

without having defined or solved a momentum equation we know all the possible

topologies of viscous axisymmetric round jet and all the possible modes of topo-

logical transition.

Before closing this chapter we should examine a paradox that arises from

this method. The state of rest (zero flow) is described by the on-axis star at (p,

q) -_ (1, 1/4). This may not be immediately apparent to the reader unless it is

recalled that the coordinate system from which the p, q trace is derived ( _, 0 )

has time embedded within it (see Eq. 3.1). Therefore if one were to draw a circle

in physical space this same circle would appear to be shrinking in (_, 0 ) space

(like drawing a circle on an inflated balloon and letting the air leak out).

in

tunately the p, q

(p, q)---_ (1, 1/4).

the star critical line at

It so happens that only a star point has this feature of the flow field rushing

a purely radial direction towards the critical point in the center. Unfor-

trace displayed in Fig. 3-3 never reaches the star point at

The only star point admitted by an axisymmetric jet is

(3/2, 9/16) which is off-axis and not representative of

a stationary flow. The closest an axisymmetric jet gets to (1, 1/4) is the

Landau-Squire solution of (5/4, 1/4). What compounds the paradox is that
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the Landau-Squire solution admits the zero flow case, Re ---- 0, A -* c¢ but its

p, q is still (5/4, 1/4). In other words the limit Re --* 0 corresponds to

a topologically different flow from the case Re ---_ 0.

Lastly, we should address the question of nonautonomous flows, that is,

flows where the Reynolds number is time dependent. The p, q method of

analysis can be used in a different manner on nonautonomous flows. There is

nothing that prevents one from freezing the particle paths for a given time, utiliz-

ing equations (3.11) - (3.14), and calculating an instantaneous p, q. If one

presupposes, as an assumption, that the self similar coordinate is valid for nonau-

tonomous flows of all Reynolds number (which is true in general only as Re -*

0), then a trajectory identical to Fig. 3-2 can be produced.

The difficulty with nonautonomous problems is that the particle path equa-

tions are constantly changing. In both the autonomous and nonautonomous

problem one can take the particle path equations (3.1) and (3.2) and generate a

field of vectors of unit length which would show the direction of particle paths at

a given point and at a given instant, tunnel model). A plot of these vectors is

called an "entrainment diagram". The entrainment diagram in the autonomous

problem does not change with time. Therefore in the autonomous case if one

takes a particular point and follows its trajectory in time, its trajectory will

always be tangent to the vectors of its entrainment diagram.
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This trajectory of a particular point through time will be referred to as an

"integrated particle path". However, in the nonautonomous problem the entrain-

ment diagram is constantly changing. One can take the entrainment diagram of

time t 1 and overlay it with a particle path of 0 _< t I <_ t2 where times 0

and t2 mark the end points of the particle path trajectory. The vectors on the

entrainment diagram need not be tangent to the integrated particle path trajec-

tory except at the point of the particle path trajectory that was made at

t 1. Each of these instantaneous entrainment diagrams will have a flow topology

with critical points that can be studied in a p, q context.

However, this p, q context is different from the autonomous example

because time can play a part. One must recast (3.4) and (3.5) as

d_
= a (_ - _,) + b(O- 0_) (3.28)

d5

dO
- _ (_ - _) + d (0 - 0_) (3.29)

d,:i

where c_ is just a dummy independent variable. One can produce a "pseudo

particle path" for an instantaneous time by integrating (3.28) and (3.29) in c_.

The "pseudo particle paths" have nothing to do with real particle paths but

merely serve as a vehicle for observing instantaneous topologies. Standard p, q
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analysis can be applied to this "pseudo particle path" and it is from here that

instantaneous nonautonomous p, q values have their basis.
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Chapter IV

LINEARIZED RESULTS

1. Creeping Flow Particle Path Equations

In Chapter II the linearized solutions in terms of vorticity and stream func-

tion are developed for the cases of the vortex ring, round jet, and ramp jet. In

Chapter III the chief methods of analysis were developed in terms of the particle

path and p, q plot. As the reader is probably aware, in unsteady fluid

mechanics particle paths are the most desirable means for displaying fluid

motion. All three of the linear flows appear as simple dipoles in the stream func-

tion and vortieity. In terms of these variables much of the flow topology and

influence of critical points is not apparent. We shall use Eqs. (2.69), (2.70),

(2.76) and (2.77) so that the particle path equations become

where r--- In t.

(2.89), and (2.94)

d_.._ = Re 2 egg _ (4.1)
dr _2 sin 0 a0 2

dO Rd aG

dr _ sin 0 0_

The stream functions derived in Chapter II

are inserted into (4.1) and (4.2) giving:

(4.2)

Eqs. (2.84),
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VortexRing(m---1): Re ---- I7_] 2 0

d_ Re 2 cos 0

dr 21r_ 2

e 4

-/ ,,7
(4.3)

dO Re 2 sin 0

dr 4_r_ 3

-£

-( (4.4)

Round Jet (m = 0):

1

0

d_ Re 2 cos 0

dr 2a-_ 2 2

e 4

v_ 2
(4.5)

dO Re 2 sin 0

dr 47r_ 3

e 4

2
(4.6)

Ramp Jet (m _- I):

1

Re -- --7
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dO Re 2 sin 0

dr 47r_3

1[ I- 4 V_ 1- --_-- e

(4.8)

It should be reemphasized that the Reynolds number functional form with

respect to time is different for each flow (see Eq. 3.3).

2. Critical Point Analysis Of The Creeplng Solutlons

Equations (4.3) through (4.8) represent the actual equations used to plot par-

ticle paths and locate and characterize critical points. These are integrated

numerically to produce computer animations of the respective flows. Critical

points are found by setting the right-hand sides of the particle path (4.1) and

(4.2) equal to zero, and finding the value of (_c, 0¢) for a given Reynolds

number. The method of analysis is the same for all three flows. The vortex ring

will be used as an example case since it is the most mathematically compact. If

(4.4) is examined, one finds that it will go to zero for 0--0 or where the

expression in parenthesis of (4.4) goes to zero. This expression can be cast as a

transcendental equation for _c.
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1

_e -- 2 In

I
(4.9)

This equation is in an iteratively stable form and quickly converges to a root

_¢ : 3.0224, (which shall be called _¢ ). Where (4.4) goes to zero, so the root

which causes (4.3) to go to zero must also be found to isolate the critical point.

Setting the left-hand side of (4.3) to zero gives

Re2 "- 1 (4.10)

7 4 eosO 

For the on-axis case of 0¢ ---- 0, (4.10) becomes a straightforward function

A

Re = f (_c), until _c "- _ c • At this point bifurcation is possible since (4.4) is

zero for 0¢ _0.

The bifurcation Reynolds number can be calculated by setting _c in (4.10)

equal to _¢. Thus

[I j2]18.1749 (4.11)
0¢ --- 4- arc cos Re

It was found that for 0¢ -- 0, (which is the angle at bifurcation) the Reynolds

number is Re -- 18.1749. This is the first transition Reynolds number (Re 1 as

referred to in Chapter HI). Equation (4.11) also establishes the precise location of
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the off-axis critical point after bifurcation since it provides 8 c for any given

Re and it is known that _c -- _ c for the off-axis critical point.

For the on-axis critical point for Re _> Rel, we continue to use (4.I0)

A

with 0c -- 0, except now _c _c • The method of determining the location

of critical points is the same for the other two flows as just shown for the vortex

ring. Equation (4.11) can be generalized as

0 c _--- + arc cos _ (4.12)

The results of this method when performed on all three flows is shown in Table

4-1.

Table 4-1

First Transition Constants

Flow Type

Vortex Ring

Round Jet

Ramp Jet

M

-1

0

1

_C

3.O224

1.7633

1.2821

Re 1

18.1749

6.7806

3.7386
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One difficulty that is immediately apparent in Table 4-1 is that the values of

Re 1 are beyond the domain of validity for a creeping flow approximation. In

the case of the round jet this is not as bad as it might seem since in Chapter II it

was shown that the topology for autonomous flows is a consequence of continuity.

As shall later be shown, the main consequence of the creeping approximation in

the round jet geometry is that the jet is of shorter length along the axis of sym-

metry, the spreading angle of the off-axis critical points is too large, and the

value of Re1, (and Re2) is different. However, the basic topology in this

approximation is correct. In the case of the nonautonomous flows (ramp jet and

vortex ring), there are more significant problems. As mentioned in Chapter II

these flows are self similar in _ only in the creeping approximation and as the

creeping approximation loses validity so does the use of this coordinate and the

topologies that are a consequence. This fact has been observed by Glezer (1982)

in his experimental work for the turbulent vortex ring. They used the self simi-

lar variable of r/(It) 1/4, (where Iis the impulse), and also found an additional

critical point on the axis of symmetry. Thus the nonautonomous creeping solu-

tion provides only a partially complete topology and transition behavior.

One other aspect of Table 4-1 is that Re I seems to be diminishing as rn

increases. Though it has not yet been determined, it might be found that for

sufficiently large rn, Re I will occur for values that are within the creeping

approximation which would represent very interesting subjects for low Reynolds

number experiments.
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We now return to our example problem of the vortex ring and examine the

situation for Re _ Re 1. The values of p, q can be calculated for the vortex

ring by taking (4.3) and (4.4), inserting them into (3.13) - (3.18) and utilizing

the definitions of (3.11) and (3.12). The resultant equations require considerable

algebraic manipulation and are quite long. However, they can be simplified by

recognizing that in the on-axis case, (0 c -- 0),

solely a function of p. Therefore only p

given by

q is given by (3.23) which is

needs to be calculated. This is

3 Re 2
PO_-----O--- --

2 4_r_
1 _c 1 1 erf[ [ E,¢ (4.13)

As was shown earlier, _¢ is solely a function of Re for 0 e = 0 and can be

found by using (4.10). Next, for 0¢ _ 0 it is already known that p -- 3/2,

so only q needs to be found. The very complicated equation for q is reduced

by recalling that _c -- _e for Oc _ O, and utilizing (4.12). Mter much alge-

bra and lengthy hand computations one finds that

where for the vortex ring:

= F + A Re 4 (4.14)

F -- -0.3209 5

A -- 2.9413 X 10 -s
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Equation (4.14) is the basis for calculating the second transition where the off-axis

critical point transforms from a stable node to a stable focus. This transition

occurs at the parabola shown in Fig. 3-2, which is

O

q = r (4.15)
4

One can now set p ----3/2 yielding q --9/16 and insert this result into

(4.14) giving Re 2 -- 23.4105, which is the second transition Reynolds number

for the vortex ring. The angle 0 c at which the second transition occurs can be

calculated from (4.12). The method used for the vortex ring can be applied to

the round jet and ramp jet -- the results of which are shown in Table 4-2, (Re I

is restated from Table 4-1 for comparison). F and A in Table 4-2 refer to Eq.

(4.14}.

Table 4-2

Second Transition Constants

Flow Type M Re 1

Vortex Ring -1 18.1749

Round Jet 0 6.7804

Ramp Jet 1 3.7386

Re 2

23.4105

10.0909

5.7887

F

-0.32095

-0.14405

-0.11849

A

2.9413 X 10 -6

6.8143 × 10 -5

6.0652 X 10 -4

0 c @ Re 2

(deg)

52.9343

63.1605

65.3468
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For Re _ Re 2 there are no further topological changes for the axisym-

metric problem. As Re --. _ the off-axis critical point remains a stable focus

and its q value goes to infinity as can be seen in (4.14). The off-axis critical

point angle 0¢ goes to _r/2 for infinite Reynolds number as is shown by

(4.12). This, of course, is a consequence of the creeping approximation. For the

limiting behavior of the on-axis critical point p, q values, one uses (4.13) with

Re

for p

_c --4 O0.

eliminated by substituting (4.10).

in the limit of Re ---* 0

The resultant equation will yield values

where _c--* 0, and Re--* c¢ where

The

inserting the respective values of p.

vortex ring limit Re --. 0, (p, q)

and ramp jet limit Re --, 0, (p, q )

of Re --* _ in all three jets

This same procedure can be used in the round jet and ramp jet.

q values can be determined in all three flows by employing (3.23) and

The result of this analysis is that for the

---- (1, 1/4), and in both the round jet

-- (5/4, 1/4) is found. For the case

(p, q) -- (7/4, -1/2). This is consistent

with intuition which would suggest a far-field dipole behavior for all three flows.

Now p, q plots can be drawn for all three flows. These are shown in Figure

4-1. With the p, q plots of Fig. 4-1 and the equations developed in this

chapter, one can describe how the respective flows will behave without integrat-

ing the particle path equations. The vortex ring will have an infinite Reynolds

number at t -- 0 (recall that Re is proportional to l/tl/2). Its off-axis critical

point will have an infinite q ,_,u_ so the flow ..,;, be rolling u_, very rapidly

around the stable focus.
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The critical point will be at 0 c -- 90 ° initially but its angle will diminish

as time progresses just as q decreases. As the q value approaches the star

point on the q -- p 2/4 parabola, the rate of roll-up will be so slow as to be

imperceptible. When (p, q) goes below (3/2, 1/4) and the second transition

occurs (actually the first transition chronologically in the vortex ring), roll-up

will cease altogether, only straining and translation occurs thereafter. As time

progresses, 0c for the off-axis point diminishes until Re -_ Re I is reached.

After this "first" transition, the now simplified topology with one on-axis critical

point revolves with increasing q but diminishing p along the p, q parabola

for the on-axis critical point. Eventually after infinite passage of time the (p, q)

value of (1, 1/4) is attained (the zero flow star) and the flow comes to rest. In

the round jet the p, q trajectory and critical points are static because the

flow is autonomous. This permits the realization of flows which stay in the same

topological state for all time. Thus it is possible to study a state of motion which

is only a transient phenomenon in a nonautonomous flow. The ramp jet is the

complement of the vortex ring (due to Re being proportional to t 1/2 ), as com-

pared to t-1/2 except for the fact that like the round jet this flow also has the

start paradox at (p, q ) -- (5/4, 1/4). The single stable node later bifurcates at

the first transition (which is now chronologically correct). The on-axis saddle

goes to (7/4, -1/2) at infinite time. The off-axis stable node point goes

through second transition to a stable focus and attains infinite q at 0¢ -- 9,9 °

at infinite time. With the ramp jet we can anticipate an initially sluggish flow
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starting to roll up with the rate of roll-up getting faster with time (the opposite

of the vortex ring).
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Chapter V

THE NUMERICAL METHOD

1. Derivation Of The Finite Difference Equation.

In the previous chapters and in Appendix A the Stokes and Navier Stokes

equations were examined in the context of analytic solutions. It was shown in

Chapter II that the round jet (m -- 0) has a self similar solution to the Navier

Stokes equation. The Navier Stokes equation and vorticity definition can be

recast into this self similar form by inserting equations {2.66} and (2.67) into

(2.31} - (2.34) using the self similar coordinate of (2.60) giving

_2 02W + [ 2E" 1 OG E,3 ] O WO_'''_ sin 0 O0 ÷ "2-

F

+ / _2 1 + 10G cos 0

[ sin 20 _sin 0 _0 sin 20

1 COG] cOW+ cotO+ sin 00_ _ = 0 ; (5.1)

-1 [ G2 COZG C92G cOG ]W ---- _asin0 - cO_2 +_ + cotO--ffff. (5,2}

Experience has shown that (5.1) and (5.2) need to be cast into a more gen-
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era|ized form before conversion to a finite difference equation. The more general-

ized form for (5.1) is

h N] 02 Y -_ + [cly

+ [_D]o..Y+[2kE]o_06----y -_- = 0 (5.3)

where

_ o6 oz (5.4)M -- _4 sin 2 0 - 2_ 2 sin 2 0 - _/_ sin 0 00 062

_3
N --" --a sin 2 0 (5.5)

h2

1 [2_ 3sin20 &_ ]B = 2-_ _" + aM (5._)

02a 0a [C -- _3sin20._+_M+a 2_sin20+3/3sin0 06 OZo0 o6

°zl]-_¢os0 _ z+Z-_- (5.7)

2

D -- --_ sin2 0a[ _06]
(5.8)
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a_ [ . _,, 026 06 [, . _ .. ,,. _;_ ,,l' O#

-'_ [

The dependent variables used are

(5.9)

1
w(_,o) = _2 a(_) Y(SO) (5.10)

c(5o) = # (_)z(5o) (5.11)

1 _g 4

c_(_) "-" 4"-'_ _ + 1 - erf (5.13)

_(_) ( I[I1 _ e 4 1 i erf _= 4--7 2 v_ + (5.13)

The equation (5.13) is the radial component of the creeping vorticity solution of

(2.ss).

(2.s9).

The singularity of

Equation (5.13) is the radial component of the creeping stream function of

Both of these relations will be referred to as "nonlinear scale functions".

1/_ in {5.13} is removable as _ ---, 0 because for small

[{] -
angular coordinate for use in mesh stretching

0 and the Reynolds number

The coordinate 6 is an

based on



- 56-

5 = 5 (0, Re) "(5.14)

Equation (5.14)was introduced into (5.1) by the following equations

OW 05 OW

00 00 05
(5.15)

°2w [°5] _°_W°25°W (5.1s)oo2 - _ 0-7 + o_ o5

The specific "theta stretching algorithm" will be discussed later in this chapter.

The more generalized form of the vorticity definition (5.2) is

-- -_ 052od + + + --

[" "1

L _-_ J/ 2]c_, / __0Z __. R_*+
05

(5.17)

2

(5.1s)

~ 1 sin 0 _2 0_Z = _ o-_ (5.1o)

0 2
__ _2 sin 0 (5.'2.0)

fl sin 0 [ 06 (5.2x)

E,- 3 { sinO 025 O_ I_ -- - cos 0
2k 002 0"_

(5.22)

L



- 57-

R -- - _aYsin20 • (5.23)

The variables h and k which appear in (5.3) - (5.22) are at this stage just

dummy variables. If we subject (5.3} and (5.17} to a second-order finite difference

we have the following

(N + B)Y,'+Ij + (N- B)Yi-l,i + [C- 2(N + D)] Y,.j

+ (D + E) Y;,i+l + (D- E) Y,'j-I = 0 ; (5.25)

+ /_+E Z;,j+,+[/_ -E ]Zi, i_, .-- R

(5.26)

--- ih (5.27)

= jk (5.2S)

where i and j are integers marking a particular node in an n × n square mesh.

We can see now that h, and k are step sizes in the _ and 6 direction. The

coefficients N, B, C, etc., are the same as defined for the partial differential

equations in (5.4) - (5.9). The following derivatives have a finite difference

apl)roximation

Equations (5.25) and (5.26) form the basis of a "two step" method of solution

where vorticity is solved for first and then used to solve for the stream function.

Terms _c and 5 will now be defined in a finite difference context
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OZ Z¢+,,i- Z¢-,,i
= 2h (5.29}

oz z_,j÷,- z_z_,
o"7- = 2k (5.30)

Equation (5.29) is employed in (5.7) and (5.9) while (5.30) is used in (5.4) and

(5.7). The equations (5.25) and (5.26) represent the actual finite difference equa-

tions used in the software.

2. Boundary Conditions In The Near Field

At this point we should examine the boundary conditions in the context of

this numerical scheme. Figure 5-1 shows the computational mesh which is n

points by n points, with the boundary conditions as shown in Figure 5-1. The

computational domain is actually a semicircle.

However, if one were to visualize this semicircle as a spread-out Japanese fan

one could imagine taking the pivot pin out of the base of the fan and unfolding it

into a square piece of paper. This is represented in Fig. 5-1 where the radial and

angular component have been mapped into a Cartesian system with the line

_=0

0---0

conditions of vortieity and stream function being equal to zero.

field ( _ = O) , we employ the Landau-Squire solution.

corresponding to the point momentum source. The boundaries at

and 0 -- _r are both on the axis of the jet and have the same boundary

For the near
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The dimensionless self similar stream function of the Landau-Squire solution

is provided by (3.26) which when combined with (5.13) and (5.11) gives

16 _r sin 2 0
limit Z( _,,5) = (5.31)

-. 0 Re 2 (A - cos 0)

where A is defined-by (2.51b).

For the vorticity at _ --. 0, we start with (2.513) and insert this into

(2.34) via (2.32) - (2.33) and then develop an expression for vorticity in physi-

cal coordinates (Eq. A-115 of App. A). This result is cast into a dimensionless

self similar form via (2.67). When combined with (5.10) and (5.12), one obtains

limit Y(_,8) = 16 _'{A 2- 1) sin 0 (5.32)
--. o Re 2 (A - cos 0) 3

Equations (5.31) and (5.32) are the ---. 0 boundary conditions used in the

software although (5.32) needs to be algebraically manipulated to show its

equivalence. It is convenient to tie up loose ends at this point regarding the

parameter

number in

Re --. o¢,

giving,

A of the Landau-Squire solution which is related to the Reynolds

(2.51b). In Fig. 5-2 we see that as Re--. 0, A--. ¢x) and as

A--. 1. Equation (2.51b) can be expanded into an infinite series

_ [ 9+8n] 1 (5.33)Re2 -- _ 9 + 6n A 2n+l16 _r nffi0

From (5.33) we can see the asymptotic expansion in (5.34)
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Re 2 1
lim -- (5.34)

16 lr A--.oo A

If (5.34) is inserted in (5.31) or (5.32) and A ---* cc it can be observed

that the Reynolds number dependence cancels out in both equations as Re --* 0.

While it is straightforward to calculate

difficult to calculate A for given Re.

Re for a given A it is remarkably

No stable implicit iterating scheme has

been discovered for (2.51b}. Because (2.51b) is basically a corner function, one

finds that Newton-Raphson schemes and bisection schemes will fail unless one is

This is due to the fact that for one leg of the function a slightvery careful.

change in

change in

A causes an extreme change in

Re causes an extreme change in

Re while for the other leg a slight

A (see Fig. 5-2}. Therefore if an

interating scheme is tuned for one leg it will fail for the other and no scheme

seems to work well for both. The approach eventually used was to employ a

brute force bisection iterator for small A and to employ the asymptotic relation

(5.34} for large A (A > 50.2880, Re _ 1.0}. Though this method works it is

slow and inefficient. The author feels that a better method can be found and

suggests either two iterators customized for Re _ 4.5 and Re _ 4.5

roughly the turning point in this corner function) or attacking (5.33}

the relation A -- 1 + e where

approach have so far been fruitless).

(which is

by using

e is assumed to be small (efforts at this

3. Boundary Condition In The Far Field

The remaining boundary condition that needs to be examined is the far field

(r -* oo) boundary. Placing the dipole boundary as expressed by (2.50) at a
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finite location was tried initially but undesirable oscillations and degraded conver-

gence rates were a consequence. One positive aspect that was noted though, was

that the near-field behavior of the solution including critical point location q

values, etc. was strongly dominated by the Landau-Squire solution boundary of

(5.32). One could have almost anything as a far field boundary (including gar-

bage as was discovered} and provided it was far enough away, have little effect

on the near field solution.

to the far field boundary.

This aspect emboldened us to try different approaches

The far field vorticity was quite straightforward and

was simply set to zero. Vorticity dies off as a variation of some Gaussian func-

tion, in an unbounded problem, and has been observed to drop by tens of orders

of magnitude in the range of _ used.

The approach we ultimately decided to use for the far field boundary condi-

tion involved the axisymmetric irrotational multipole solution described by Eq.

(A-113). The far field portion of (A-113)

provide the self similar stream function.

where D i

polynomial.

gives

was selected, combined with (2.66) to

1 _ sin 0 p1 (cos O)
-- E Dj (5.35)

a((,O) ---- Re 2 .,'=1 _i

is a constant, and PJ (cos O)

The far field dipole solution of

is a first order associated Legendre

(2.50) when combined with (2.66)

1 sin 2 0 (5.36)
adipole (_,0) = 4_r

With (5.36) we can calculate D_ in (5.35} and find that it is
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Re2
D 1 -- 4_r (5.37)

The D 1 coefficient we get for free, but the multipole coefficients (also known

as tesserals) for Di, where j _> 2 require some extra effort in the form of

Fourier integrals and the integral form of the Poisson equation. Because the first

order associated Legendre polynomial is a complete orthogonal function, we may

recast (5.35) by Fourier theory into the following integral

D l -- Re2{l { 2l-_1 ] (l-l)' f(l + 1)! o
a (_,o)Pt'(cos o) dO .(5.38)

The self similar stream function G(_,O) seen in (5.38) is found by starting

_vith an expression for vorticity by combining (2.18) with (2.7) and (2.4) giving

v(v/7)- v 2/7 = (5.39)

To go beyond this point we follow Batchelor [1967] in recognizing that if the

vorticity normal to the surface of the control volume containing our flow is equal

to zero, then the following gauge (a Columb gauge) is appropriate

V" /7 = 0 (5.40)

Equation (5.39) combined with (5.40) is now a Poisson equation which has the

following integral form

/7 __ 1 f _ (_'f! d3x ' (5.42)
47r control votume I T - I
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where _t

case, /_ has only one component

and (2.62). One then replaces the

integrate.

tic integrals, or one can replace

is a position vector within the control volume. In_ the axisymmetric

B_ which is related to g(_,0) via (2.30)

G(_,,O) of (5.38) with (5.42) and proceeds to

One can integrate the resultant equation by brute force replacing

with a "law of cosines" expression leading to relations involving ellip-

]_- _ ] with a Green's function

1 _o l rtl [ (I-m)!I_- ii;I -- l--0_ m=-l_ rt+l (! 4- m)!
P_l(cos d ) _ (cos O)e;m(¢-÷' )

(5.43)

We must employ the axisymmetric form of vorticity and vector potential

_ _'_(_ ) ---_ w_ sin _bs ez 4- w÷cos _y (5.44)

¢ [ -sin¢_4-cos¢_y] (5.45)(_) -- r sin 0

where _: and _y are Cartesian unit vectors.

inserted into (5.42) and the real part is taken.

(5.38) and the stream function and vorticity are

form via (2.66)- (2.67).

orthogonality relations for

Equations (5.43)-(5.45) are

The result is then inserted into

converted to their self similar

The resultant equation is integrated employing the

cos ¢ and P_(cos O) giving

_oo 1¢

o ff ,2 (/+1)! o o
g )_ t+2 p_( cos g )sin 0' dO' d{'

(5.46)
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The integration of (5.46) requires that either an analytic form of vorticity be

known or a table of numerical values be provided for numerical integration.

Equation (5.46) is the equation actually used in the software to find Dr,

where (5.35) could be used via (5.10) and (5.11) to define a Dirichlet boundary

condition. The parameter _oo is the _ value where the multipole boundary

condition is imposed and presupposes that the vorticity for _ __ _oo is

sufficiently small as to be negligible. Only the first six terms of the series are

used (l __ 6) with the belief that extra terms would be buried in the numerical

error.

It was later found that greater stability in the solution could be achieved if a

Neumann rather than Dirichlet boundary condition was used for the stream func-

tion at _oo- This was brought about by restructuring the finite difference

equation (5.26) for the nth node points in an n X n mesh as follows:

where

and

(5.47)

OZ

1 <j < n
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Tho ,,o,-t;,! _lorlwtlws in (5.47_ are found analytically from (5.13) and {5.35).

The vorticity boundary condition for _oo was kept as a Dirichlet type with

Y(_, 0) -- 0. Going to the Neumann boundary condition on stream

function, Z enhanced the convergence rate and significantly reduced oscillation

in the far field solution due to boundary condition mismatch.

Equation (5.46) has a nice side benefit in that over all solution accuracy

can be measured by comparing the

lytic value given by (5.37). Tile

dition of (5.35)

(5.46} involved using

Simpson's rule in the

formula used was the following, showing the

pie:

f f (y)dy = -_
o

Pl

Dx

was the value given by (5.37}.

the latest iteration of

_[ direction and in the

value calculated by (5.46), to the ana-

value actually used in the boundary con-

The numerical calculation of

1,_,0) and integrating by

0 direction. The integrating

direction integral as an exam-

17 27

f0 + 4U+ 2E+ -_" f_-2 + "_-( fn-I +fn}

(5.48)

where

u = A+h+A+ "' +£-3

E = f2+.f4+f_+ "'" +f_-4

I.+,= / ( oo)
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_oo = h(n+l)

For

is the step size between each node point. The

(5.48) except 7r is the upper limit instead of

and a metric term is introduced to account for the theta stretching algorithm.

(5.48) there are n node points between the two boundary node points at 0

and n + 1, where h 0

integration is the same as _¢oo

4. The Angular Coordinate Mesh Stretcher

In (5.14) we showed that the angular coordinate _f used in the numerical

computation is based on 0 and Reynolds number. Up until now the 5 coordi-

nate has been left in general terms. The purpose of this coordinate is to act as a

mesh stretcher so that computational points may be transferred from regions

with low gradients and low truncation error to regions where the gradients and

truncation error are high. A similar stretcher for _ has not been developed

because more points can be bunched near the origin by simply reducing the value

of _, and bringing the multipole boundary condition in closer. The discovery

of the most appropriate theta stretcher was achieved by a long process of trial

and error. The ultimate version arose from the realization that the stretcher

needed two control "knobs" to be effective. One knob controlled the angle at

which no stretching occurred. This angle is referred to as 0 with greatest

concentration of node points near the axis of the jet. The other knob was k,

"rate-of-stretch" which could be set to zero where 5 -- 0 or to some
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number causing a rearrangement of "points but not affecting the in_fl_uence of

0 . The resultant stretcher is

6 = [l+X(e-_-l)] O-X_" e _ -1 (5.49a)

0" =---_ln [ 1 { 1-e-'l}],7 "_ (5.49b)

w h ere

6 -- the stretched coordinate in radians

k ---- rate-of-stretch knob

0 -- the physical space angle in radians

q -- the switch-over angle parameter

-- switch-over angle.

To find 0 "switch-over angle" (rads) one uses (5.49b) with rl as the single

parameter.

One unfortunate aspect of (5.49a) is that while it is straightforward to go

from 0 to 6, it is difficult to go from 6 to 0 because (5.49a) is transcen-

dental. To go from 6 to 0 one uses the following iterating formula

c i
= (5.50)

0_+1 _rio"
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0 n is the present guess of theta and 0_+ 1 the next guess. This for-

converging in approxi-

6. In the equations

where

mula is based on Newton-Raphson and is quite stable,

mately ten iterations. The first guess for starting 0 n is

where 0 appears explicitly, (5.50) is used to calculate its value.

Equation (5.4ga) has several advantages as a stretcher: -- 0

0 -- 0 just as _i--_r for O--_r kor

6 for

no matter what value of is

selected thereby ensuring that the boundary conditions of 0---0, _r are not

disturbed by the stretcher. While the function is valid only for the region of

0 < 0 _< rr, 0 < 8 _< 7r it is singled valued and continuous in all derivatives.

The 0 marks the angle where node points are being removed from the param-

eter region of larger angle and added to the region of smaller angle. The

appropriate value for r/ is readily found by realizing that all the major action

of the flow must occur in the region of 0 _< 0 _< 0 . The region defined by

0 is a cone where the flow geometry (in State 3) is a mushroom shape that

must fit snugly inside this cone (see Fig. 5-3A). This stretch algorithm has been

referred to as a Japanese Fan coordinate stretcher. In Fig. 5-3B we can see an

unstretched mesh (radial mesh not shown}. As the Reynolds number is increased,

coordinate mesh lines are transferred over from one side of _ to another caus-

ing greater density near the axis at 0 ---- 0. This is shown in Figs. 5-3C and 5-

3D for increasing Re. This is analogous to a closing Japanese fan where the den-

sity of fan pleats increases as the fan closes. One of the fortunate observations of

this research was that the spreading angle of the State 3 round jet along with tile
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Figure 5-3A. Switch-Over Cone of the Theta Stretcher.

o Iv/
Figure 5-3B.

Figure 5-3C.

0

Figure 5-3D.

Figure 6-3A-D. The Theta Stretcher as a Japanese Fan.
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q parameter of (p, q) space is a linear function of Reynolds number (contrary

to the Re 4 dependence flow, see Eqs. 4.12 and 4.14). This assumes that the

numerical method has not become ill conditioned (stiff), at which point it

becomes Reynolds number invariant. This makes deriving an empirical formula

for rl -- ]'(Re) quite simple. All that is required is two data points and know-

ing at what Reynolds number a given mesh will go stiff necessitating a finer

mesh. The k "rate-of-stretch" parameter was likewise assumed to be a linear

function of Reynolds number and was described by a similar empirical formula

based on two data points which was refined with higher Reynolds number. )_

was tuned by first establishing the correct _ by knowing the basic flow

geometry and tuning k to higher values until the region outside the "switch-

over cone" started to oscillate unnaturally, at which point k was backed down

until the whole flow field was uniformly smooth. One aspect of the theta

stretcher that should be understood by the reader is that it was not activated

until the Reynolds number was greater than 10. For Re _-- 10 the value of

k was zero and the stretcher was inactive, resulting in a mesh of constant step

size.

5. The Matrix Solver

We can now address the method of actually solving the finite difference

equations of (5.25} and (5.26), which employs a special linear system solver.

The linear system to be solved is the classic one of Q X---- Y, where Q is a

square sparse matrix, and X and _ are column vectors. The matrix Q con-
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tains the finite difference equation, X is the solution vector, and Y is the

right-hand side of the finite difference equation plus boundary condition terms.

Since both .finite difference equations (5.25) and (5.26) are two-dimensional,

second-order central difference equations, the molecule or stencil used to solve

for one node point is made up of five points, see Fig. 5-3. The linear system that

will solve a mesh based on this five-point molecule is the tri-block system which

is analogous to the tri-diagonal system except that each of the elements along the

Q Zi,J+l

i-l,J _l,J

zi,j-1

i+l,J

Fig. 5-4. Control Difference Molecule
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diagonal are made up of matrices

of this system is shown in (5.51)

rather than scalar elements. The arrangement

2

A 1 B 1

1 A 2
B1 2 B2

1 A3B 2

1

B 3

Q matrix

2

B 3

A 4

Bl
n-2

B 2
An-1 n-1

B 1 A
n-1 n

X 2

X 3

I

X
n-1

X
n ,

vec t or

YI

Y2

t

Y3

i

i

Y
n-I

Y
n

vector

(5.51)

The subblocks of A i, B_, _ X i Yi

all a21

a12 a22

a23

Aj =

a32

a33 a4.3

@ •

i

• all an,n- I
@

@

m

@

@ •

a
811--1, n nn

have the following form:

J

J

X =

J
J

J i

(s.52)
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k

Bj

B

k
bll

k
b22

k
b33

k
b44

C k

bii

bk
nn

YiJ

Y2J

Y3J

YtJ

Yn,J

(5-53)

where k -- 1 or 2, and aii, ai, i+l, xi], Yi], bik,• are scalar matrix elements.

The matrix subblock A] of (5.52) is a tri-diagonal matrix while JS_ of (5.53)

is a simple diagonal matrix. Using (5.26) as an example we can demonstrate how

a finite difference equation is loaded in this linear system, which in this example,

is centered on the node point at i,j. For the j subblock

ai_l, i "- N -

_,,, = _-2(_ +_)

a,+,,, = _ +_
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yq -- R

For the j - 1 subblock,

b_i = D -

The computational domain is made up of n X n points (not including the boun-

daries), see Fig. 5-1. One can see that for the case of i -- 1

boundary has to be taken into account due to i - 1, j

difference equation. This is done by setting the ai_l, i

subblock equal to zero and taking the appropriate form of the Landau Squire

dary is treated

appropriate b_i

the Landau Squire

component of the finite

element for the A i

and added to Yii • The multipole boun-

0 -- 0,_r boundaries result in the

Equation (5.51) is solved by getting it

The matrix in

solution multiplied by - (N - B }

similarly while the

elements being zeroed.

into an upper triangular form and solving by back substitution.

upper triangular form U X---- R is the following:

I U1

I U2

I U3

I Un_ 1

x 1

x 2 1t2

R3

• i

(5-54)

where I is the n X n identity matrix. The equations relating (5.54) with (5.51)



- 77 -

are tirst the "boot strap equation"

(5.55)

A1 Rl -- Yl

Then the "downward sweep equations":

Lj -- A i- B__1 4-I (5.57)

LyRI "- Y1- B__, Ri_, (5.59)

There is then the "backward sweep bootstrap"

z. = R. (5.80)

with finally the "backward sweep equation"

__, = Ri_,-Ui_,_. (5.81)

Equations (5.60) and (5.61) provide the solution. There is a problem with this

method involving the storage of the Ui matrices. The storage requirements in

the Q X-- Y system, not including zeros and the solution vector X are

given by the equation

m

For the UX-- R

# of elements ---- 8n 2- 4n (5.62)

system, not including zeros, l's and the solution vector is
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# of elements -- n 3 (5.63)

If one is using a mesh of 60 X 60 points where n -- 60 then the storage

required by

is 216,000.

of the U]

inversions.

m D I m

Q X-- Y is 21,360 while the storage required by U X-- R

This order of magnitude greater storage requirement is a consequence

submatrices being nonsparse because they are the result of matrix

The order of magnitude greater storage requirement does not need to

m m

be accepted because the U X-- R system is only an intermediate step and

contains the same information as Q X-- Y . The answer to this dilemma is

to keep only the Ui_ l submatrix when calculating L i in (5.57) and to throw

Uj_ 1 away afterwards. When the downward sweep is complete the U]

matrices will have to be regenerated in order to provide the solution vector in

(5.61). This requires the following additional equation

Uj_I ._ { b)_l ) -I { Aj- _ //_i' ) (5.64)

This equation, called the "yo-yo sweep" equation is actually just a backward

sweep equation that is a companion to (5.61). Using (5.64), Uil is generated

for (5.61) and the old Ui is thrown away. This technique of regenerating U]

by the yo-yo sweep is essentially trading off a factor of two increase in computer

time for an order of magnitude increase in storage. There is a difficulty in (5.64)

however, which is that this equation appears to amplify round-off error.

The mechanism of this round-off error amplification is not fully understood

and deserves further study. For the purposes of this problem a fix was found by
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periodically "refreshing" the U,. matrix by using a stored version rather than

regenerating it by (5.64). The frequency of refresh was found by taking a linear

system with a known solution vector whose Q matrix was ill conditioned. The

solution vector calculated was then closely observed and whenever the roundoff

error became significant {i.e., observable} the Ui submatrix would be refreshed.

The maximum matrix ever calculated by this technique was for an 80 × 80

computation mesh which corresponds to a 6400 X 6400 element Q matrix

(all elements including zeros).

6. The Under Relaxation Method

Next we examine the under relaxation method used to solve for vorticity and

stream function. This was the price we had to pay for the simplicity of a two-

step {vorticity solved then stream function) solution method. The under relaxa-

tion used was

for

c,÷, = c, ÷T [<+,- c.]

T = 1 0 _< Re < 5.0 (5.66)

V = 0.7 5.0 __ Re < 6.0 (5.67)

where

T -- 0.1 6.0 _< Re (5.68)

G_ ---- the previous iteration stream function matrix;
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the latest calculated stream function;

G.+ 1 --- the under relaxed stream function;

W the under relaxation scalar whose values are shown in (5.66) to

The region of 5.0 _

critical point bifurcation,

is made inactive. So for

tion, when it was in force,

cycle.

< Re < 6.0 encloses the first transition where, due to the

it was necessary to under relax. For T = 1 (5.65)

Re < 5.0 there is no under relaxation. Under relaxa-

would occur with every iteration of the two-step

7. Solution Method Overview

The software is cold started at a low Reynolds (typically Re ---- 0.1) and the

solver is primed with the creeping solution for the nonlinear scale functions

Y(0) : sin 0 (5.69)

Z(O) -- sineO (5.70)

With these scale functions as a first iterate the next iteration is found for the vor-

ticity scaling function Y;,i through (5.25) via the linear solver with Zi,] held

fixed.

(5.-16).

function scaling function

With the updated vorticity the multipole constants are also updated via

The vorticity solution is then used with (5.26) to solve for the stream

Zi,] by use of the linear solver. With the new stream
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function Zi, i the vorticity is recomputed as before through (5.25). The new

vorticity is compared against the previous iterate. If the difference is sufficiently

small between two successive iterations then the solution is considered con-

verged. If not, then the cycle repeats until convergence or until the iteration

limit is reached and the program aborted. In the case of convergence the values

of vorticity, stream function, and multipole constants are written onto disk. The

Reynolds number is usually incremented by 1. The Landau-Squire constant is

recomputed along with the mesh stretching parameters and under-relaxation con-

stant. The previous solution is used as a priming first iterate and the cycle is

continued until convergence for the new Reynolds number. This process contin-

ues from a creeping Reynolds number of 0.1, incrementing first by 0.9 and

then by units of 1 until the Reynolds number is sufficiently high that acceptable

accuracy with a given mesh is no longer attainable. Software validation for this

system is relatively straightforward. The "nonlinear scale functions" (in this case

a misnomer} for the linear solution are now in equations (5.69) and (5.70}. If the

convective terms in the software are disabled and a creeping form of the

Landau-Squire solution is used as a boundary condition, then the resultant solu-

tion will always be (5.69} and {5.70). Therefore it is a simple matter of com-

parison to see if the software is error free. Likewise the far-field boundary condi-

tion can be replaced by the Landau-Squire solution (which is also used in the

near field} for a test of the validity of a solution which includes the convective

terms. For this case the Landau-Squire solution would be the observed result for

the entire computational domain. This makes error detection a matter of com-
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parison with an analytic result. Because of these tests we have a high level of

confidence in the validity of our method and software.

8. Some Unsuccessful Approaches

the method described was

realizing that there are

Finally, we would not want the reader to be left with the impression that

found without going down some deadends, or without

better approaches than the one used. A deadend

approach that cost us a lot of time made use of a formulation in terms of the fol-

lowing equations:

1 0

I-r/ o"_ + _. + _2 o(1

1 0
+

_2 o71

0 W 1-[W _2 "-_
Ot_ 1 - tl

(5.71)

_- 0

_2

W -- c92G + 1-_1 c92G
_V (5.72)

o_2 _2 o,

where t/ --_ cos 0.

Equations (5.71) and (5.72) represent a compact form of equations (5.1) and

(5.2). Because of their symmetrical form it is tempting to think that an analytic

solution can be found (though we have not found it). The deadend that we

encountered involved trying to convert (5.71) and (5.72) into a single central

difference equation while retaining the simple structure of the equations. We
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found out ,tL _,t _.L .... |_.: _._1.._.1 --e .---- /I .... gl .__ h ---,I -- --|..--IbllalJ Idle lllUlbl'¥_llleUt ilat_ul'e Ol i_ = uo_ v JLItC_l- V = O _JLIU 1| DIII;_

the need for a 13 point finite difference moleeule created unavoidable problems in

the boundary conditions. There were two alternative approaches to the numeri-

cal solution that were considered but not used. One of these two alternate

schemes would have involved inserting (5.72) into (5.71) and expanding the

result into a finite differenee equation with stream function as the single depen-

dent variable. This finite difference equation would then be solved by a sym-

metric penta-diagonal block solver using Newtonian iteration. This approach has

a number of advantages: one pass solver, no relaxation constants, single boun-

dary conditions, etc. The main drawback is that the finite difference equation is

so long that it is very difficult to avoid transcription errors without having aeeess

to an algebra program such as MACSYMA. The second scheme involved writing

(5.71) and (5.72) together in a single linear system with the stream function and

vortieity stacked in a single solution vector. This method had the advantages of

hzving relatively straightforward difference equations, no relaxation constant and

boundary conditions on a single variable (stream function). The disadvantage is

that the linear algebra in the matrix solver is very messy requiring a customized

algorithm for the unsymmetric diagonals. However, when we look back with the

clear vision of hindsight, this second scheme might have been the best way to go.

The customized solver would have been trouble. However, we too had to write a

special solver for our tri-block system anyway, so the added eomplexity of the

custom solver would not have been that great. The customized single pass solver

without relaxation would have eertainly been faster. If the reader intends to
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investigate a problem similar to ours it is recommended that the second scheme

be investigated first before reproducing our actually used approach or resorting to

the first scheme.
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Chapter VI

COMPUTATIONAL RESULTS

1. Flows Computed By The Program MAVIN

The numerical method described in Chapter V was developed in a program

named MAVIN. The source listings of all the software developed in this work,

including MAVIN, are presented in App. C. MAVIN was run on the Control

Data Corp. computer, CDC 7600 at NASA Ames Research center. MAV1N was

used in two basic grid configurations. The first grid configuration was for a 30

(n -- 30) with a far field boundary radius (_oo) set at

30 X 30 cases displayed in App. B started with Re ----

point by 30 point mesh

15. The results for the

0.1. Then Re -- 1.0

increased by units of 1

was computed, thereafter the Reynolds number was

until Re -- 30 was reached. Plots for the 30 cases

appear in App. B, Fig. B-1 (Re -- 0.1) up to Fig. B-30 (Re : 30). The second

grid configuration used the finer mesh of 60 points by 60 points, with the same

far field boundary radius at _---- 15. The 60 × 60 mesh led to more accu-

rate results than the 30 X 30 mesh but suffered from the usual tradeoff of being

much more expensive to run. As a consequence, only 10 Reynolds numbers

were computed, specifically Re----4, 6, 10, 15, 17, 20, 23, 25, 27 and 30.

The results for these cases appear in App. B in Figs. ]3-31 to B-40. For each
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Reynolds number _,L4,VIN generated a matrix representing vorticity, and a

matrix for stream function. MAVIN also generatedsix multipole constantsused

in the far field boundary condition, the far field boundary location _oo, the

meshsize n,. the Reynolds number, and the theta stretcher beta parameter.

2. The Arch Spllne Used in Data Reduction

Tile data were outputted as ASCII format records, transferred to disk

storage on a VAX computer and archived on magnetic tape. The discrete points

represented in the n X n matrices of vorticity and stream function had to be

transformed into a continuous polynomial format for subsequent processing. This

was achieved by applying the following spline polynomial to the data

/(_, 0) = _2( c,_ + c:2 + ¢3o+ ¢4) + _( cs_ + ¢60_+ ¢:+ cs)

+ co_ + Clo_ + clio + c12 (6.1)

where f(_,0) can represent either vorticity or stream function and the ck

are constants found by fitting the spline technique polynomial to the MAVIN

and 6-3, which showmatrices. The spline used is represented in Figs. 6-1, 6-2

a hypothetical case of a 6 point by 6 point mesh (n -- 6). The two dimensional

spline function is a second-order polynomial in the

order polynomial in the angular (0 or 6) direction.

direction and a third-

Figure 6-1 shows how each

spline passes through three points in the radial direction (for fixed 0). One can

see how for Region 1 the spline is matched to the value of node 0, represented by

D 1 (Dirichlet match). Nodes 0 and 7 are boundary condition node points for
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this 6 × li mesh. T'he spiine from node 0 is then matched at node I and node

matched at node I and node 2. The relion 2 spllne has its values matched at

nodes I, 2, and 3 as represented by Di.

Figure 6-1 Radial Spllne.
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Figure 6-2 Angular Spline.
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(7,4) (7, 3) NODE COORDINATE

6,4 _i Y perimeter numbered)

/ _,5_ _ @,_ _I_ N SPLINE DOMAIN

(7,6) 1)

(7,7) (5,7) (3,7) (1,7) (0) (i,0) (3,0) (5,0) (7,0)

Figure 6.3 Spllne Domains.

The radial splines are only matched in actual value, not in slope. One should

note that the region of validity for splines 2 - 5 starts and ends halfway between

node points, leaving much of the spline unused.

Figure 6-2 represents how the splines are set up in the angular direction. It

shows node points with constant angular stepsize which is consistent with the

6 unstretched coordinate (0 is the physical angular coordinate). At node 0

(boundary node) of Region 1 the spline is matched to the value of the node (Diri-

chlet) and also to the value of its slope (Neumann). This is represented by

(N/D)p The spline of Region I is also Dirichletmatched through nodes I and

2. The next spline for Region 2 is both Dirichlet and Neumann matched

(N/D )2 to spline I at node I. This processiscontinued along the circleof con-
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stant _. This same process occurs at node 7 for spline 7 except in the opposite

direction. The two systems of splines meet at region 4 where a keystone spline

is matched to nodes 2 - 5. This is purely a Dirichlet match which is done only at

the "keystone" for purposes of closing the system. We see that in all the splines

only a part of the spline is actually used in computation. Figure 6-3 shows the

two-dimensional spline regions with respect to the MAVIN node points. Some

sample MAVIN node points are in parentheses. Those nodes which have values

of 0 or 7 correspond to boundary nodes.

spline region has been calculated, then

function becomes quite straightforward.

vorticity,

Once a matrix of ck values for each

manipulation of vorticity and stream

If one wishes to calculate a particular

W(_, 0), the _ coordinate is divided by h stepsize to find the i

index and 0 is converted to

stepsize to yield the j index.

spline region is selected and the

6. The value of 6 is then divided by the k

With the i,j indices known, the appropriate

ck values are pulled from its storage matrix

and inserted into (6.1). Coordinates _ and 0 are then inserted into (6.1) to

yield the vorticity. This procedure can yield a higher resolution of the computa-

tional domain. It can also provide a simple analytic equation in (6.1) for later

manipulation in solving the particle path equations and determining (p, q )

values and critical point locations.

3. Plots Of Computational Results

The software that performs this spline operation is called INVORT and is

shown in App. C. A higher resolution matrix was generated from these splines

and digested by the contour plot programs CONTOUR and CONVORT and the
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particle path plot program PLOT which produced the entrainment diagrams.

These plots are displayed in App. B in self similar coordinates. Using the results

shown in Figs. B-31 and B-32 we have produced Fig. 6-4 in which the particle

path plot has been superimposed on the entrainment diagram. The momentum

source is always at location (0.0, 0.0) on the plots shown in this work. The

flow is always going from left to right along the x axis. The x axis is the axis

of symmetry with the plots shown corresponding to the upper half of a plane

passing through the axis of symmetry of the flow. The unshown lower half would

simply be a mirror image. In Fig. 6-4 we see that the two stream function con-

tour plots are basically dipoles with a bias slightly to the right of the origin. The

following coordinates are used:

x = (6.2)
vvt

v =

= V/_+ _ (6.4)

where _and _ are physical Cartesian coordinates. Coordinates x and y are

self similar coordinates and are the type used in the axis labels of App. B. We

see that the center of the stream function contours for Re -- 4 is at about (x, y)

-- (0.2, 2.0) and for Re -- 6 at about (0.5, 1.8). This center corresponds to the

peak value of stream function (note that the stream function is zero at the origin

and at infinity). The vorticity contour plots of Fig. 6-4 are very similar to each

other except for a slight bias to the right at Re -- 6 as compared to Re -- 4.
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POOR QUALITY

STREAM FUNCTION CONTOUR PLOT FOR Re= 4.0 STREAM FUNCTION CONTOUR PLOT FOR Re= 6.0

60 X 60 MESH FOR _=150 60 X 60 MESH FOR _ =15.0

VORTICITY CONTOUR PLOT FOR Re= 4.0 VORTICITY CONTOUR PLOT FOR Re= 6.0
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60 x 6o MESH FOR

_o=]Du 60 X 60 MESH FOR_==15,0
o

_1_1111110111_1/Jl//I///_7¢,,1.,¢.# .... . ...........

(a) (b)

Fig. 6-4: Computed solutions for the round jet at

b) Re -- 6.0. Quantities displayed are

function, vorticity, and particle paths.

a) Re -- 4.0, and

self-similar stream
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The peak value of vorticity is always at the origin since vorticity has a singular-

ity proportional to 1/_ 2. The entrainment diagrams shown in this work are all

based on the particle path equations (4.1) and (4.2). The particle path equations

are used to produce the array of isoclines (all normalized to the same length)

shown in the entrainment diagrams of Fig. 6-4 and App. B. In contrast to the

vorticity and stream function just discussed, we see in Fig. 6-4 that the two

entrainment diagrams at Re -- 4 and 6 are significantly different. In the Re --

4 case, one critical point is on the x axis at about (xc, y¢) -- (1.3, 0). In the

Re -- 6 case, there are two critical points. One is on the x axis at

(xc, Yc) -- (2.0, 0) and the other is off axis at (xc, y¢) -- (1.6, 0.8). At this

stage a key aspect of the work becomes apparent. For different Reynolds number

the entrainment diagram topol%_¢ can be completely different while the vorticity

and stream function plots can be almost identical. In this respect, entrainment

diagrams are a much more effective means of displaying the structure of the flow

than are plots of stream function or vorticity.

4. Transition In The Numerical Solution Of The Navier Stokes Equa-

tions

As previously discussed in Chapter 3 the bifurcation from one topology to

another represents a form of transition. Based on the results for the p, q

plot discussed (in Ch. 3) we know that Re -- 4 must be in State 1 since it has

one on-axis critical point (which has to be a stable node). A close examination of

Fig. B-41 shows that the entrainment diagram vectors are consistent with a

stable node for Re ---- 4. We can bracket the first transition Reynolds number
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point thereby concluding that Re -- 5

< Re 1 < 6. A naive way of refining
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by studying Fig. B-5 for Re -- 5 where again we see only one critical

is also in State 1. We now know that 5

Re 1 would be to run a series of compu-

tations for Re -- 5 to 6 looking for critical point bifurcation. This method is

ineffective because the region near the axis is one of very high gradients and con-

sequently high truncation error. A better way is to take values of the off-axis

critical point {zc, yc) for different Re and extrapolate back to Rel. The

parameters of the off-axis critical point are acquired through the program named

I-L_MMER. HAMMER evaluates the particle path equations (4.1) and {4.2} at

the off-axis critical point where the equations are equal to zero. The spline poly-

nomial of (6.1} is inserted into these particle path equations yielding the following

critical point location formulas:

1 [ c5(_¢) 4" c6(82¢)4-c7(0¢)4- cs] (6.5)

+ +-_ sin O_ - old

These transcendental formulas are iteratively convergent provided that the

critical point location (_c, 0c)

stants used in (6.5) and (6.6).

is within the spline domain of the c_ con-

HAMMER works interactively with its user by

first receiving a guess of the critical point location. The first guess is used to

select a spline domain and a second guess is found by (6.5) and (6.6). If the

:;econd guess is within the original domain then the critical point is captured. If
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not, a new domain is selected based on the second _uess and the process is

repeated. If the critical point is on the corner betweendifferent spline domains,

the HAMMER software can go into an endlesshysteresisloop so the user is con-

tinually given updated information on domain shifts. Breaking this hysteresis

loop requires only a simple software adjustment in the spline domain selector to

bias HAMMER toward a particular choice. Oncethe critical pont is captured, its

coordinatesand q value arecalculated basedon the current spline. In Table 6-1

the critical point parameters basedon the 30 X 30 mesh (n ---- 30) results of

App. B are shown. In Table 6-2 a similar table is shown for the 60 X 60 mesh

(n -- 60) results for comparison of numerical effects. From Table 6-1 we can

extrapolate the first transition Reynolds number Re I by fitting a parabola

through Reynolds numbers 6, 7, and 8 with q as the independent variable.

This gives

Re --- -2.22q 2 + 5.28q + 5.35 (6.7}

We know from

extract Re l from (6.7} by letting q---- 0 giving

reflects a particular set of data and numerical method.

p, q theory that the first transition occurs at q --- 0. We can

Re I -- 5.35. This result

The naive approach men-

tioned earlier of fine scanning between

This value can be regarded as a lower limit.

ined in the development of MAVIN, the highest value

Re 1----5.9. Thus a conservatiw evaluation of the first

Re -- 5 through 6 yielded Re 1--5.1.

Of all the different data bases exam-

ever observed was

transition Reynolds

number is Rel -- 5.5 4- 0.4 with 5.4 being the value most consistent with

the App. B data. Before leaving Fig. 6-4 we should note that the off-axis critical
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Table 6-I

CRITICAL POINT PARAMETERS FROM APPENDIX B, N---30

Re z c

0.1 N/A

1 N/A

2 N/A

3 N/A

4 N/A

5 N/A

6 1.65

7 1.64

8 1.70

9 1.88

10 1.99

11 2.19

12 2.39

13 2.57

14 2.74

15 2.91

Off-Axis Critical Points

0.77

1.02

1.15

1.10

1.28

1.34

1.38

1.41

1.44

1.47

Yc Or

25.1

32.0

34.2

30.3

32.8

31.5

30.0

28.8

27.7

26.7

q

0.13

0.37

0.72

1.09

1.21

1.67

1.78

2.14

2.27

2.53

On-Axis CriticalPoints

Z c

0.05

0.35

0.70

1.05

1.35

1.60

2.00

2.35

2.60

2.90

3.25

3.50

3.80

4.05

4.30

4.55
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Table 6-! (Cont=)

16 3.06

17 3.19

18 3.32

19 3.43

20 3.53

21 3.66

22 3.75

23 3.79

24 3.81

25 3.83

26 3.85

27 3.87

28 3.89

29 3.91

30 3.93

Off-Axis Critical Points

Uc 0c

1.49 26.0

1.51 25.3

1.52 24.7

1.54 24.1

1.55 23.7

1.56 23.1

1.57 22.7

1.57 22.5

1.57 22.4

2.75

2.86

3.16

3.53

3.67

3.76

3.82

4.02

4.41

On-Axis Critical Points

Z¢

4.80

5.00

5.15

5.35

5.55

5.75

5.80

5.00

6.00

1.57 22.3

1.57 22.2

1.57 22.1

1.57 22.0

1.57 21.9

1.57 21.7

4.41

4.61

4.56

4.55

4.57

4.73

6.05

6.10

6.10

6.10

6.15

6.25
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Table 6-2

CRITICAL POINT PARAMETERS FROM APPENDIX B, N ,_ 60

Re z¢

4 N/A

6 1.61

10 1.98

15 3.06

17 3.48

20 4.03

23 4.49

25 4.77

27 5.00

30 5.30

Off-Axis Critical Points

0.80

1.29

1.48

1.52

1.58

1.62

1.64

1.65

1.67

Yc 0c

26.5

33.2

25.8

23.7

21.3

19.8

19.0

18.3

17.5

q

0.17

1.27

2.80

3.13

4.02

4.25

5.14

4.94

6.01

On-Axis Critical Points

_C

1.35

2.00

3.25

4.75

5.30

6.05

6.65

7.05

7.40

7.80
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point location for Re -- 6_0 was at (1.61, 0.80), while the stream function

contour center was at (0.5, 1.8). This emphasizes that there really is no simple

correlation between the off-axis critical point and the stream function maximum

point. The off-axis critical point for Re -- 6 has a q value of 0.17. This

value is consistent with a stable node (0 <_ q <_ 9/16) thereby showing that

Re -- 6 is in State 2. The flow will undergo the second transition into State 3

when q attains and surpasses a value of q _--- 9/16 -- 0.56. We see from

Table 6-1 that this second transition Reynolds number has the following limits:

7 <_ Re 2 _ 8. A high resolution scan was performed through this region yield-

ing the data shown in Table 6-3. A parabola was fittedthrough

and 7.6 with q as the independent variablegiving

Re --- 11.90q 2- 10.12q + 9.46 .

With q replaced by 9/16 we find Re2--7.54.

Re -- 7.4,7.5

(6.s)

In comparing Table 6-1

Re

Table 6-3

HIGH RESOLUTION SCAN THROUGH Re2

J

zc ltc 0c

1.62

1.63

1.09

I. I0

33.9

34.0

q

0.51

0.55

1.64

1.64

1.11

1.12

34.2

34.4

0.58

0.62
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with Table 6-2 we find a q variation of 0.04. Assuming a q deviation of

0.06 for Re 2 we can determine a standard deviation from Table 6-3 for

Re 2 of 0.16. This gives our final result as Re 2 -- 7.54 4- 0.16.

5. The State Three Solution

For Re > Re2 the flow goes into State 3 where the off-axis critical point

becomes a stable focus. In Fig. ]3-8 we observe this stable focus just beginning to

appear in the entrainment diagram. In Fig. 6-5 (Re -- 15) a particle path tra-

jectory has been drawn over the entrainment diagram. For this case, the stable

focus is well established and we see the characteristic mushroom shape of the

round jet. The critical point on the axis is a saddle point as seen in Fig. B-41

for the case of Re -- 10. In Fig. 6-5 the center of the stream function contour is

at about (x, y) ---- (2.3, 2.25) while the off-axis critical point is at (3.06, 1.48).

This further emphasizes the dissimilarity between the entrainment diagram and

stream function contour plot. It is important to note that on the vorticity con-

tour plot there is no local concentration of vorticity at the critical point location

(3.06, 1.48). In fact, this region in the vorticity field is smooth and decreasing

monotonically with increasing radius with no indication that a stable focus has

formed. We can observe in both Figs. 6-5 and 6-6 that the vorticity and stream

function contours are shifting more to the right as Reynolds number increases.

The effect of i,ncreased Reynolds number on the particle paths as seen in Fig. 6-6

is that the "stem" of the mushroom shape is lengthening and the intensity of the

st_:_ble focus is increasing. In Fig. 6-7 the off-axis critical point angle 0 c vs

Reynolds number can be observed. In the State 2 region of Re 1 < Re < Re2
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t.ho flnw i_ vory clyna.mie wit.h _. r_.nicllv inrr_in_ orifio_l nnint _n_l_ with slowly............................. r_ " ........ _O .... ._A I_A_ _i:_

increasing Reynolds number. The maximum 0 c of 34.50 for Re = 8.5 is

reachedshortly after the second transition into S_;ate 3. After this peak 0¢ the

critical point angle decreases slowly. Intuitively one would anticipate this angle

getting smaller for larger Reynolds number since one might expect the mushroom

stem to grow faster than the diameter of the mushroom.

o

30 X 30

shown in

Numerical Instability

In Fig. 6-7 we run into numerical difficulties at about Re -- 15 where the

mesh and 60 X 60 mesh start to yield different results. This is further

Fig. 6-8 where q is plotted vs Reynolds number. Figure 6-8

represents one of the biggest surprises in the study. For q to have this linear

behavior is totally unexpected. Low Reynolds number theory predicts an Re 4

dependence for q. We see in Fig. 6-8 that Re -- 15 is a point of divergence

between the two meshes.

If App. B is examined for the 30 X 30 mesh cases, one can see the manifes-

tation of numerical error in the formation of vorticity clumping, oscillations in

the stream function and dimpling at the saddle point in the entrainment

diagram. These phenomena are completely numerical in origin. This can be seen

in Fig. 6-9 where two vorticity and stream function contours are compared with

the only difference being the mesh resolution. The vorticity clumps for the n ----

30 case are centered around every other node point in the radial direction.
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Fig. 6-5. Computed Solution for the Round Jet at Re -- 15.

,,,,,, I ,,,,,,,J,,,i,/i,z/,,_,,,, ...........................................................

[ ilil :!:ii iii!iiiii!iiiiiiiiiiiiiiiiiii;iiiiiiii!!iiiiiiiiiiii!iiiiiiiiiiiiiiiiiiii
"_'''_'''_''_'' ......... ''_'_''''''_''_ ............................... IZI2---ZIZEZ2-C .... 22122212

.,,..,,_. {,',,i.i,, ...... i,,_,,,,,,,_,_,_,_,,,_,,, T ........................

=......................................... _,_ ....... _. - ....................

Fig. 6-6. Computed Solution for the Round Jet at Re -- 25.
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This clumping completel_idisappears.,,.-. ,,, in the n --- 60 case. For the stream func-

tion we can see how the contours shift to the right and become free of oscillation

for the finer mesh. The effect of numerics is even more pronounced in Fig. 6-10.

}[ere we compare the dipole coefficient D 1

multipole far field boundary) for n -- 30,

holds number. Since we have an exact result in

holds number the solution is starting to degrade.

(which is the first coefficient in the

60 and the exact result, versus Rey-

(5.37}, we know at what Rey-

It can be seen that the curves

are starting to separate at Re ---- 12. The n -'- 30 curve changes shape alto-

gether between Re -- 21 and 22. Examination of Fig. B-21 which has the con-

tour plots of vorticity and vorticity times _a (which is the kernel function used

in solving D1) shows that clumping is just beginning at Re --- 21. The "dog

leg" of n -" 30 in Fig. 6-10 is never observed for n ---- 60, nor has vorticity

clumping or the other overt symptoms been observed. However it is probable

that if we had carried the n -- 60

features would have been observed.

calculations much beyond Re -- 30 these

A question that immediately arises is how

accurately does an error between the computational and exact value of D 1

compare with error in the vorticity distribution. This point is emphasized by the

plots of vorticity (W) and vorticity times

From the App. B plots we see that W*_ 3

would lead one to believe that D 1

racy since W_ 3 is the

_3, (W*_ 3) shown in App. B.

starts to clump before W, which

may be an overly sensitive measure of accu-
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Fig. 6-9: Computed Solutions for the round jet at Re --- 30 showing:

a) vorticity clumping due to numerical instability on a 30

X 30 mesh; b) smooth solution on a 60 X 60 mesh.
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kernel in the D l calculation. We can determine this degree of sensitivity from

(5.37) for the dipole term which is

D1 Re2ff , , ,4 J J W(( ,0 )( 3sin20' dO' d( (a.g)
0 0

We will assume that a vorticity error AW will produce a dipole error of

AD 1. We can write down vorticity as

W(_,0) = w(s0)+ z_w (6.10)

where W(_, 0) is the computed vorticity and W(_, 0) is the actual. We may

expand both W_, 0) and A W into their multipole constituents. However,

by orthogonality we know that only the dipole components will contribute to

(6.9). We can therefore write down vorticity as

F 1

W:(_,0) ---- sin0 [R,(_)+AR, J + --"

where R 1 is the true vorticity radial dipole component and

dipole error component with higher-order terms dropped.

(6.11)

AR 1 the radial

Equation (6.11) is

inserted into (6.9) and the angular integration is performed giving

3
0

If we assume that AR 1

and not a function of (,

is a relative error such that AR1/R l

(6.12)

is a constant
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D_ + AD_ Re 2 r A p -_ f- _ _"m _ I' l J I t I
-- 1 + -- R1 (()( 3 d( (6.13)

3 R1 o

Since

D 1 -- Re2 f n 1{(' )(' _ d(' (0.14)
3

o

we conclude that

AD l AR 1
= (6.15)

Dl Rl

However, if we assume that AR 1 is an absolute error which is a a constant

and not a function of _ then by combining (6.12) with (6.14) and integrating

with AR l outside the integral and dividing by (5.37) we find that

AD 1 AR_4_r
= (6.16)

D_ 3

Note that the observed numeric error in vorticity appears to be somewhere

between the two cases of absolute and relative error. The method used in

MA\qN calculates a nonlinear scale function and then multiplies that result by

the analytic representation of the radial component of the creeping flow. Since

this analytic representation is dominated by a Gaussian function, we know that

the ultimate vorticity function's error diminishes with distance and is ultimately

very small.

There is round-off error and truncation error in MAVIN and in the quadra-

ture used to calculate D I. However since the CDC 7600 uses a 60 bit word and
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double precision was used in many of MAVIN's computations we know that

round-off error is insignificant. The chief culprit for error in this computation is

truncation error. What we can conclude is that (6.15) represents a best quality

factor expected in the vorticity field. Specifically if

AD 1
1 _- 0.80

Dl

then we must assume that the overall quality of the vorticity is 0.80 or worse.

The main advantage of this quality parameter is that it tells us when to no

longer trust a calculated result from MAVIN. We can employ this in examining

the parameter

Numeric D 1

Analytic D 1

in Tables 6.4 and 6.5. Our own rule of thumb is that quality of less than 0.80

is not acceptable. Based on this the 30 X 30 mesh results are acceptable up to

Re -" 18 but not beyond. The 60 X 60 mesh results are acceptable up to

around Re -- 23. There is, however, a paradox arising from this analysis. For

the mesh of 30 X 30 in the Re --_ 21 case we observe some vorticity clumping

occurring in the W_ 3 plot of Fig. ]3-21. The quality factor for B-21 is 0.73.

lIowever, in Fig. B-40 for the 60 X 60 case of Re -- 30 we observe no dump-

ing or any undesirable numeric effects, even though the quality is an abysmal

0.67. A possible solution to this paradox can be offered through a line of specula-

(ion. The multipole coefficients or tesserals of Table 6-4 are plotted in Fig. 6-11.

We observe with some surprise that all the coefficients come to almost a single

point near Re ---- 8.
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Table 8-4

COEFFICIENTS FOR A 30 X 30 MESH AT _=----15

Re

0.1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Numeric Dx

Analytic D l

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.99

0.97

0.96

0.97

0.96

0.94

0.91

0.89

Numeric Results

PI

0.796E-3

0.796E-I

0.318E0

0.716E0

0.127EI

0.199EI

0.286E1

0.388EI

0.502EI

0.627EI

0.762EI

0.939EI

0.I 10E2

0.127E2

0.143E2

0.160E2

0.135E-6

0.130E-2

0.208E- 1

0.105E0

0.327E0

0.785E0

0.158EI

0.280EI

0.451EI

0.676EI

0.958EI

0.138E2

0.182E2

0.232E2

0.286E2

0.343E2

D8

-0.208E-6

0.244E-5

0.140E-2

0.165E-I

0.912E-I

0.336E0

0.949E0

0.220EI

0.442EI

0.798EI

0.132E2

0.225E2

0.334E2

0.470E2

0.633E2'

0.818E2

D4

0.797F_¢-7

0.543E-5

0.948E-4

0.262E¢-2

0.263F_,-1

0.150E0

0.598E0

0.182E1

0.456E1

0.990E1

0.192E2

0.385E2

0.644E2

0.101E3

0.148E3

0.206E3

-0.788E-6

-0.776E-4

-0.297E-3

-0.255E-3

0.651E-2

0.669E-I

0.385E0

0.154E1

0.484EI

0.127E2

0.288E2

0.682E2

0.129E3

0.223E3

0.358E3

0.539E3

D8

0.152E-5

0.137E-3

0.379E-3

0.295E-3

0.119E-2

0.274E-1

0.245E0

0.132E1

0.524EI

0.166E2

0.443E2

0.123E3

0.263E3

0.505E3

0.888E3

0.144E4
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Table 6-4 (Cont.)

Re

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Numeric D1

Analytic Dl

0.86

0.83

0.80

0.77

0.74

0.73

0.70

0.65

0.61

0.56

0.52

0.49

0.46

0.43

0.40

Numeric Results

Pl

0.176E2

0.192E2

0.207E2

0.221E2

0.236E2

0.256E2

0.269E2

0.274E2

0.278E2

0.280E2

0.282E2

0.283E2

0.285E2

0.286E2

0.288E2

0.404E2

0.467E2

0.529E2

0.591E2

0.656E2

0.747E2

0.808E2

0.835E2

0.853E2

0.867E2

0.879E2

0.890E2

0.900E2

0.911E2

0.926E2

0.I03E2

0.126E3

0.150E3

0.175E3

0.202E3

0.241E3

0.270E3

0.282E3

0.291E3

0.298E3

0.304E3

0.310E3

0.315E3

0.321E3

0.329E3

D4

0.277E3

0.359E3

0.450E3

0.546E3

0.65763

0.827E3

0.949E3

O.101E4

0.105E4

0.108E4

0.111E4

0.I14E4

0.I17E4

0.120E4

0.124E4

0.773E3

0.I06E4

0.140E4

0.177E4

0.222E4

0.294E4

0.347E4

0.373E4

0.392E4

0.408E4

0.422E4

0.436E4

0.450E4

0.465E4

0.485E4

0.221E4

0.322E4

0.446E4

0.591E4

0.771E4-

0.107E5

0.131E5

0.142E5

0.151E5

0.158E5

0.165E5

0.171E5

0.178E5

0.185E5

0.195E5
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Table 6-5

MULTIPOLE COEFFICIENTS FOR A 60 X 80 MESH AT _® _ 15

Re

Numeric Results

4

6

10

15

17

20

23

25

27

30

DI

1.0 0.127E1

1.0 0.286E1

0.99 0.785E1

0.90 0.172E2

0.93 0.215E2

0.88 0.280E2

0.82 0.343E2

0.77 0.384E2

0.73 0.422E2

0.67 0.478E2

0.328E0

0.159EI

0.101E2

0.390E2

0.563E2

0.867E2

0.120E3

0.144E3

0.167E3

0.203E3

0.914E-1

0.956E0

0.142E2

0.977E2

0.164E3

0.298E3

0.468E3

0.598E3

0.735E3

0.955E3

0.265E-1

0.604E0

0.210E2

0.259E3

0.504E3

0.109E4

0.193E4

0.264E4

0.342E4

0.476E4

0.776E-2

0.392E0

0.321E2

0.711E3

0.161E4

0.412E4

0.827E4

0.121E5

0.165E5

0.246E5

0.196E-2

0.258E0

0.502E2

0.200E4

0.526E4

0.160E5

0.363E5

0.565E5

0.820E5

0.131E6
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Fig. 6-11. Tesseral Strength vs Reynolds Number
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Since all of these coefficients are sensitive to numerical error (compare D_ in

Tables 6-4 and 6-5), Fig. 6-11 is useful only in a qualitative sense. Our first

point of speculation is that the Reynolds number for which the D i coefficients

become equal is Re2, the second transition Reynolds number. This seems

intuitively reasonable since the flow at Re 2 consists of an off axis star point

which suggests a relatively simple flow topology. Since all D i coefficients

must be equal to zero at Re -- 0 we bring about our second line of speculation

based on Fig. 6-11 that the D i coefficients have the following analytic form

Di = 1-7 ;J (o.17)

If (6.17) is inserted into the multipole stream function of (5.35) and the Cauchy

ratio test is performed for 0 = _r/2 one finds that convergence occurs only if

I_[ > ]Re 12 (6.18)
Re 2

With _oo defined as the lower limit of the multipole expansion we find

that for _ = 15 the Reynolds number must be less than or equal to 29.22

for convergence of the infinite multipole series. Clearly for a six term finite series

approximation of the multipole infinite series, the Reynolds number would have

to be much less than 29 for there to be good accuracy. What is suggested by

this line of speculation is that the low quality of Re = 30 for 60 X 60 is not

so much a reflection on the numerics but rather on the accuracy of the truncated

multipole expansion when applied at _oo -- 15 for this Reynolds number.
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7. The Computer Animation Of Axlsymmetric Jets

Perhaps the most interesting aspect in the data analysis of this study was

the creation of an eleven minute computer animation. This movie was comprised

of six parts: the first four parts are Navier Stokes solutions based on a 60 X 60

mesh of the round jet at Re---- 4, 6, 20 and 30 (States 1, 2, and 3). The last

two parts are Stokes solutions of the vortex ring and ramp jet. Animation of the

Stokes solutions was straightforward since their particle path equations are ana-

lytic. Equations (4.3) and (4.4) were marched in time using a fourth order

Runge-Kutta integrator to produce a time line for the vortex ring. The software,

which is shown in App. C started the time lines as straight lines in physical coor-

dinates. In Fig. 6-12 the momentum source is shown as a plus and the critical

points are asterisks. The p, q plot is in the upper right-hand corner with the

flow state and Reynolds number shown below. The initially straight time lines

are drawn instantaneously at Re ---- 100 since the equations are singular at t --

0 where Re is infinite. As seen in Fig. 6-12 the time line immediately starts rol-

ling up around the stable focus forming the expected mushroom shape. In Fig.

6-13a, the Reynolds number decreases to below Re 2 and the flow goes into

State 2 where the rolling stops. The off-axis critical point then merges into the

on-axis saddle and the flow topology changes to State 1.

entire past flow history from

effectively a dead flow. The

points go

Chapter 4.

Figure 6-13b shows the

flow depicted which isState 3 to the State 1

p, q plot evolves as the time lines and critical

through their motions, all of which are based on the equations of

The ramp jet involves the integration of (4.7) and (4.8). Unlike the



vortex ring,

6-14 through 6-16.

in physical space.
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* • +

States 1 and 2 are not masked by the flow history as seen in Figs.

Like the vortex ring the flow starts as two straight time lines

However, for the ramp jet the initial Reynolds number is

small. As the Reynolds number increases the flow bifurcates from State 1 to 2

and then to 3 with the corresponding transformation of the off-axis node to a

stable focus. Figures ]3-42 through B-47 show the time line evolution for the

three Stokes solutions of the vortex ring, round jet, and ramp jet. These plots

(in physical space) were the prototypes for the movie software and show some

details in the fluid strain that are less apparent in the movie. The source is at

coordinate (0, 0) and is blowing to the right. The critical points are not shown

in Figs. B-42 through B-47. The crosses shown in Fig. B-42 are individual points

being marched by the Runge-Kutta routine. At

closely packed that they appear as a single line.

Re : 69.9 the crosses are so

At Re -- 13.19 the individual

crosses can be seen in the front of the mushroom (the front being the right-most

part near the axis of symmetry), which is an area of very high strain. The coat-

tails of the flow are still very dense but are (or were) being sucked into the volute

revolving around the stable focus. It Should be emphasized that a vortex ring

stops rolling up after transition from State 3 to 2 and becomes a dead flow as

Re vanishes. However, even though the flow is dead the mushroom remains as a

consequence of the flow's history. Figure 13-43 is the same flow as B-42 but the

time line is further away from the source. The consequence of this is that the

ti,-_, llnA na_ro1- I'_ ....... h'.,.,_,.",,m 1_a_onea 'Pan¢itlr_n nr_ollrrod l',,a.l'nra thi_ llna

could form a volute. Figure B-44 shows a Stokes round jet for Re = 2.0 which



Fig. 6-12. Stokes Vortex Ring. State 1 Fig. 6-14 Stokes Ramp Jet. State 1 

Fig. 6-13a Stokes Vortex Ring. State 2 Fig. 6-15 Stokes Ramp Jet. State 2 

Fig. 6-13b Stokes Vortex Ring. State 3 Fig. 6-16 Stokes Ramp Jet. State 3 
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flow has for all time. Figure B-45 is a Stokes round jet for Re -- 8 which is in

State 2. A characteristic corner is forming in the time line. State 2 flows never

roll up to form a mushroom shape. Notice that the front has a high degree of

strain unlike the coattails. Figure B-46 shows a Stokes round jet for Re -- 20

which corresponds to State 3. This flow is rolling up and is forming the charac-

teristic mushroom shape. The three round jet solutions are displayed in dimen-

sional units because the round jet has no length scale. The fluid simulated in

the round jet is olive oil. Figure B-47 displays the Stokes ramp jet. The ramp

jet, like the vortex ring, goes through all three states but its flow history does not

mask its present state. Unfortunately (as shown in the movie), the ramp jet goes

through States 1 and 2 so quickly that their features are almost unobservable

(Re 1 -- 3.7, Re 2 _-- 5.8 for the ramp jet). The features of State 2 are distinc-

tive only in the round jet where the Reynolds number is not a function of time.

All of these Stokes flows have an unrealistic aspect in that their volutes do

not translate downstream but loiter around the momentum source. This is a

consequence of the elimination of the convective term in the creeping approxima-

tion. When one sees the Stokes flow movie this aspect of no translation gives the

flow an unnatural appearance. However, as mentioned before, four Navier Stokes

flows for the round jet based on a 60 X 60 mesh were also animated. Animating

these flows was much more difficult because discrete numeric data had to be

integrated rather than analytic functions and the flows were convecting making a

correct viewing frame more challenging. The particle path equations (4.1) and
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(,1.2) were used with a stream function spline based on (6.1). This particle path

representation was valid only out to _oo. Beyond _oo the multipole solution

was used via (4.1) and (4.2). The equations were integrated using the same

Runge-Kutta method as used in the Stokes solutions. The Navier Stokes simula-

tion uses fluid parameters consistent with olive oil (glycerine was represented in

the Stokes flow). Only the upper half of the plane is calculated and then

reflected over the axis of symmetry for the lower half in the graphics. The inner

time line (closest to the momentum source) is made up of 700 points with 600

points bunched in the 1/20 part of the time line closest to the axis of symmetry.

The outer time line is made up of 300 points with 200 points bunched in the 1/8

part of the time line closest to the axis of symmetry. This large amount of point

concentration near the axis of symmetry is required by the high rate of strain

that occurs in the front of the round jet. The movie framing rate is at 24

frames per second. One can see that the amount of data generated is enormous.

An 11 minute movie has 15,840 frames with each frame having 1,000 points

and each point described by two single precision words. This equates to 31.7

megabytes just for raw data storage. This data in turn, has to be converted to a

graphics format that increases storage requirements by an even larger amount

(over an order of magnitude). The storage requirement exceeded available com-

puter storage necessitating that the movie be made in roughly two minute seg-

ments and spliced together. The actual filming was done by first generating the

graphics on disk and then transferring to magnetic tape. The magnetic tape was

read by a Dicomed machine which built up each image on a high resolution black

and white CRT. The visual image on the CRT was passed through a color wheel
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into an animator's movie camera. Each frame of fihn was triple exposed with

different images passing through different filters of the color wheel. The colors

used wire red for the critical points, white for the source, and yellow and green

for the time lines. Figures 6-17 through 6-20 show frames from the Navier Stokes

movies.

States 1 and 2 are similar in appearance to their Stokes counterparts• Fig-

ure 6-17 shows the smooth parabolic shape of State 1 for Re -- 4 with the time

lines not touching each other. Figure 6-18 represents a State 2 flow for Re -- 6.

Near the axis the time lines have merged with each other and changed color

where they overlay. The saddle and off-axis nodes are on the time lines. Notice

that the State 2 kink is not at the off-axis node. As time progresses the kink

gets closer to the off-axis node and presumably with infinite time they are super-

imposed. Being in State 2 (like State 1) this flow will never roll up and form a

mushroom shape. Because the Reynolds number regime in which State 2 occurs

is so narrow (between Re --- 5.5 and 7.5) an experimentalist would have to be

specifically looking for State 2 in a very carefully controlled experiment. The

discovery of State 2 and the creation of the

major dividends of this study. Two State 3

State 2 animation was one of the

flows are shown in Figs. 6-19 and

6-20. Figure 6-20 is by far the most dramatic flow simulated. This Re -- 30

flow looks incredibly natural and has been mistaken by some of the movie's audi-

ence as experimental data. In fact, the movie looks better than it should judging

• KTfrom its dipole coe_cient ,_u,_,,_;_"_factor which ,o'o a paltry 0.67. _,umerically

speaking the Fig. 6-19 could serve as a basis for experimental verification unlike

the Re -- 30 which is less accurate. In both flows we notice the long natural
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_temsof the mushroomshape. As time progressesthesestems are suckedup into

the volutes which are translating away from the source. The saddlepoint always

has the time lines bunching about the round jet. In round jets the "bunch point"

wheretime lines accumulate the saddle point is one and the same. This is not

the easein the nonautonomousflows like the vortex ring and ramp jet where the

bunch point is separatethough obviously associatedwith the saddlepoint on the

flow axis. In the Re "- 30 flow if one looks carefully near the saddle point just

k^r^__ ,_ ..... :.._a_ ^n ligh pl !y p!i_1_,,_ _,,_ ,,,,,_ _,,,_o, v,c can see a s t dim e and the ear effects of s ne

kinks due to the high rate of strain. All of the Navier Stokes movies exhibited a

remarkable naturalness.
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Fig. 6.17. Navier Stokes, Re = 4, State 1. 

Fig. 6.18. Navier Stokes, Re = 6, State 2. 
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Movie Frames 

Fig. 6.19. Navier Stokes, Re = 20, State 3. 

Fig. 6.20. Navier Stokes, Re = 30, State 3. 
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Chapter VII

CONCLUSIONS

Two basic sets of conclusions can be drawn from this work. One set is

drawn from the numerical methods employed. The other set is drawn from the

physics of the problem under study.

1. On The Numerical Method

The two-step numerical method involving the solution first of the stream

function with vorticity fixed and then of the Poisson equation for the vorticity is

widely used and works quite well. However, it is the author's opinion that a

one-step approach solving a nonsymmetric matrix would be an improvement.

This would remove the need for under relaxation and much of the data handling

would be simpler and faster.

The question of whether to solve a large, sparse, linear system by direct

means or through relaxation is still very much a controversy in the CFD com-

munityo We used the direct method and still believe it is the best method on the

'use-once' experimental programs where computational stiffness is anticipated.
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We did, however, have difficulty with the large cpu time requirement of the

direct solver and this, more than anything, limited the maximum Reynolds

number attained.

The forward-backward solver was very effective as a means of reducing the

amount of memory required for direct solution of the matrix with only a modest

increase in cpu time. However the forward-backward solver does have difficulty

with reund-off errer amplification in the backsweep.

The nonlinear scale function used in this study did not enhance convergence

and in retrospect appears to unnecessarily complicate the problem.

The Japanese fan adaptive grid was useful in enhancing convergence and

accuracy. However the stretcher required considerable programmer effort to set

up and properly tune. No suitable coordinate stretcher in the _ direction was

found that would match the boundary conditions at both zero and infinity and

give useful control over point placement in the interesting regions of the flow.

The use of the multipole expansion was found to provide an effective far field

boundary condition as long as a Neumann boundary condition was used rather

than a Dirichlet.

The multipole solution provided some unexpected dividends. One was the

generation of a quality factor for comparison of the computed value against the

analytic value of the dipole coefficient. The other dividend was the interesting



- 127-

relationship of ,,:_, .... ,=._: ....... :,L ...... , ,^ ^,_,^. •CU_lllgl_llt,5 Wlbll •_lA_uo y'_l_ each v_.._, at ......... Re -mul_lpoie _,

nolds numbers.

A line of speculation developed from this multipole relationship led to the

belief that a boundary location _oo -- 15 is acceptable only for Re _ 29.22.

Otherwise the multipole series is divergent causing the boundary condition to be

invalid.

The computer animation proved to be a very useful tool in both understand-

ing the flows presented and as a teaching aid. The animation revealed features

about the critical points and their relation to the time lines that could not be

fully realized using just the entrainment diagrams.

various flows studied.

State 1 is for 0

straight time line leads to a smoothly growing,

flow has a single on-axis stable node. State 2

2. Physics Of Axlsymmetric Jets

One of the main conclusions regarding the physics of impulsively started jets

and vortex rings involves the discovery of three distinct states of motion for the

Transition Reynolds numbers are _ven in Table 7-1.

Re __ Rer Application of this flow to an initially

roughly parabolic front. This

is for Rel _ Re <(Re2.

Application of this flow to an initially straight time line leads to a curved line
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Table 7-1

Transition Reynolds Number

Flow Type

Stokes Vortex Ring

Stokes Ramp Jet

Stokes Round Jet

Navier Stokes Round Jet

First Transition Re I

18.1749

3.7386

6.7804

5.5 ± 0.4

Second Transition Re 2

23.4105

5.7887

10.0909

7.54 4- 0.16

with a corner located at an angle larger than the angle of the off-axis critical

point. This flow has an on-axis saddle point and two off-axis stable nodes. State

3 is for Re2 _ Re. Application of this flow to an initially straight time line

leads to a geometry that looks like a mushroom or smoke ring with the volutes

centered on the off-axis critical point. This flow has an on-axis saddle point and

two off axis stable loci.

State space analysis was used to define the structure of the flows under

study. It was shown that employing continuity, boundary conditions and self

similarity makes it possible to draw the trajectory in p, q space for axisym-

metric jets, even in the absence of a solution. From a knowledge of this p, q
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as the Reynolds number is varied before actually solving the governing equations.

The p, q trajectory helped us to recognize that State 2 is a distinct state of

motion in axisymmetric jets.

Much of the work revolved around the generalized solution of the Stokes

equation (see App. A). Three creeping solutions (Stokes solutions) were solved

for and studied in detail. These solutions were examined at higher Reynolds

number where the creeping approximation is invalid. In fact, state-space analysis

shows that the Stokes solution of the round jet will have the same topological

properties as the nonlinear solution even though the approximation is beyond its

region of validity. There were, however, many differences between thee linear

and nonlinear round jet solutions. The most.obvious as seen in Table 7-1 is that

the transition Reynolds numbers are different. Also, the spreading angle behavior

is completely different. The spreading angle in the Stokes solution goes from 0

to _r/2 as Re becomes infinite. In the nonlinear solution the spreading angle

quickly grows with Reynolds number until the second transition..As the Rey-

nolds number is increased beyond Re2 the spreading angle reaches a maximum

of 34.4 degrees and then begins to decrease. For the nonlinear solution the size

of the vortex increases slowly while the stem of the mushroom quickly grows in

length. In essence because there is no convective term, the vortices of the Stokes

solution do not move axially away from the momentum source.
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Strain in the fluid flow was both an interesting observation and a source of

difficulty in the computer animation. It was found that the highest strain

occurred at the on-axis saddle point (see Fig. B-42, Re -_-- 10.7}. The strain is

observable as separation between each of the computed points (represented as

crosses}. Strain decreases as the time line rolls up towards the stable focus from

the saddle point. The time line is folded at the stable focus and rolled up into a

vortex centered about the stable focus forming the mushroom shape. The region

of the time line between the stable focus and the saddle point has more strain

than the region between the mushrooms and the stable focus. Strain increases

as the time line rolls up from the stem into the vortex towards the stable focus.

In the animation of the vortex ring it was found that when the flow changes

from State 3 to State 2 the vortex stops rolling up. Therefore it is possible in a

mixing process for the rolling up to terminate before the interface can be

entrained into the vortex, i.e., it is possible that no mixing occurs at all in a vor-

tex ring's vortex.

One of the most remarkable observations in this study was that there was

no local accumulation of vorticity at the stable focus of the round jet. The

greatest vorticity in the round jet occurs in a 1/r 2 singularity at the momen-

tum source. In the neighborhood of the stable focus the vorticity is smooth and

decreasing monotonically with radius. This observation is counter to the widely

accepted belief that vorticity must be accumulate within a vortex. The Stokes
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ramp jet like the round jet has its vorticity peaked at the momentum source with

the vorticity smooth through the stable focus. This sort of vorticity behavior will

also be the case for the other types of axisymmetric jets for integer m __ 1

(Reynolds number increasing with time}. For the Stokes vortex ring

the situation is

= (+ 1,

focus ever gets to this vorticity peak is at Re _ c_ where the focus is at

(m -- -1)

different. In this flow the vorticity peaks at

for all Reynolds number. However, the closest a stable

In the Stokes solution the vorticity peak and criti-

same location. However, it is an open question

whether the Navier-Stokes vortex ring has a coinciding stable focus and vorticity

peak. It is quite possible that the inclusion of the convective term may cause the

vortex to be a site of vorticity accumulation in the vortex ring at high Reynolds

number. Resolution of this question will have to await future study.

(_¢, 0¢) = (4" 3.0224, _'/2).

cal point never occupy the
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Chapter VIII

SUGGESTIONS FOR FUTURE WORK

Of the infinite number of flows under the category of axisymmetric jets, one

flow, the round jet (m -- 0), was studied both analytically in the creeping

approximation and numerically for the full Navier-Stokes solution. Clearly some

of the other axisymmetric flows are worthy of numerical investigation.

Recommended flows for further study are the following.

1. The vortex ring (m --- -1);

2. The ramp jet (m -- 1);

3. Hill's spherical vortex (m -- 3/2);

4. The two unnamed flows for m ---- 1/2 and m --- - 1/2.

The spherical vortex should be subjected to a closer analytic investigation

since it is the author's opinion that there may exist a whole family of exact

axisymmetric jet solutions where the convective term goes to zero in the Navier-

Stokes equation.

The family of orthonormal solutions (m negative half integer) shown in

{_ECEDING PAGE _LAN_. _-_C:,..F_.ME_
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may also serve as a b_is for a spectral investigation of axisymmetric

The nonaxisymmetric round jet is a flow that is very exciting. Like the

axisymmetric problem the nonaxisymmetric round jet is autonomous and self

similar. Since this flow is not constrained in the third dimension it can theoreti-

cally display a vastly more complex set of geometries. This flow would also serve

as an ideal basis for utilizing three dimensional state space. Three dimensional

state space is a mathematical tool that will have a much more immediate appli-

cation to real world flows than the axisymmetric methods developed in this work.

It will be extremely interesting to see whether the three dimensional state space

can be used to deduce a trajectory similar to the one discovered in this work

based only on continuity, boundary conditions, and self similarity.

The data generated in this study could be further utilized by assuming that

the fluid is divided into different types with a reaction occurring at the interface.

The data of this study could drive calculations on the mixing and reaction rates

of the different fluids.

There also exists the possibility of analytic solution of the Navier Stokes

round jet. The inquiries of App. A, coupled with some of the observations of the

numeric study, represent a set of signposts which indicate that a closed-form

solution may exist which only awaits the advent of some new mathematical tech-
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nique to bring about its discovery.

The problem of computer animation is another area that is very interesting.

In this study a two-dimensional representation of 1000 points was animated. In

a three-dimensional study the level of complexity would probably go up by

several orders of magnitude. Flow visualization actually represents a barrier to

the advance of understanding in fluid mechanics. For example, the author can

visualize a two-dimensional flow that is translating and deforming but cannot

visualize this for a three-dimensional flow. The situation is analogous to a chess

master who can visualize an entire chessboard and examine scenarios five or six

moves ahead while a novice player can only visualize three or four pieces and see

only two moves ahead. For those of us who are not master chess players there

will be a need for movies showing three-dimensional fluid flows translating and

deforming so that we can perceive the underlying physics. However, the com-

puter and peripheral capability for such computer animations does not yet exist

(the storage, I/O requirements, software are not sufficiently advanced). The jet

flows described in this work can provide an ideal medium for advancing the tech-

nology of flow visualization.
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Appendix A

JET FUNCTIONS AND THEIR PROPERTIES

1. Introduction

Fluid is disturbed by a point momentum source whose time behavior is well

defined. The flow is constrained to be axisymmetric, and the nonlinear term of the

Navier-Stokes equation is removed. The equation of motion is the axisymmetric Stokes

equation which, when expressed in spherical coordinates, is

a t -- v (A-l)r 2 sin 2 0

The problem is expressed in spherical polar coordinates

where

0 --

t --

0 is the axis of symmetry,

time

v -- the kinematic viscosity.

w(r,#,t) = vorticity in the ¢ direction,

Equation (A-I) may be reduced by the introduction of a new dependent variable and a

r

S -- _ (A-2)

self similar coordinate:

where

oJ-- Pv-2tm-'W(S,O) (A-3)

IPli_.GEDSNG PAGE BLANK .NOT FILME,_
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S -- similarityvariable,

A

P

W

-- characteristic strength of the momentum source and is the

parameter which, along with v governs the scaling

properties of the flow

-- dimensionless vorticity

A

m -- index derived from the dimensions of P.

The similarity variable S is a modified version of the earlier similarity variable

used in the main text of this thesis. The two variables are related as follows:

(-" SV_ (A-3a)

Equations (A-2) and (A-3) can be combined with (A-l) to give

a S _ + 0"S" + _ "--- in # _ (A-4)sm # 0 0 0 O

W---0

Equation (A-4) can be reduced into two ordinary differential equations by separation of

variables

d2 J + (S + 2 dJ [ lll'+'l) ]dS2 ,._ -_-
"_) 2 + m-1 J = 0 (A-4a)

2S 2

where

[ [ ]1 d sin O + l(l + 1)- ---L-1 P -- 0 (A-4b)
sin0 dO sin2#
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H_S,O) = (_P(0)J_S) (A-4c)

and where ! and m are real constants,

order, a tabulated function. The constant

(A-4b) is the Legendre equation of first

is for boundary condition matching at

the far field.

that corresponds to a dipole flow in the far field, viz.,

now reexpress (A-4c) as

W(S,O) -- _sin 0 J(S)

It should be emphasized that J(S)

never appeared in this study). With

For the purposes of this paper we will examine only the solution of (A-4b)

1= 1, P(0)= sin0. we may

(A-5)

is not a Bessel function (in fact Bessel functions

I = 1 , (A-4a)becomes

d--_+ S+ -_-2 +m- J=o (h-6)

2. DERIVATION OF THE "EASY" SOLUTIONS

The ordinary differential equation, (A-6) will be the center of study. Solutions of

this equation will be called "jet functions". Equation (A-6) by the following substitu-

tions can be cast into two different forms which are polynomials without transcendental

function.

Let

giving

E.(S)
J_(S)= S (A-7)
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Let

1-2m-- E=o (A-8)

giving

-s_Z'
2

J (S) - ' s r. (s) (A-0)

d2--._F-s dR 2 [m+ 1 ]dS2 d-'_- "_" F = 0 (A-IO)

Equations (A-8) and (A-10) can each be solved by means of the Frobenius method.

(A-8) we find

For

oo

E(S) -- _ Ci S i+" (A-11)

where

n = -1,2 and C 1 -- 0, C O _ 0 ; (A-12a)

-j-n+ 2m+ 1

CS = Cj-2 12+ 2nj-j-2-n+ n 2
(A-12b)

For this O.D.E. there is one solution with a second order zero at the origin, and a

second solution which is a first order pole. The recursive formula, (A-12b), can be used

to find closed form solutions by recognizing that the index j must be an even positive

integer and that the numerator in (A-12b) goes to zero at some value of j truncating

the infinite series for a polynomial solution. The results below point to polynomial solu-

tions:
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n ---- -1. first order pole:

¢i = ci-2 2(m+ 1)-j
j(j-3)

(A-13)

For polynomials: m -- j/2 - 1, therefore m -- 0, 1, 2, 3, 4, ...

n -- 2, second order zero:

For polynomials:

2m-i-j
cj = cj_2 i(J + 3)

1
m--

2

a_ 5_L 9_
[1+ j], therefore m -- 2' 2 '2' 2'

(A-14)

j -- 2, 4, 6, 8, 10, ...

we can go through similar reasoning for (A-10) with the solution being

OO

F(S) : _ CiS.i+"
,{==0

(A-15)

where

n -- -1,2 and C 1 = 0, C O # 0 , (A-16a)

C j-- C3.2

j+ ,,+ 2(.,-1)
j2+ 2nj-j-2-n + n =

(A-16b)

This result as before has a solution with a second order zero and a first order pole.

polynomial solutions can be recognized in the same manner as before:

The

n -- -1, first order pole:
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2m-3+ ./ (A-17)
Cj = Cj_2 1(/-3)

For polynomials:
1 1 3 5

m=(3-j)/2, m----- -
2' 2' 2' 2'

n --- 2, second order zero:

2m + ] (A-lS)
Ci "-- Cj-2 j(j + 3)

For polynomials: m -- - j/2, m -- -1, -2, -3, -4, ...

j -- 2, 4, 6, 8, 10, ...

These polynomial solutions which shall be called "Easy Solutions" are all expressed

in closed form as finite series. When the E m and F,n polynomials are cast back

into their original J_ form via (A-7) and (A-9), the first order pole solutions of E_

or F m polynomials become second order poles, which shall be called "B m func-

tions" and the second order zeros of Em or F m polynomials become first order zeros

which shall be called "G_ solutions". These independent functions are thus

Jm -- el GIn(S) + 02 Bm (S) (A-19)

where C 1 and C 2 are constants of integration.

B_(S)
-S j(m-j )!(2]-2)! (m ])S

]ffil

Bo(S ) _._ _ 1 (A-21)
$2
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_S _

- -_ s j(m - j)! (2j- 2)! (m!)S
2 "_

_S _

2

B,(S) = e (A-23)
- S
2

-S'

G_m(S ) : -e----_-2 [ _ (-2)J+l(j2+ J)S2J ] (A-24)s jr, (,,,-j)!(2j+ 2/!

1 [ 2J+ l(j 2 )G, + (S) -- -_ _ + j) S 2j (A-25)
,n i=1 (m-j)!(2j + 2)!

where m = 1, 2, 3, 4, ....

Rodrigues' formulae and generating functions have been derived for the above

equations. For (A-20)

(2) m-1 e 2 d2m-2

Bm(S ) __ (2m-2) !mS2 dS 2m-2 ($2-2m+ 1)e (A-26)

with generating function fl(B) where

] (A-27)e × [cosh(svr_)_ Sv_Xsinh(Sv/-_)j_(2) (s,x) - s2

where

(X)

n£B) (s,×) = E zj(s)>,J (i-2s)
j=O

For (A-22)
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B 1 (S) : (-2)m-1 d2m-2
- -m (2m_2)!mS 2 dS 2m-22

( -s_____]$2+ 2m-1) e 2 (A-29)

with generating function
---m

2

(S, X) where

---m

2

(S, X)
2

e

S 2
[cos ( S v/'_ ") - S x/_ sin (S v/_) ] (A-a0)

where

1
----m

2

(S,X)
O0

= H Bl .(S)X/
if0 _-J

(A-31)

For (A-24)

C_,n(S)  2m_,[ _!]
dS2m_l (S 2 + 2m) e 2 (A-32)

__(_)(s,x)
2e

2SX 1 sin(S v/-_) ]cos(S4_-_)- S v_ (A-33)

where

OO

n_(_)(s,×)= E
j----O

G (y+,)(S)),i (A-34)

For (Ao25):
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c, (s)
--+m
2

[(2)_ m e 2 d2m-,
(2m+l)!S 2 dS2,n-' ($2-

°l2m) e 2 (A-35)

),

± + m 2SX
2

cosh(S vf_) _ 1
sv_

sinh (S J_) (A-36)

where

(3O

n'°' (s,×) = _ c3 (s)×J
±+ m jffio -+ j
2 2

(A-37)

where m ---- 1,2,3,4, ....

For the functior/s described by (A-22) and (A-24) there has

ing relationships with known special function:

been found the follow-

_S 2

(_l)Z e 2 [ 1 SG-re(S) = ('2 D:'-m--" H2_+ '
+

(A-38)

_8 2

- ( IG m(S) ____ e 2 M m, -1 S 2
- m!S 2 2' 2

(A-ag)

_$2

{_1)_+1 2e 2 1 H2,,,
BL_m(S) -- (2m-2)! S 2

2

(A-40)

_s 2

- t I(s) = s e 2
Bi--m (m-l)!3 M m+ 1, 2'25 S2

2

where m ---- 1,2,3,4,... and H m [S/v"2} is a Hermite polynomial and

(A-41)
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1
M( ---m, 2 '

these special

function's properties. This particular

discoveries for some future work.

-_) eoafiucnt function. This connection betweenis Hypergeometrica

functions and jet fupctions greatly aided the uncovering of the jet

line of inquiry still promises more interesting

Recursion relations have also been found for the jet function. For

was found that

m <l'it
-- 2

[2m-5] [m-l] J,_-2-[ 5-4m-$2] Jm-I + 2J= = 0

_ 1(m < 1 integer or --
--2' 2

integer)

(A-42)

For m > 2:

[2m-3] mJm + [5-4m-S 2] Jm-t + 2Jm-2 = 0

1
(m > 2, integer or --

2
integer)

(A-43)

Jm may be replaced by G m

Other properties of jet

independent functions of G m

or B_ individually in (A-42) and (A-43).

functions are more easily examined if we reduce the

and B m down to their primitive polynomials. We do

Letthis by employing (A-7) and (A-9) and defining some new notation.

Fm (S) -- C, F(a)(S) + C2F_ B} (S) (A-44)

where

E,,, (S) -- C 1 E(_c)(S) + C2E_B)(S) (A-45)
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-s_Z

G, n = _e 2 Fm{a} __ 1 E(O ) (A-46)
s S

-s__2.'

Bm = __e 2 F(e) __ 1 E(B) (A-47)
S S

and C1, C 2 are constants of integration as in (A-19).

Two recursion relations have been found which have a differential component for

m<±
-- 2

dFtFl

[2,,,-_]., F__,= [-2,,,+ 1- s2l r_ + s d---T (A-4S)

Equation (A-48) is true for both -mF(c) and -mp(_)

case of m >_ 2 the following is true:

but only if m < 1 For the
-- 2

dEm

-2E__, = [-2rn+ llE,_ + S d""_ (A-49)

Equation (A-49) is true for both E',,a, and E (B} but only if m >_ 2. Imaginary

relationships analogous to those of the trigonometric functions cos(i0) ---- cosh(0),

-isin(iO) --- sinh(0) have also been found for jet functions (not an unreasonable

event in light of the generating functions):

_(_ms, (S) -- -i F_' (iS) (A-50)

2

F_ s) (S) -- -i_,nF')(iS), (A-51)

2
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E (a) ..- r" (c_ (iS) (A-52)(S) •-m-1
m+--

2

F (a) E co) (iS) (A-53)

2

where m -- 0, 1,2,3,...

It was the discovery of these imaginary relationships that largely unlocked the

study of this problem. Now one need only study the functions of

1

m <_ _ (Fm polynomials which, because of the alternating sign in the terms mak-

ing up these functions, were more easily matched to known special functions, (i.e., the

Hermite polynomial). E m polynomials can be found by simply mapping over from the

F m polynomials using the above relations.

3, DERIVATION OF "HARD" SOLUTIONS

In the previous section we derived what are called "easy solutions"; however, this is

only half of the story. The reader may have noticed that for m ---- 0 we have a B 0

solution but no G O solution. Likewise for the rest of the easy solutions, another solu-

tion needs to be found. These other "hard solutions" as their name implies, are of a

more complex structure. Hard solutions can be expressed in a single infinite series form

through application of the Frobenius method. However such a form is virtually useless

for satisfying boundary conditions or in examining the solution's properties. The more

appropriate forms for examining hard solutions are shown below:
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-s' ¢S i

F (s) =
s' s/_

D,,.(S) eT + F,.(S) f ¢" dx
0

(A-54)

(A-55)

where E m and F,n are easy polynomials, i_m, F-"_ are hard solutions, and Dm

is a function which will be called a "hard driver polynomial" which will be defined

shortly. Hard solutions can be converted back to the jet function form J,, by using

(A-7) and (A-9). Easy polynomials of first order zero type (G superscript) always have

second order pole type (B superscript) hard solutions. Easy polynomials of second

order pole type (B superscript) always have first order zero type (G superscript) hard

solutions. B superscript hard solutions have B superscript hard driver polynomials; and

G superscript hard solutions have G superscript hard driver polynomials. Hard solu-

tions and hard driver polynomials can be raised to higher or lower order by using the

recursion equations (A-41) and (A-43) (however no differential reeursion formula such

as (A-49) has been discovered for hard driver functions). The imaginary relations for

hard solutions are almost the same as for easy solutions:

-m-1 (S) -- i 3 (iS) (A-56)

2

F_,(') = i "_(') (iS) (A-57)3 (s)
2

E(,,,_)(S) ---- -l_'c) (iS) (A-58)

2
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i (s) = __ (;_) (A-am
2

where m -- 0, 1, 2, 3, 4,.••

The hard driver polynomial Dm(S ) for (A-54) may be solved by finding the par-

ticular solution to the following O.D.E., which was derived from inserting (A-54) into

(A-s):

om[ 1°] _d2D" S---2 m +- Dr,, -- 2 dE,,, (A-60)
dS 2 dS b" dS

The homogeneous solution to

_S _

2
(A-60) is simply F m which when multiplied by e

in (A-54) is E_(S) (the easy solution) and therefore redundant (it can be absorbed

in the constant of integration)• A simple closed form solution for DIn(S) is not yet

attainable. The form presently known is shown below for one case derived from (A-60),

(m __ 0, integer only):

D(B) -- -._I_1_ Ck S2k_ 2 (A-61)
m I

• k==l

C 1 = 1 (A-62)

Cm : 2m_1 (m-l)! (A-63)
(2m-2)!

( _k(ek-l)2(m!)]1 2k2-k-1)Ck+' + (_k)!(,',,-k)! (A-84)Ok = k+ rn-1

where m -- 1, 2, 3, ... and C,n is used to end the series• The preferred method for

calculating hard drivers is not to use (A-61) or its counter part for D_ G) but rather to
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use the recursion relation (A-43) and use

Table A-1 of known hard driver functions.

One may calculate negative m, and m

by first calculating the positive

(A-60) to check the result. Below is

2
hard drivers (for _m ),

m value hard solutions by using the above tech-

niques and converting them over to their imaginary counterparts via (A-56) and (A-

59). The hard drivers can be extracted by using the definition of (A-55). However

for physical reasons, which will be examined in the next section, negative m

valued hard solutions are of little interest.

4. INTERLEAVING OF SOLUTIONS

Table A-2 can now be generated which shows some of the jet function primi-

tive polynomials and how these functions interleave. The reader should note how

the easy and hard solutions alternate in both the G m and B m solutions. Also

note how the J1/2 solution (which has a F m polynomial form) penetrates into the

E m domain, leapfrogging Jo- An example of how a complete solution is

5
extracted from Table A-2 is shown with m = --"

2

J5 (S) -- C 1G 5 (S)+ C2B 5 (S) (A-B5a)

2 2 2
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Table A-1

Hard Driver Functions

D_ G) = -1

D_ c) : -1

2

r s2]
-_ [ 1 + J

D5
2

4S+ S3-Is ]

1[ s,+is,]--- -_ I+ 3

D_B)
2

__[ _ s, 2]1 12S + 13 $3 +
105 2 2 S
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"'J5

2

c, 14s+ eT-:-+-i'g] +'T 7:F { S_ 54 -1

(A-85b)

The imaginary complement of J5 is J-2 which is shown below:
2

F -T + + c2--T
1

S]2
s_ s_ e£

+ [--5-+Yg] fo dx

At this point boundary conditions for S --* c¢ should be examined. It has been

shown that vorticity from a point disturbance will decay as a Gaussian multiplied by a

slowly varying function. In (A-65) we observe that this boundary condition is attain-

able only if C 1 -- 6'2, which causes the easy solution to disappear at infinity. In

(A-65b) the solution will converge only if C2 -- 0. These two cases are representa-

tive for all Jm with polynomial solutions (for the E m solutions C l -- C 2 and for the

F m solutions C2 -- 0 ). It is for this reason that the r m hard solutions are of little

physical interest in the unbounded problem, for with the exception of the solution

1 1
m = -1

2' 2'

1 1
m-- -1

2' 2'

all of Fm hard solutions diverge at infinity, and in the cases of

the solutions do not decay as a Gaussian multiplied by a slowly
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varying function and are therefore inadmissible. Based on this boundary condition we

can write a more restrictive form for Jm(S) where we set C 1 -- 1 for conveni-

ence:

Jm(S) -- S (S) + Em(S) for m __ O, integer and 1/2 integer ; (A-67)

_5,2

m(S for m -- , m < 0, integer and 1/2integer ; (A-68)

5. ORTHOGONALITY PROPERTIES OF JET FUNCTIONS

It was found that (A-4b) can be recast into the Sturm-Liouville form:

$2e2 dJ
dS + (1-m)S 2 e 2 _ l(l + 1) e

J = 0 (A-00)

This result opens up many possible lines of inquiry, but the only one examined so far is

that of orthogonality. Orthogonality relations can probably be deduced for all the jet

functions (J,_) if one were interested in integrating from zero or infinity to a zero of

the jet function which had the appropriate boundary condition satisfying the Sturm-

Liouville theorem. However the only jet functions that are orthogonal over the range

(0, _) are the negative m integer type (F_). The orthogonality properties of

these particular functions are defined as follows:

Let:
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22re(m2+ m) _/_X_ -- (2m + 2)! (A-70)

From (A-68)

_S _

 m,s,_ e2[ ,2,J+,,j2+i,s2J] forS y= 1 (m-j)!(2j + 2)!
m = 1,2,3,4, • • • (A-71)

We use the weighting function from (A-69). The orthogonality integral is:

/
S___2 | 0 m_n

f J_m(S) J,, (S) S2e 2 dS = io
)2 m:n

(A-72)

With (A-70), (A-71) and (A-72) as a basis, one could employ the following Fourier form:

oo S 2
1

A m -- Xm f 0(,9) J,,,(S),92 e 2 dS (A-73)
0

A m

• (x) = _ _ J_m(x) (A-74)
m----1

where _(z) is the function to be analyzed. It has not yet been established whether

(A-74) will pass the completeness test. Assuming that (A-74) is complete, if one had a

vorticity distribution that can be represented with the self similar coordinate S, one

could use (A-74) to spectrum analyze the function. This assumes that the resultant

equations in (A-73) and (A-74) are convergent, which will probably be the case only if

the Reynolds number of the function under consideration _(x) is decaying in time

since (as we shall see in the next section) all of the basis functions J_m(S) employed
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in (A-73) are of this Reynolds number behavior.

6. STREAM FUNCTIONS, VELOCITIES AND REYNOLDS NUMBERS

FROM JET FUNCTIONS

With the method of generating the vorticity functions established, the means

by which to calculate the stream function, velocity, and Reynolds number, along

with deducing the forcing function should also be examined. Following the method

used by Cantwell [1980] the velocities and stream function are converted to dimen-

sionless quantities:

U = Pv -3/2 t m-l/2 U(S,_) (A-75)

v -- Pv -3/2 t m-'/2 V(S,O) (A-76)

¢ __ _v-,/2 tin+,�2 g(S,O) (A-77)

where

velocity in the theta direction with

of the variables the same as used in

u is the radial velocity with U its dimensionless counterpart, v the

V its dimensionless counterpart and the rest

(A-3). The definition for stream function and

vorticity in axisymmetric spherical coordinates is:
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1 o ¢ (A-78)
n -- r2sin0 00

v = -1 0 ¢ (A-79)
r sin 0 0 r

o (rv) o u (i-80)
rw -- 0-"_ 00

The previous six equations are used with (A-2) and (A-3) giving

1 02g _1_ 1 0 [ 1 0g] (A-S1)-2 3/2 S W --- "sin 0 0 5e 5e 00 sin 0 0 0

It can be shown that an axisymmetric stream function for a Stokes vorticity solution

that is consistent with (A-5) (! -- 1, dipole case), must be of the following form:

g(S,O) = i sin 2 0 R(S) (A-82)

Combining (A-83) with (A-81) and (A-5) we find that

]23/24s) = dS _ dS (SR) (i-Sa)

where J(S) is the jet function which we just solved. Equation (A-83) is readily

integrated, yielding

R(S) = C! - 23/----_2 dS] (A-84)5; + C2 5_ S [ f Se{ f 4 S)dS }

where C 1 and C 2 are constants of integration, governing the irrotational dipole com-

ponents of the stream function. The dimensionless stream function, and velocities can
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{C I 23/2 }_{_,o}= si,,,oT +_"-T [I,'{f _{'}_'}4 .(A-85}

u = 1 o_A (A-SB)
2S 2sin 0 0 0

/

V -- -1 0_g_ {A-87)
2Ssin 0 0 S

We may derive the Reynolds number from the unsteady particle paths given by

dr

-- -- u (A-88}
dt

dO v
-- -- -- (A-89)

dt r

A logarithmic relation for time is employed:

r -- lnt

Also, a Reynolds number will be used of the following form:

(A-00)

[Pt m ]_"
Re ---- [ v_u2 (A-91)

Equations (A-75}, (A-76) and (A-2) are used with (A-88), (A-89), (A-90) and (A-91) giv-

ing

d_ff_S _ Re2 U_ S_ (A-92)
dr 2
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d__0= Re2V (A-93)
dr S

The forcing function at the point momentum source of the jet can be deduced by

first recognizing that the impulse of the jet is conserved. Since impulse is conserved we

may write down the impulse integral as an equation of constraint:

/ _-- 3_ ff (ueos0-vsin0) 27rr 2sin0drd0
p 2 oo

(A-94)

where I is impulse, and p is density. The definition of impulse is the following:

t

I = l f_dt
P P o

(A-95)

where F is the force applied to the fluid at the momentum source.

We combine (A-94), (A-95) with (A-75), (A-76) and (A-2) giving

t 3v_ .oo
± f b'dt = Pt m+' ff
P o 2 oo

(U cos 0 - V sin 0) 2_'S '2 sin 0 dS dO

(A-96)

If the components of (A-96) that are not functions of time are collected one can define

the following constant:

/_ _ 3v_ pb ff (Ucos0- Vsin0)2_rS 2sin0dSd0 (A-97)
2 oo

Equation (A-96) can now be reexpressed as
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With (A-98) we may deduce the force function. Let us examine some examples.

Let:

A A

F = P t (A-99)

We find that (A-98) is satisfied only if m -- 1. For the case

number described by (A-91) increases proportionally to t 1/2

m = 1 the Reynolds

Let:

A A

F = P4(t) (A-100)

where _(t) is a Heaviside step function. For this case m ---- 0, the Reynolds

number is not a function of time since time is to the zeroth power. The case of m = 0

is unique in that it is autonomous. This solution corresponds to a round jet. Let:

= (h-lO )

where _(t) is the Dirac delta function. For this case m --- -1 since time is removed

from the left-hand side of (A-99). The Reynolds number decreases proportionally to

lit 1/2 making this case complementary to the case of m -- 1, (A-99). Let:

For this case m--3/2, the Reynolds number increases proportionally

This solution corresponds to the "Hill's spherical vortex". Let:

(A-102)

3

to t 4



° 162-

-- p tl/2

For this case m -- 1/2, the Reynolds number increases proportionally to

This solution is the imaginary complement of the m -- 0, round jet solution.

the round jet, the

(A-103)

1

t 4

Unlike

"m "-- 1/2 jet" has never been extensively investigated. Let:

-- ff t-l� 2

F"" ,hio ,oo_ m ---_ _1/'_, th_ Rovne_ld_ numhar decreases nrnnnrtinnn.llv tn

(A-104)

| If1/4

This particular solution is very unusual with regards to its Stokes solution stream func-

tion which appears to be the simplest of all the dipole solutions examined. This solution

has never been extensively investigated.

It should be noted that if one integrates in time (A-101) (the case for m -- -1),

then (A-100) (case m --- 0), is obtained. Likewise if (A-100) is integrated in time,

then (A-99), (case m -- 1) appears. We also find that (A-104) integrated yields (A-

103) and (A-103) integrated gives (A-102). It should also be noted that with the excep-

tion of m = 0, for negative m the Reynolds number decays with time, while for

positive m the Reynolds number increases with time. The round jet (m = 0) does

neither because it is autonomous. The case of m -- 1/2 has an increasing Reynolds

number but it is of an F,n polynomial type {see Table A-2). This type is of decayin_

Reynolds number with this single exception. Needless to say, m = 1/2 is a very

strange solution indeed.



'J'_ .l"l_,qP "I_TT]_TC_,"IPTC}I_T_

In the previous section

m--3/2, 1, 1/2, O,-1/2,-1

vortex ring, and spherical vortex.
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AND THE N_AV_,R STOKES EQUATIONS

it was observed that in the six examples shown for

three are of classicalinterest; i.e.,the round jet,

It should be recalledthat allof the solutions exam-

ined so far have been for the dipole case, l--- 1. This document would be too long if

the cases of l --- 2, 3, 4, ... were also examined thoroughly, but for the sake of

interest let us examine the family of easy functions of the form:

j = so (A-105)

where _ is an integer. Equation (A-105) is inserted into (A-4a) yielding

a(a+ 1)-l(l+ 1) = 0 (A-106)

-t- 2 = 2m (A-107)

From (A-106) and (A-107) we derive Table A-3.

It is interesting to note that the two solutions admitted for 1-- 1 in Table A-3

both have analytic solutions to the Navier Stokes equations. Hills' spherical vortex

satisfies not only the Navier Stokes equation but the Stokes equation as well because the

convective term goes to zero identically for all Reynolds number. The method by which

the spherical vortex solution is found starts with the following equation for the convec-

tive term:

0_.. 0
[r _ _] + "r-; Iv_] = 0 (A-108)

Or U[F

Equations (A-78) and (A-79) are included with (A-108) giving
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Table A-3

.Dipole

Quadrapole

Hexapole

Octopole

3

4

M

0

3

2

1

2

2

-1

5

2

3

2

c_

-2

-3

-4

-5

Round Jet (Landau-Squire Solution)

Hills' Spherical vortex

??

??

Vortex Ring (never investigated)

??

77

3 4 ??
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F w a_ 1
F 1

Or rsinO O0 O0 rsinO Or

Any Stokes solution that satisfies (A-109) will also satisfy the Navier Stokes equations.

The vorticity solution for M- 3/2 has been derived in the previous section (Table

A-2) and is

w3(r, 0) -- rsin $ (A-I10)
•

Inserting (A-I10) into (A-109) gives the relation for the stream function

0---7 00 =0 (valid only for m _ 3/2) (A-111)

From (A-Ill) we find that any stream function consistent with (A-110), using (Ao84)

and the entire family of irrotational axisymmetric stream functions, will satisfy the

Navier Stokes equation for this case. This complete solution is

-21/2 _/_ r4 sin 2 0
¢(r,O) ---- Cpotential + (A-II2)

60 //5/2

where Cpotential is the family of irrotational axisymmetrie stream functions:

_'vot, nti,a ( r, O,t) --" ]E t) S-J + Q1 (t) _'+1 sin 0 P} (cos O) (A-113)
j-l

where /4. and
J

tions, and P) is the first order Legendre polynomial.
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While the solutions of (A-110) and (A-112) have been known for almost a century

the fact that higher order irrotational stream functions (quadrupole, hexapole, etc.),

were also solutions seems to have been overlooked. The classical references (Lamb,

Milne, etc) make no mention of this and Turner [1964] who attempted experimental

verification of the spherical vortex used only the dipole irrotational component even

though his experimental data was indicating higher order terms by producing an oblate

geometry. Also no one appears to be aware of the fact that the spherical vortex can be

produced by a point momentum source of strength proportional to t _/z and a Rey-

nolds number proportional to t _/4.

Hills' spherical vortex is a member of a larger body of solutions (where (A- 109) is

true), which satisfies both the axisymmetric Stokes equation and Navier stokes equation

for all Reynolds number, thus being self similar with respect to S, (A-2) for all Rey-

nolds number. All axisymmetric jet solutions will be self similar with S in the creep-

ing limit but only one other family of solutions will have this self similarity for all Rey-

nolds number. This other family is made up of the autonomous solutions like the round

jet, radial jet, etc., which have been described by Cantwell [1981]. The convective

term in the autonomous solutions does not go to zero. Even though these solutions are

self similar with S they satisfy the Stokes equation only in the creeping limit. The

complement to the spherical vortex in Table 3, the round jet is the creeping limit of

the Navier Stokes solution discovered by Landau and independently by Squire and as

mentioned before is an autonomous solution. The Landau Squire solution is generally

represented as follows:
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[ 2 sin20

-- vr -cos0 (A-II4)

4v(A 2- l) sin 0
-- (A-115)

r2(A - cos 0) a

16a" 3 A2_I -_In "-+-11 (A-116)

In working with the first order Legendre polynomial it was observed that the gen-

erating function for Pll(cos 0), {which was found in Morse and Feshbach [1953]) is

similar to (A-115). The generating function is

sin 0 _ oo 1 (cos O)= E h"P2+,(cosO) or E p l+x
- .--0 .=o ha+ 1

[1+ h 2-2hcosO]2

I h I small I h I large

(A-117)

Which ever series converges for the given h is the appropriate form. Equation (A-

117) is very intriguing not only because it represents a special case of the irrotational

solution (A-113 with constant coefficients), but also because it so closely resembles (A-

115). This aspect, coupled with the fact that the complete solution of the spherical vor-

tex stream function included all of first order Legendre polynomials, lead to the desire

to recast (A-114) as a series of Legendre polynomials. After considerable algebra this

was done giving tile following:
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¢(,-,e)
00 (j_)22J

[A(4j + 3)c2i+ 1P_j+ 1 (_o_o)-8vrsinO _ A2j+I
A 1--0

, (cos O)+ (4j + 5) C2] +2 P21+2
J

(A-118)

oO

C2j+ 1 -- E (2In + j])l (n + 2 + 2j)! (in + 1) (A-119)
.=0 (n + j)! (2In + 2 + 2j])l A 2"

oo

C2]+2 = _ (2[n+ j+ l])!(n+3+ 2j)!tjn+ I) (A-120)
n=o (n + j + 1)! (2[n + 3+ 2j])! A 2_

In many ways (A-118) is a more interesting form than its generating function form in

(A-114) because the solution's components can be picked out individually and examined.

It is also interesting to note that the solution of (A-118) has split into odd poles and

even poles. This leads to a line of inquiry as to whether any of the components will

independently satisfy the Navier Stokes

unanswered. The lowest order solutions of

braic form:

equations. This question still remains

(A-119) and (A-120) was cast into an alge-

CI -- 4 1 2

'IC2 --- T Cl- -_"
(A-122)

Equation (A-121) corresponds with the dipole solution and goes to
1

m as Reynolds
3A

number goes to zero. Equation (A-122) corresponds with the quadrupole solution and

1

disappears as C x approaches 3"-A It is interesting to note the similarity between
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(A-!g!) and (A-!!6) whether any new

remains to be determined.

inclo'hf.c _.,'}n ha a',_'_naA rT.,,-,,rn f'l..,;o o;_;l._;b.r

8. CONCLUSIONS AND FUTURE LINES OF INQUIRY

The methods described in this document will generate low Reynolds number solu-

tions for any axisymmetric jet. These methods also provide a means of classifying

different flow types, showing their interrelationships, and isolating particularly interest-

ing flows. Many of these flows have never been investigated and are each worthy of

investigation of their unique properties. Perhaps the most interesting aspect of the jet

functions is their utility in devising solutions to the Navier Stokes equations. There

exists a family of solutions of which one member is known (Hills' spherical vortex),

where Stokes solutions will also satisfy the Navier Stokes equations. Table 3 might

serve as a sign post in discovering the other members of this family. There also exists

the family of autonomous solutions of which the round jet is a member. It is possible

that other solutions can be extracted from the round jet solution cast as an infinite

series of Legendre polynomials. Higher order components and Reynolds number

behavior was observed in the spherical vortex. Both the spherical vortex and the round

jet were observed to be composed of an infinite number of Legendre polynomials. Three

major payoffs that may come from further investigation in jet functions are:

I*

.

A generalized solution of the family of flows where the convective term goes

to zero identically as is the case of the spherical vortex.

Discovery of a far field (hard function) solution to the Navier Stokes equa-

tion. All solutions presently known are near field, easy functions.
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3. Development of spectral methods from first order Legendre polynomials

and/or jet functions for use in numeric computation of unbounded flows.
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Appendix B

PLOTS FIGURES

This chapter provides the graphical presentation of the results of this study.
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Appendix C

SOFTWARE

Appendix C contains listings of the following software programs.

• MAVIN

• INVORT

• HAMMER

• PLOT

• CONTOUR

• CONVORT

• VORT3

• MOVIE

• RING

• RING (Script Program).

These programs are contained in Ref. 13. If Appendix C is desired, please

contact Professor Brian Cantwell, Dept. Aeronautics and Astronautics, Stanford

University, Stanford, CA. 94305.
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