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Studies of direct numerical simulations of incompressible, homogeneous, and inhomogeneous 
turbulence indicate that, in regions of high kinetic energy dissipation rate, the geometry of the 
local velocity gradient field has a universal character. The velocity gradient tensor satisfies the 
nonlinear evolution equation (dAij/dt) +Ai~,-1/3(A,~L,,)Sij=Hij where Aij=aui/&j 
and the tensor Hij contains terms involving the action of cross derivatives of the pressure field 
and viscous diffusion Of A,. The restricted Euler equation corresponding to H/j = 0 can be solved 
in closed form [Cantwell, Phys. Fluids A 4, 782 ( 1992)] and the solution has the property that, 
for any initial condition, Aij(t) evolves to an asymptotic state of the form Aij(t) nKij[R(t>]“3 
where R(t) is a function which becomes singular in a finite time and Kij is a constant matrix. 
A number of the universal features of fine-scale motions observed in direct numerical 
simulations are reproduced by Kij . In the simulation studies the first invariant of Aij is zero by 
incompressibility. The second and third invariants, Q and R, are determined at every grid point 
in the flow and the entire data set is cross-plotted to search for significant features in the space 
of tensor invariants. Such features can then be associated with corresponding local flow 
structures in physical space. When a variety of incompressible simulations are studied, scatter 
plots of Q vs R reveal that a fairly significant fraction of the data lies in the lower right quadrant. 
This is consistent with behavior predicted by the restricted Euler solution. However, the bulk of 
the data lies more or less uniformly distributed in a slightly elliptical region about the origin. In 
a direct numerical simulation of a plane, time-developing, mixing layer a small fraction of the 
data collects along a very pronounced, nearly straight, ridgeline extending into the upper left 
quadrant. This data can be traced to regions with local vorticity much larger than the local 
strain lying within streamwise rib vortices which connect adjacent spanwise rollers in the mixing 
layer simulation. Neither the predominant tendency for Q and R to lie near the origin nor the 
possibility for Q and R to lie far from the origin in the upper left quadrant are predicted by the 
restricted Euler solution. The purpose of this paper is to show that, by relaxing the assumption 
Hii= while retaining a model of dAii/dt motivated by the asymptotic form of the restricted 
Euler solution, one can begin to account for these features of the (Q,R) scatter plots. The results 
suggest that the velocity gradient tensor in three-dimensional flow tends to evolve toward an 
attractor in the space of tensor invariants. A significant feature of the model is that, although 
Hij#O, singular behavior of Aij(t) can still occur along specific paths in the (Q,R) plane 
corresponding to zero values of the discriminant of HiI. 

I. THE RESTRICTED EULER SOLUTION FOR +O 

The incompressible Navier-Stokes equations 

dui 2 
-= -- 
dt Z.+v& (1) 

I k k 

are differentiated with respect to Xj and the Poisson equa- 
tion for the pressure is subtracted from both sides leading 
to the transport equation for the velocity gradient tensor 

d-4, 
,,+Ai~kj-5(A,d,,)S,=Hij, (2) 

where Aij=aui/aXj, the tensor Hii is given by 

a% a”p 23, cY’Aij -_I___-- ~ 
dxi axj axk axk 3 +IJ axk axk (3) 

and p is the kinematic pressure (pressure/density). Equa- 
tion (2) is used to generate equations for the invariants 
Q(t) and R(t), 

dQ dR 2 
z-R= --A,,~n,, x-3 Q”= -Amw4qnkHkm, (4) 

where 

Q= -tiA,JJlnm 9 R= --k,,r4nleA~m. (5) 

The first invariant P= -A,=0 by incompressibility. Dif- 
ferentiating (2) with respect to time leads to 

d2Aij 2 dHij 
r+j Q(t)Aij=- dt -Ai.&kj-Hidkj 

+i (AmJnm)Sij* (6) 

The restricted Euler system corresponding to the ho- 
mogeneous case, Hij= 0, dHii/dt=O, has been solved in 
closed form for A/j(t) .I The main properties of the solution 
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FIB 1. Family of solutions of the restricted Euler system. Arrows indi- 
cate direction of increasing time. 

are that A,j(t) becomes singular in a finite time and Q(t) 
and R(t) evolve along lines of constant discriminant, D, 
where 

(7) 

The family of solutions (7) is shown in Fig. 1. The quan- 
tities Q, and Ri are the initial values of the invariants and 
Qo defines a time scale for the evolution Of Aij ( t) 

to=l/~z&g. (8) 
In the case where Qe=O, the characteristic time is to 

l/at and the invariants evolve along the lines 
L*(-@) 1’2 which separate real and complex eigen- 
values of Au. The quantities Q(t) and R(t) are expressed 
in terms of Jacobian elliptic functions and, as with the 
individual components of AU, they become singular in a 
Unite time except for a set of initial conditions of zero 
measure corresponding to Q,=O, Ri<O. In the latter case 
Q and R evolve to zero while the individual components of 
Arf become singular. The evolution to singularity is very 
rapid occurring in just a few characteristic times. 
Vieillefosse’ has described this situation physically as the 
free motion of a fluid element which rotates and deforms 
under its own strain and vorticity field while conserving 
angular momentum about its center of mass. 

For any initial condition other than Qo=O, Ri<O, the 
restricted Euler solution evolves to the asymptotic form 

Aij(t) ~Kij[R(t>l”3s (9) 
where the matrix defining the asymptotic state, KU, satis- 
fies the algebraic equation 

.Klj+ 21’3KikKkj- Z213Sij = 0. (10) 

The invariants of Kij are (P ,QK,RR) =(0,-3/22’3,1), 
and lie on the line RK= ( -2 8 K) 1’2. Thus according to the 

restricted Euler solution the invariants Q and R evolve to 
the lower right quadrant as indicated by the arrows in Fig. 
1. The matrix Kij can be decomposed into a symmetric and 
an antisymmetric part Kij=Sij+ Wij and upon examina- 
tion it is found that solutions of ( 10) have the following 
properties: 

(i) Two of the principal rates of strain are positive, 
one is negative. 
(ii) The vorticity vector is aligned exactly with the 
smaller positive principal rate of strain. 

For purposes of the later discussion it should be pointed 
out here that if the sign of the leftmost term in (10) is 
made negative the geometry (i) and (ii) is reversed, i.e., 
two of the principal rates of strain are negative and the 
vorticity is aligned with the intermediate negative rate of 
strain. The positivity of the leftmost term in (10) reflects 
the fact that, in the restricted Euler solution, dAij/dt is 
positive as the solution approaches the asymptotic state. 
This is consistent with the analysis of Betchov3 who 
showed that in isotropic turbulence 
6’(copi)/at= - (abc) +viscous terms where (0,~~) is the 
mean square vorticity and (abc) is the mean of the product 
of principal rates of strain a, b, and c. The tendency for the 
intermediate rate of strain to be positive or negative de- 
pends on whether the enstrophy is increasing or decreasing 
with time. In all of the simulations studied to date,47 in 
regions of high kinetic energy dissipation, the velocity gra- 
dient tensor has the properties (i) and (ii) with the prob- 
ability that the vorticity is aligned with the smaller positive 
rate of strain approaching one as the data is conditioned on 
higher and higher rates of dissipation. 

The restricted Euler model is predicated on the as- 
sumption that Hii= implying that, except for the con- 
straint imposed by continuity, adjacent fluid elements can- 
not affect one another through the pressure and viscous 
stress field. It is rather remarkable that such an oversim- 
plified model would have a close correspondence to direct 
numerical simulations of the full Navier-Stokes equations. 
The results suggest that the restricted Euler solution plays 
a role in real flows. It appears that an important element in 
the dynamics of kinetic energy dissipation is the tendency 
for fluid elements to evolve toward singularity via the re- 
stricted Euler route even though singularity does not actu- 
ally occur. 

The restricted Euler solution has the property that the 
invariants Q and R always evolve to the lower right quad- 
rant (Q < 0,R > 0) as indicated in Fig. 1. When (Q,R) data 
from a direct numerical simulation by Moser and Rogers’ 
of a plane time-developing mixing layer is plotted the result 
is something quite different as shown in Fig. 2. The case 
shown here is designated HIGH/P in the terminology of 
Moser and Rogers,8 Table 2. The procedure used to pro- 
duce this figure is to evaluate Q and R at an instant at every 
grid point in the numerically computed flow and then pro- 
duce a scatter plot in the (Q,R) plane. In the actual scatter 
plot the region near the origin is completely obscured by 
layers and layers of overlapping points. To remedy this, 
contours of the logarithm of the number density are plot- 
ted instead. The lowest contour level is set at one so that 
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FIG. 2. Number density contour plot of velocity gradient tensor invari- 
ants from direct numerical simulation of a plane mixing layer by Moser 
and Rogers.* Dimensionless time fU&=29.8 where 6 is the initial vor- 
ticity thickness and U,, is one-half the velocity difference across the layer. 
For further details see Ref. 5. 

isolated points are captured, this retains the features of the 
scatter plot far from the origin while providing information 
about the structure of the Q, R distribution near the origin. 

Figure 2 is a snapshot of the current values of the 
invariants for a large number of particles at various stages 
of evolution from a range of local initial conditions on the 
velocity gradient tensor. There are three significant fea- 
tures of Fig. 2 which this paper is intended to address. 
These are as follows: 

(a) A significant fraction of the data lies in the lower 
right quadrant along the (R > 0, D=O) branch. These 
points are characterized by relatively high rates of ki- 
netic energy dissipation. This feature of Fig. 2 is con- 
sistent with behavior predicted by the restricted Euler 
solution. 
(b) By far the preponderance of points collects in an 
elliptical region about the origin with its major axis 
aligned with the upper left and lower right quadrants. 
The restricted Euler solution does not predict this fea- 
ture although the presence of a cusp at the origin in 
Fig. 1 is indicative of a slowing down of the evolution 
of invariants for particles with Qa close to zero (to 
large). Particles close to the cusp will remain so for a 
long time. 
(c) A small fraction of the data collects along a very 
pronounced, nearly straight, ridgeline extending into 
the upper left quadrant. This feature of Fig. 2 is not at 
all predicted by the restricted Euler solution. The local 
topology in this region is of the type 
stable-focus-stretching’ and, for points far from the or- 
igin, the local vorticity strongly dominates the local 
strain. Moreover, points far from the origin tend to be 
associated with relatively small rates of kinetic energy 
dissipation (cf. Ref. 5, Fig. 10). 

While only one flow case is presented here, a variety of 
simulations have been studied5-’ and in all cases one ob- 
serves the sort of distribution of points around (Q,R> 
=(O,O) shown in Fig. 2 [features (a) and (b)]. What is 
not always observed is the ridge extending into the upper 
left quadrant [feature (c)l. This seems to be a feature char- 
acteristic of the early evolution of an inhomogeneous flow 
started with laminar initial conditions. In the mixing layer 
these points can be traced in physical space to relatively 
long-lived rib vortices which connect adjacent large span- 
wise rollers and which remain identifiable during the first 
couple of vortex pairings.5Y’0 In simulations of homoge- 
neous shear flow6 the ridge is not seen. 

Neither the predominant tendency for Q and R to lie 
near the origin nor the possibility for Q and R to lie along 
a roughly straight ridgeline in the upper left quadrant are 
permitted by the restricted Euler solution. 

II. AN INTERMEDIATE ASYMPTOTIC MODEL FOR 
4#0 

It is extremely difficult to predict how the velocity gra- 
dient tensor should evolve in a general flow. This is due to 
the fact that it is virtually impossible to make any broad 
statements about the terms which appear in Hij given in 
(3). This is particularly true of the pressure field which is 
the solution of a Poisson equation and thus depends on the 
entire flow. We expect that viscous diffusion would limit 
the growth of Aii but other than this very little can be said 
without considering specific cases and even then the prob- 
lem of identifying general, local properties of the cross 
derivatives of the pressure remains a formidible obstacle. 
The whole question of whether singularities can develop in 
rotational solutions of the Euler and/or Navier-Stokes 
equations remains a controversial subject. There have been 
a number of efforts to identify singular behavior by the 
direct numerical computation of solutions of the Euler 
equations with smooth initial conditions.“*12 Most recently 
KerrI has computed a flow which appears to exhibit gen- 
uinely singular behavior. A significant feature of this com- 
putation is that it computes a flow which contains a high 
degree of symmetry and the maintenance of the symmetry 
is essential to the continuance of the solution toward sin- 
gularity. This point will be returned to later. 

The purpose of this paper is to show that, by relaxing 
the assumption Hij=O while retaining a model of dAij/dt 
motivated by the asymptotic behavior of the restricted 
Euler solution (9), one can begin to account for features 
(b) and (c) of Fig. 2. The basic assumption of the model 
is the following: That some time after a fluid particle is set 
into motion by the flow, during which various components 
of A, may change at different rates, the particle settles into 
a state-similar to (9) where its angular momentum changes 
relatively slowly under the action of relatively weak 
torques arising from Hii#Oe That is, we hypothesize the 
existence of an intermediate asymptotic state for Ail(t) 
during which it behaves as 

/Q(f) =&fijeff(f)dt, f$=A,J(t) , 
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where Ml] is a constant matrix. In the restricted Euler 
solution f(t) =j[d(lnR)/dt], however, in the present con- 
text we will simply regard f(t) as an arbitrary scalar func- 
tion of time. 

The use of the term “intermediate” needs to be clari- 
fied. One can argue for the ansatz ( 11) by recognizing that 
HV fluctuates and can change sign. If, in the evolution of a 
particle, Hi, becomes small and remains small for a finite 
period then there will be a tendency for the local A, to 
begin to follow the restricted Euler solution. This solution 
has the property that the evolution to the asymptotic state 
(9) is achieved very rapidly and this adds support to the 
plausibility of the model at least for some subset of fluid 
particles. In a sense, the restricted Euler solution and its 
associated tendency to rapidly amplify velocity gradients is 
always available, ready to drive up the gradients ‘in the 
neighborhood of a fluid particle when local conditions on 
~7~~ permit. Diffusion and/or the anisotropic pressure 
terms in (3) may cut off the process but perhaps not before 
the behavior ( 11) is realized for some period of time. In 
this sense the behavior ( 11) is viewed as an intermediate 
state in the evolution of a fluid particle. The argument for 
( 11) can be made rigorously in the case of one or two 
parameter flows invariant under Xi= &i , t = ea’ki, 
U.=eO-Wk- Ui, p=e a(2k-2)‘kj, the stretching transforma- 
tibn group of the Euler (k arbitrary) and Navier-Stokes 
(k= l/2) equations.14 This class of similarity flows, for 
which f(t) = - l/?, is discussed in Ref. 15. 

Q 

0 

-16 

0 ‘\R 16 

FIG. 3. Contours of constant DH=Q&+~R$ with f(t)=0.22 [see Eq. 
t16)l. 

Using ( 11) Eq. (2) becomes an algebraic relationship 
between Ai] and Hij, 

fAij+A&kj- 113 (A,Jn,)Sij=Hij. (12) 

This gives us an opportunity to learn something fairly gen- 
eral about the effect of nonzero Hij on the behavior of A, 
albeit within the confines of the assumptions about the 
intermediate asymptotic state. The procedure involves first 
squaring and then cubing both sides of (12). The Cayley- 
Hamilton theorem is used to reduce higher-order products 
Of Aij and then the trace of H2 and H3 is formed. The result 
is 

the same character. In particular, complex eigenvalues of 
Ai, cannot occur unless the antisymmetric part of the vis- 
cous diffusion term in (3) is included in Hij. Referring 
back to Fig. 2 one might conjecture on this basis that the 
relatively long life of the rib vortices in the mixing layer 
computation is attributable to the role of viscosity in help- 
ing to prevent the collapse to a flow with real eigenvalues 
which would otherwise occur if the viscous term were ab- 
sent. 

QH=f”Q+3fR-$@ 

and 

(13) 

RH=f3R-fQR-$f2@-_$@-R2, 

where 

(14) 

QH= -iHmpnIn 2 R~=-iHmfinkHkm. (15) 

Now a rather interesting thing happens. When we 
square (14) and cube (13), add the two together and fac- 
tor the result, we find the following relationship between 
the discriminants of Aij and Hid: 

QH3+yR&=(@+yR2)(R+fQ+f3)2. (16) 

Note that terms on the right-hand side of order ( Q6) have 
canceled. Note further that the second factor on the right- 
hand side of (16) is squared from which we conclude that, 
during the intermediate asymptotic state, the discriminants 
Of Aij and Hlr have the same sign, i.e., the eigenvalues have 

In the restricted Euler solution discussed earlier the 
velocity gradient tensor becomes singular in a flnite time 
and the invariants asymptote to Q= - (TR2)1’3; R > 0. 
Here we see that when Hij is permitted to be nonzero a new 
structure appears in the space of tensor invariants of Ai,. 
This is shown in Fig. 3 which depicts contours of the right- 
hand side of ( 16) where a value of f(t) =0.22 has been 
used to match the slope of the ridgeline in Fig. 2. The zeros 
of ( 16) are also indicated on the figure. It is not obvious at 
the scale of Fig. 3 but there is a point of osculation between 
the zeros of ( 16). Thus for ( - CO <f < CO ) the straight 
line R+fQ+f3=0 is the generator of Q3+(y>R2=0. 
While, in principle, Q and ,R can range over the whole 
space, extremely large values of the discriminant 
D,= QL+TR$ would be required to move away from the 
very steep-sided, and I think rather beautiful, surface de- 
picted in Fig. 3. Figure 4 shows the minimum 
( DH= -6OOO), maximum ( DH= +6000) and zero con- 
tours of Fig. 3 superimposed on the data from Fig. 2. To 
reinforce the point just made, if the contours had been 
chosen to range from, say, -60 000 to + 60 000 Figs. 3 
and 4 would be relatively little changed. In effect, the sur- 
face (16) defines a region of attraction in the space of 
tensor invariants of Aij . In general, the observations from 
direct numerical simulation support the conclusion that 
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FIG. 4. Data from Fig. 2 superimposed on maximum, minimum, and 
zero contours of Fig. 3. 

very large values of D, probably do not occur. 
In the intermediate asymptotic model with Hfj#O sin- 

gular behavior is no longer a necessary property of the 
solution as in the restricted Euler case. Indeed Q and R 
would seem most likely to cluster near (0,O) as is the case 
in Figs. 2 and 4. Nevertheless singular behavior is not ruled 
out and in fact, as is clearly shown in Fig. 3, it is the zeros 
of (16) that deJne the possible paths to singularity. More- 
over, at large Q and R the zeros of DH lie close to large 
values of DH. In this respect large DH is not a necessary 
condition for singular behavior. It is quite possible to en- 
counter large values of D, during a computation while 
simultaneously being very close to DH=O. From the evi- 
dence of simulations and the asymptotic behavior of the 
restricted Euler solution it would appear that the most 
accessible route to singularity is along the (D=O, R > 0) 
branch in the (Q,R) plane. In the parlance of Ref. 9 this is 
a flow catagorized as unstable node-saddle-saddle with 
real eigenvalues in the ratio ( l/2, l/2, - 1) . Imposition on 
an Euler calculation of symmetries sufficient to satisfy the 
assumption ( 11) for some subset of particles and careful 
enforcement of those symmetries so as to permit the par- 
ticles to evolve locally along the (D=O, R >O) branch 
should generate singular behavior and this may help to 
explain the success of Kerr’s13 approach. 

It has been pointed out by Jimenezt6 that, in the neigh- 
borhood of a localized region of stretched vorticity, the 
geometry of the strain and vorticity field near the radius of 
maximum dissipation will be characterized by (i) and (ii) 
when the maximum vorticity is much larger than the am- 
bient. The Burgers’ vortex is used to illustrate the point 
although some care is required since, for the Burgers’ vor- 
tex solution, the ratio of maximum vorticity to ambient is 
infinite for all Reynolds numbers but the geometry (i) and 
(ii) only occurs when the Reynolds number of the Bur- 
gers’ vortex exceeds a threshold value. 

While this helps to explain the kinematic conditions 

under which the geometry (i) and (ii) might occur it does 
not explain the tendency for a general three-dimensional 
flow to evolve to such a state. For a two-dimensional flow 
with out-of-plane straining the velocity gradient tensor is 
of the form 

All 4412 0 

Aij= ‘21 ‘22 0 , I 1 (17) 
0 0 b 

where b is the rate of strain in the third direction. If b is 
positive, the flow is subjected to out-of-plane stretching 
(see, for example, the steady Burgers’ vortex, the Lund- 
gren spiral, t7,18 etc.). Negative b corresponds to out-of- 
plane compression for which no steady state generally ex- 
ists. It can be easily shown that the invariants ‘of (17) 
satisfy 

R+bQ+b3=0, (18) 

a form we have just encountered in the attractor (16). 
That (18) arises naturally in ( 16) through a fairly basic 
analysis of the equations of motion is significant. The in- 
termediate asymptotic model suggests that local flow struc- 
tures characterized by (18) should evolve as typical fea- 
tures of turbulent flow. It is surprising that an extended 
region of the flow (i.e., the rib vortex) should be charac- 
terized by a nearly constant value of f(t) as seems to be 
indicated in Fig. 4. However, it needs to be emphasized 
that, in terms of vorticity, the rib vortex is the most intense 
structure in the flow and therefore is the most apparent in 
the (Q,R) scatter plot. Evidence for weaker structures 
with different j’s can also be seen in Fig. 4 and indeed 
examination of a variety of flow structures most of which 
are buried near the origin of the (Q,R) plot would reveal a 
wide range of mostly positivefs. 

III. CONCLUDING REMARKS 

In the restricted Euler solution f(t) is a universal 
function for all particles. The simulation results shown in 
Fig. 2 indicate that there may be finite-sized regions of the 
flow where, at a given instant, f(t) may have approxi- 
mately the same value. However, even if f( t) has universal 
properties it would not be readily apparent in a plot such as 
Fig. 2. All the simulations studied to date are initiated 
from small disturbance initial conditions superimposed on 
an unstable base flow. As instabilities develop the invari- 
ants of the velocity gradient tensor soon acquire a wide 
range of values. As a result different particles would reach 
the intermediate asymptotic state at different times and 
with a wide range of time scales (8). In effect one has to 
consider f[( t- t,)/t&J where n is the index of the nth 
particle and ton represents a local time scale [cf. Eq. (8)]. A 
search for the existence of the intermediate asymptotic 
state and the properties of f(t) will require a detailed 
study of the Lagrangian characteristics of simulations 
which have been computed long enough to reach a fully 
developed equilibrium state. Nevertheless the basin sur- 
rounding the origin (Q,R> = (0,O) is a very robust feature 
of the attractor (16) and is largely independent of f(t). 

2012 Phys. Fluids A, Vol. 5, No. 8, August 1993 Brian J. Cantwell 2012 

Downloaded 08 Nov 2007 to 171.64.160.102. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



The intermediate asymptotic model and the evidence 
from simulations suggests that the velocity gradient tensor 
in turbulent flows evolves to an attractor in the space of 
tensor invariants and that the restricted Euler solution 
plays a significant role in the dynamics of kinetic energy 
dissipation. The topography of this attractor, with a basin 
near the origin traversed by ( 18) indicates that local flow 
structures characterized by Q and R close to zero or by 
out-of-plane straining of a locally two-dimensional flow 
should evolve as typical features of turbulent flows. 
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