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The generation of Reynolds stress, turbulent kinetic energy and dissipation in the
turbulent boundary layer simulation of Spalart (1988) is studied using the invariants
of the velocity gradient tensor. This technique enables the study of the whole range of
scales in the flow using a single unified approach. In addition, it also provides a rational
basis for relating the flow structure in physical space to an appropriate statistical
measure in the space of invariants. The general characteristics of the turbulent motion
are analysed using a combination of computer-based visualization of flow variables
together with joint probability distributions of the invariants. The quantities studied
are of direct interest in the development of turbulence models. The cubic discriminant
of the velocity gradient tensor provides a useful marker for distinguishing regions
of active and passive turbulence. It is found that the strongest Reynolds-stress and
turbulent-kinetic-energy generating events occur where the discriminant has a rapid
change of sign. Finally, the time evolution of the invariants is studied by computing
along particle paths in a Lagrangian frame of reference. It is found that the invariants
tend to evolve toward two distinct asymptotes in the plane of invariants. Several
simplified models for the evolution of the velocity gradient tensor are described.
These models compare well with several of the important features observed in the
Lagrangian computation. The picture of the turbulent boundary layer which emerges
is consistent with the ideas of Townsend (1956) and with the physical picture of
turbulent structure set forth by Theodorsen (1955).

1. Introduction
A defining characteristic of turbulent flows is the presence of eddies over a wide

range of length scales. At the low-wavenumber end of the spectrum are large, energy-
containing motions and at the high-wavenumber end are the small, dissipating eddies.
This paper is concerned with the behaviour of both of these motions by means of a
single approach where the eigenvalues and the invariants (Q and R) of the velocity
gradient tensor (∂Ui/∂xj) are used to analyse the local motion both at an instant and
over a statistical ensemble. The concepts and ideas behind this method have been
amply described in the published literature. The following is only a brief summary
of those concepts and the reader is referred to Chong, Perry & Cantwell (1990) for a
complete treatment.

Excluded from this analysis are singular cases like vortex sheets as well as degenerate
situations where the local flow pattern is determined by higher-order terms in a Taylor

† Present address: Applied Materials Inc., 3050 Bowers Avenue., M/S 0119, Santa Clara,
CA 95054, USA.
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Stable focus–
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saddle–saddle
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saddle–saddle

D = 27
4 R2+Q3= 0

R

Figure 1. Summary of three-dimensional, incompressible flow patterns
(from Soria et al. 1994).

series expansion of the velocity field. Under this assumption, the pattern of three-
dimensional streamlines in the immediate vicinity of an observer moving with any
point in the flow field is determined by the nature of the eigenvalues of the velocity
gradient tensor (Aij = ∂Ui/∂xj) evaluated at the point. Such eigenvalues are the roots
of the characteristic equation of Aij which can be written as

λ3 + Pλ2 + Qλ+ R = 0, (1.1)

where P , Q and R are the invariants of the velocity gradient tensor. These invariants
are

P = −Aii, (1.2a)

Q = 1
2
P 2 − 1

2
AikAki, (1.2b)

R = − 1
3
P 3 + PQ− 1

3
AikAknAni. (1.2c)

For incompressible flows P is identically zero leaving Q and R as the only invariants
that must be considered for the classification of local flow patterns. The nature of
the roots of equation (1.1) is determined by the sign of the cubic discriminant of Aij
which is given by the expression

D = 27
4
R2 + Q3. (1.3)

If the discriminant is positive, equation (1.1) admits two complex and one real
root. In this case, vorticity dominates the rate of strain, the local streamlines swirl
about the point and the flow pattern is called a focus. If D is negative, all three roots
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R

Q

#D > 0

$D < 0

Stable focus Unstable focus

Stable node Unstable node

D = 0

0.01 < > 10Pb

Figure 2. Joint probability distribution of the Q and R invariants of the velocity gradient tensor at
Reθ = 670. Data taken from the entire boundary layer (from Chacin, Cantwell & Kline 1996).

of the characteristic equation are real, the rate of strain dominates the vorticity and
the flow pattern is that found near a stagnation point. This type of flow geometry
is called a node–saddle–saddle. All the possible types of motion that can occur in a
three-dimensional incompressible flow field are summarized in figure 1 from Soria et
al. (1994).

The occurrence and distribution of these local flow patterns in various turbulent
flows have also been studied and documented in the literature. In these flows (time-
developing incompressible mixing layers in Soria et al. 1994; turbulent channel flow by
Blackburn, Mansour & Cantwell 1996; turbulent boundary layer by Chacin, Cantwell
& Kline 1996; and recently in a separated boundary layer by Chong et al. 1998) the
invariants Q and R were computed at every point in the flow and cross-plotted in
the (Q,R)-plane to create a joint probability distribution for the invariants. It was
found that all the possible flow patterns occurred but with different probabilities.
Furthermore, it was also found that the distribution of these four classes of local
geometries was remarkably similar in all flows. These PDFs exhibit a distinctive tear-
drop shape like that shown in figure 2 computed from the Spalart (1988) simulation
and which includes data for the entire turbulent boundary layer. These data were
obtained from a sample of 786 million grid points gathered over 500 computational
realizations of the flow. This accounts for the smoothness of the PDF. Since the
velocity gradients associated with the fine-scale motion are larger than those for the
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90 J. M. Chacin and B. J. Cantwell

mean flow by a factor of Re1/2, the tear-drop shape of the distribution shown in
figure 2 is primarily a feature of these small eddies. For this reason, it has been
argued that the observed repeatability of this shape is a universal characteristic of the
small-scale motions of turbulence. These same ideas have also been used to study the
larger, energy-containing motions (see Blackburn et al. 1996 and Chacin et al. 1996)
in the context of turbulence structure.

In this paper, the invariants of the velocity gradient tensor are used to study the
physical and statistical relationship between these two ends of the spectrum of length
scales and to look at some details of the mechanisms of turbulence production and
dissipation.

2. Turbulence generation and structure
While joint probability distributions of Q and R like that shown in figure 2 are

useful in studying some of the statistical and geometrical properties associated with
specific flow patterns, they say nothing about whether points in the flow with a
common topological classification are gathered together in physical space forming
coherent eddies. Over the years, numerous techniques have been developed to study
the organized motions of turbulent flows. They range from classic experimental
methods using flow markers like hydrogen bubbles (see for example Schwartz &
Smith 1983 and Kline et al. 1967) to frame-of-reference based procedures utilizing
particle image velocimetry (Meinhart & Adrian 1995).

Here, the discriminant of the velocity gradient tensor is used to address this issue.
This scalar (see equation (1.3)) combines the information contained in the Q and R
invariants into a single scalar quantity which is a measure of the local tendency for
the velocity field to roll or stretch fluid elements. From figure 1 it can be seen that

D

{
> 0 two complex and one real root (i.e. focus topology)
6 0 three real roots (i.e. node-saddle-saddle topology).

(2.1)

The approach used by Blackburn et al. (1996), Chacin et al. (1996) and Chong et
al. (1998) is to use D as a marker of coherent motions in the flow. An example of
the structures revealed in this manner is shown in figure 3 for the flat-plate turbulent
boundary layer flow at Reθ = 670. This figure (showing a top view of the flow) shows
elongated, streamwise-oriented structures that sometimes arch spanwise to form horse-
shoe-shaped eddies. More commonly though, as was also noticed by Robinson (1990),
Blackburn et al. (1996), Brooke & Hanratty (1993) and many others, the structures
are seen to form bunches of intertwined helical tubes oriented predominantly in the
streamwise direction.

As a practical matter, the isosurface used for the construction of figure 3 was
D = 0.05 instead of D = 0. This was done in order to avoid interpolation errors by
the flow visualization software. The maximum value of the discriminant in the flow
realization shown in the figure was of the order of 700. The repeatability of the events
presented in this figure was confirmed with the use of a computer animation of the
flow comprising over 500 time steps which lasted, in time normalized by wall variables
(tu2

τ/ν), just over 104 non-dimensional time units or about 2 flow-through times. The
events shown in this figure are typical of what was observed in the animation.

Recently Jeong & Hussain (1995) introduced a procedure for the study of turbulence
structure based on the symmetric tensor Bij = SikSkj + WikWkj (where S and W are
the rate-of-strain and rate-of-rotation tensors). Because of the symmetry of B , all
three of its eigenvalues are real and can be ordered as λ1 > λ2 > λ3. According to this
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Mean flow direction

984

656

328

0 392 784 1176 1154

x+

z+

Figure 3. Top view of the computational domain showing regions of positive discriminant.
From Chacin et al. (1996).

approach, a vortex structure is a connected region of the flow where λ2 < 0. Both this
technique and the discriminant-based method were used by Loulou (1996) to study
a DNS of pipe flow and gave visually similar results. Because of this, an attempt
was made to relate the two methods by expressing the invariants of B in terms of
the invariants of the velocity gradient tensor A. The details of this analysis can be
found in Chacin & Cantwell (1997). It was found that such a relationship cannot be
established. That is, the invariants of B depend not only on the invariants of A but
also on the individual components of A as follows:

PB = 2Q, (2.2a)

QB = 1
2

{
3Q2 − 1

2

(
AipApk

)
(AirArk}) , (2.2b)

RB = 1
4

{
2Q3 − R2 − Q (AipApk) (AirArk) + R (Aik)

(
AipApk

)}
. (2.2c)

An implication of equations (2.2b, c) is that an affine transformation used to
generate a new A will leave its invariants unchanged but will generate a new B with
a new set of invariants. This fact together with the symmetrization used to define B
makes it difficult to relate the invariants of this tensor to the velocity vector field of
the flow, which is the basis for most structural observations in the literature including
Kline et al. (1967), Robinson (1990), Bernard, Thomas & Handler (1993), Brooke
& Hanratty (1993) and many others. Empirical comparisons using the DNS data
suggest that the procedure of Jeong & Hussain (1995) is essentially equivalent to
marking points where Q > 0 although this cannot be precisely established.

A close-up view of one of the eddies identified using the discriminant (enclosed in
the square in figure 3) is shown in figure 4. This view is strikingly reminiscent of the
near-wall structure dominated by attached vortices proposed by Theodorsen (1955),
Townsend (1956), Kline et al. (1967), Head & Bandyopadhyay (1978), Robinson
(1990) and others and serves to emphasize the physical significance of the invariants
of the velocity gradient tensor and the discriminant. It also serves as a reminder that
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92 J. M. Chacin and B. J. Cantwell

y+ ≈ 83

Dz+ ≈194

Dx+ ≈ 265

Figure 4. Close-up view of near-wall structure. From Chacin et al. (1996).

vorticity alone is not an adequate identifier of swirling flow structure. The eddies
shown in these figures have streamwise dimensions of the order of several hundred
wall units (length normalized using the friction velocity uτ and the kinematic viscosity
ν) and are thus important contributors to the large-scale motion. It could then be
expected that they would play an important role in the production of turbulence
within the flow. One of the interesting features of this figure is the presence of large
blank regions. These blank spaces correspond to D < 0 and it is of interest to ask
whether there is any significant turbulent activity there.

Regardless of whether or not the discriminant of the velocity gradient tensor is
useful for the visualization of flow structure, it is of greater interest to study the
relationship between these eddies defined by the invariants of Aij and regions of the
flow that are active in terms of Reynolds shear stress generation (−u′v′). For the case
of this flow (with homogeneous spanwise coordinate and slow streamwise evolution),
it is possible to establish a direct connection between the second invariant Q and the

v′2 component of the Reynolds stress tensor. Taking the time average of equation
(1.2) and setting all the gradients in the x- and z-directions to zero, gives

Q ≈ −1

2

∂2v′2

∂y2
. (2.3)

This equation begins to establish a link between these descriptors of flow geometry
(Q, R and D) and the dynamics of turbulence generation. A broader view of this
connection between invariants and Reynolds stresses is shown in figure 5. This figure
shows the same view of the flow field shown in figure 3 with added contours of
constant Reynolds shear stress in magenta and yellow. These contours show events
that are significantly stronger than the time-averaged values of Reynolds shear stress.
There is a clear spatial association between the D = 0 surfaces and these Reynolds-
stress-generating events. The statistical significance of this statement will be discussed
shortly.

Bernard et al. (1993) examined a turbulent channel flow in detail and found that,
although there is a clear association between flow structure and Reynolds stress, the
majority of the stress was generated in a relatively small number of isolated events.
This behaviour is also observed in figure 5. This mechanism is explored further in
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z+

984

656
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0

u′v′/u2
τ ≈ –4.7 u′v′/u2

τ ≈5.3

Figure 5. Top view of the computational domain showing regions of positive discriminant and
their spatial association with Reynolds stress events (u′v′).

y+

138

104

69

35

1
0 105 211 316 421

(a)

(b)
138

104

69

35

1
0 105 211 316 421

y+

z+

Figure 6. Spanwise cut of the computational domain. (a) Regions of positive discriminant, in
blue, and their spatial association with Reynolds stress events u′v′, in magenta and yellow (the
contour levels shown are the same ones used in figure 5). (b) Same view showing regions of positive
discriminant, in blue, and regions of extreme negative discriminant in green.

figure 6(a, b). Figure 6(a) is a spanwise cut across a section of the computational
domain with regions of positive discriminant as well as contours of constant −u′v′
depicted in the same way as in figure 5. This figure emphasizes the presence of active
motions as proposed by Townsend (1956), which seem to take place in regions that
are adjacent to the flow structures marked by the discriminant of the velocity gradi-
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94 J. M. Chacin and B. J. Cantwell

ent tensor. This particular view is also reminiscent of the observations on the origin
of vortices in near-wall turbulence in channel flow by Brooke & Hanratty (1993).
Another interesting characteristic of these motions is highlighted in figure 6(b) which
shows the same view of the flow as that shown in figure 6(a). In this view however, the
blue areas enclose the points in the flow where the discriminant is positive and bigger
than 0.05 (the largest positive D values are on the order of 700 to 1500 depending
on the realization) whereas the green zones are regions where D is negative and
smaller than −0.1 (the most negative values of D are on the order of −200 to −300).
Therefore, these coloured spots surround the local extrema of the discriminant of the
velocity gradient tensor. By comparing these two views, it can be seen that the local
extrema of the discriminant (both maximum and minimum) seem to take place in
close spatial proximity to each other and it is in these regions of high spatial gradient
of the discriminant that the Reynolds-stress-generating events seem to occur. Thus
the blank regions noted earlier are not entirely free of activity but the activity is
confined to the neighbourhood of the D = 0 surfaces. The remaining blank regions
in figure 6(a, b) are truly passive as far as Reynolds stress generation is concerned.
As mentioned earlier, the repeatability of all these observations was ascertained with
a computer-based animation of the flow that comprised over two flow-through times.

This characteristic of the active motions can be further analysed with the help
of the (Q,R)-plane shown in figure 2. The two invariants (Q and R) are of course
continuous functions and must therefore vary smoothly in space. Indicated by the
dotted lines in that figure are curves of constant discriminant value. As can be seen,
in the lower-right and lower-left quadrants of the plane, the lines of constant D
asymptote toward the D = 0 curve and are closely grouped together. In these regions,
a small change in either or both Q and R will produce a much larger change in the
value of D than in any other part of the (Q,R)-plane. However, the joint probability
distributions of the invariants shown in figure 2 shows that there are significantly
more data points in the lower-right quadrant than in the lower-left side of the plane.
It is in this quadrant then, and in the flow patterns associated with it (unstable
focus–compression and unstable node–saddle–saddle), that the strongest Reynolds
shear stress generating events are most likely to occur.

In order to verify this argument, and to determine if these strong, instantaneous
bursting events are statistically important, the time-averaged value of this component
of the Reynolds stress tensor associated with each flow topology was computed. The
result is shown in figure 7. For this figure, the values of the two invariants (Q and R)
as well as the instantaneous value of u′v′ were computed at every point in the flow for
over 700 time realizations (1.1× 109 data points). The results were averaged in time
and plotted in the (Q,R)-plane. The values of the contour levels shown have been
normalized by u2

τ . Even though all flow patterns contribute to the mean negative value
of u′v′, the peculiar shape shown in figure 7 confirms that the strongest events are
located toward the tail of the Q,R distribution with the highest value corresponding
to unstable focus–compression and unstable node–saddle–saddle motions. By keeping
track of the sign of the velocity fluctuations during the time-averaging process, it
was also possible to classify the two peaks shown in the figure using the quadrant
decomposition technique of Wallace, Eckelmann & Brodkey (1972). As indicated in
figure 7, it was observed that the strong u′v′ motions with a node–saddle–saddle
classification were primarily sweeps (+u′,−v′). Those above the D = 0 curve, with
flow pattern of the type unstable-focus compression were mostly ejections (−u′,+v′).

Figure 7 shows the result for the entire boundary layer from the wall to the free
stream and, therefore, obscures the details of what happens at different distances
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Q

R

D = 0

Ejections
(–u′+v′)

Sweeps
(+u′–v′)

< –0.3–1.3< u′v′/u2
τ

Figure 7. Time-averaged Reynolds-shear-stress (u′v′) generating events associated with the four
incompressible flow patterns. Data taken from the entire boundary layer.

from the wall. This issue is addressed in figure 8(a–d). As indicated in the figure,
the boundary layer was divided into four regions (viscous layer, buffer region, log
layer and the wake) and the same calculation for −u′v′ was repeated in each separate
zone. In the viscous sublayer (figure 8a), the turbulence level is predictably low.
Nonetheless, the unstable node–saddle–saddle topology is the only kind of flow
pattern that contributes significantly to the Reynolds shear stress. These events are
predominantly near-wall sweeps (+u′,−v′) or high-speed fluid rushing toward the wall.
Moving upward from the wall, from the buffer region to the outer layer (figure 8b–
d), the profiles are similar to that shown in figure 7. The only noticeable effect of
the diminishing role of viscosity is the change in the scales, with the largest range
of contours occurring in the buffer region (where the production term −u′v′∂U/∂y
and the turbulence intensities also peak). For every one of these regions (buffer, log
layer and wake) the strongest Reynolds stress events were associated with motions
of unstable node–saddle–saddle and unstable focus–compression topology and these
events are located, in physical space, in regions where the discriminant changes sign
rapidly. These are regions where swirling flow occurs in close physical proximity to
strongly rate-of-strain-dominated flow.

Given the association found between the large-scale motions (visualized using the
discriminant) and the Reynolds shear stresses, it seems reasonable to explore whether
there exists a similar kind of correlation between these structures and additional
components of the Reynolds stress tensor. Of particular interest is the trace of this
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Q

R

D = 0

> –0.3–1.3< u′v′/u2
τ

Q

R

D = 0

Q

R

D = 0

Q

R

D = 0

(a) (b)

(c) (d)

Figure 8. Time-averaged Reynolds-shear-stress (u′v′) generating events associated with the four
incompressible flow patterns as a function of distance from the wall. (a) y+ < 5.0, (b) 5.0 < y+ < 41,
(c) 41 < y+ < 107, (d) y+ > 107.

tensor, the turbulent kinetic energy. Figure 9 shows, in light grey, regions of positive
discriminant and superposed (in darker grey) are isocontours of instantaneous values
of the turbulent kinetic energy, TKE (k = u′iu′i/2). The contour level plotted is
u′iu′i/2u2

τ ≈ 14.8. The peak, time-averaged value of k for this flow is approximately 4.3.
As can be seen, these regions are mostly elongated and oriented in the streamwise
direction and, as was the case for the Reynolds shear stress, there is a visible spatial
association between them and the D > 0 eddies. This can be seen more clearly
by observing that the areas of the figure where there are no visible, neighbouring
structures of focus-type topology are also completely devoid of motions with high
values of k. So the blank regions referred to earlier seem to be truly passive in the
sense used by Townsend (1956).

As was done for the shear stress component of the Reynolds stresses tensor, the
motions associated with the events shown in figure 9 were catalogued using the (Q,R)-
plane. Figure 10 shows the time-averaged data for the entire boundary layer. The
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392 784 1176 1554

x+

z+

984

656

328

0

u′v′/u2
τ ≈14.8

Figure 9. Top view of the computational domain showing regions of positive discriminant and
their spatial association with regions of high, instantaneous turbulent kinetic energy events (u′iu′i).

Q

R

D = 0

>2915< ui′ui′/u2
τ

Figure 10. Time-averaged TKE generating events associated with the four incompressible flow
patterns. Data taken from the entire boundary layer.
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Q

R

D = 0

2915< ui′ui′/2u2
τ

Q

R

D = 0

Q

R

D = 0

Q

R

D = 0

(a) (b)

(c) (d)

Figure 11. Time-averaged TKE-generating events associated with the four incompressible flow
patterns as a function of distance from the wall. (a) y+ < 5.0, (b) 5.0 < y+ < 41, (c) 41 < y+ < 107,
(d) y+ > 107.

shape of the figure is rather similar to that for the −u′v′ with the strongest motions, in
terms of turbulent kinetic energy, being again of the type unstable focus–compression
and unstable node–saddle–saddle. It is interesting to notice that, moving away from
the origin toward larger values of the invariants (positive or negative), the intensity
of the turbulent kinetic energy first increases but then decreases toward the outer
contours of the probability distribution.

The variation of this mechanism of TKE generation with distance from the wall is
shown in figure 11(a–d). Data were once again gathered at four different y+ regions
within the turbulent boundary layer corresponding to the viscous sublayer, buffer
region, logarithmic layer and the wake region. Below y+ ≈ 41, where most of the
production of turbulence takes place, the tendency shown in figure 10 holds and the
most intense motions are located in the lower-right quadrant of the plane just above
and below the D = 0 curve. Recall from figure 2 that the vast majority of data points
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392 784 1176 1554

x+

z+

984

656

328

0

ε/(u4
τ/m)≈0.7

Figure 12. Top view of the computational domain showing regions of positive discriminant and
their spatial association with regions of high, instantaneous turbulent kinetic energy dissipation

events (2νs′ij s′ij).

lie near the origin in the (Q,R)-plane. The contours shown in figure 11(a–d) indicate
that the generation of turbulence occurs in a small number of intense, isolated events
that are characterized by a strong spatial gradient of the discriminant.

In statistically stationary turbulence, the production of turbulent kinetic energy
is balanced by the dissipation. Even though this dissipation is accomplished by the
small scales of the flow, its behaviour is governed by the large eddies and the rate at
which they transfer energy through the cascade. This quantity has additional practical
significance in that many turbulence models (and subgrid-scale models for large eddy
simulation) owe their usefulness, at least in part, to the fact that they can account for
the dissipation with reasonable accuracy. Figure 12 is a similar view to that shown in
figure 9 but, for this figure, an isocontour of ε/(u4

τ/ν) ≈ 7.5 was superposed (in dark
grey) where ε is the dissipation of turbulent kinetic energy

ε = ν
∂u′i
∂xj

(
∂u′i
∂xj

+
∂u′j
∂xi

)
. (2.4)

Compared to the time-averaged profiles, the dissipation level used for these iso-
contours is about 8 times the peak mean value. Two observations are apparent. First,
there is the same kind of spatial proximity between dissipating events and regions of
D > 0. Within the focal regions themselves, the dissipation is lower, which seems to
indicate that they will have a relatively long life. Second, comparing figures 9 and
12, it can be seen that the regions of high dissipation are somewhat similar to those
of high k. Mean flow energy is converted into turbulent kinetic energy by the large
eddies and, as such energy grows in a particular region, the dissipation grows with it.
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Q

R

D = 0

0.360.13 ε/(u4
τ/m)

Figure 13. Time-averaged dissipative events associated with the four incompressible flow patterns.
Data taken from the entire boundary layer.

In spite of the similarities between figures 9 and 12, there are however differences
that are revealed by the use of time-averaging in the (Q,R)-plane shown in figure 13.
There are two readily noticeable aspects. First, most of the dissipation occurs below
the D = 0 curve in motions of type node-saddle-saddle (both stable and unstable).
Second, motions closely aligned with the positive side of the Q-axis seem to have
very low values of dissipation. For these motions, the velocity gradient tensor has
two purely complex eigenvalues with no out-of-plane strain, a motion akin to a
two-dimensional vortex. Furthermore, by splitting the velocity gradient tensor into its
symmetric and antisymmetric parts

Aij = Sij +Wij (2.5)

it can be shown in a straightforward manner that the second invariant Q can be
written as

Q = 1
2

(
WijWij − SijSij) ; (2.6)

hence, the structures near the positive vertical axis of the (Q,R)-plane are ones in
which the vorticity dominates the motion of the fluid.

Miyake & Tsujimoto (1996) studied conditionally sampled, streamwise vortex tubes
in a numerically simulated channel flow. The authors kept careful track of the
magnitude of all the terms that appear on the right-hand side of the evolution equation
for the streamwise vorticity component (wx), in particular the vortex stretching and
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Q

R

D = 0

Q

R

D = 0

Q

R

D = 0

Q

R

D = 0

(a) (b)

(c) (d)

0.360.13 ε/(u4
τ/m)

Figure 14. Time-averaged dissipative events associated with the four incompressible flow patterns
as a function of distance from the wall. (a) y+ < 5.0, (b) 5.0 < y+ < 41, (c) 41 < y+ < 107,
(d) y+ > 107.

viscous dissipation terms. They found that streamwise vortex tubes continue to exist
long after the production of wx has ceased. The peculiar shape shown in figure 13 is
consistent with that observation since it indicates that these vortex tubes are motions
undergoing little energy dissipation and comparatively low strain. It also suggests that
flow structures like those shown in figure 3 will have a long life. This was confirmed
using the computer animation of the flow mentioned earlier in which some of these
eddies were seen to convect, almost without change, for at least ∆t+ = 40 (t+ = tu2

τ/ν).
Figure 14(a–d) shows the time-averaged dissipation contours taken from the four

different regions of the boundary layer. The tendency observed for the dissipation
of energy to occur mostly in motions of type node–saddle–saddle is particularly
noticeable away from the wall (figure 14b, c). The absence of significant energy
dissipation away from the wall is apparent in figure 14(d) as would be expected.

A comprehensive study of the kinematics of turbulence was carried out by Robinson
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392 784 1176 1554

x+

z+

984

656

328

0

p/qu2
τ ≈ –7.5 (a)

x+

z+

984

656

328

0

p/qu2
τ ≈ –4.3 (b)

Figure 15. Top view of the computational domain showing regions of positive discriminant (light
grey) and their spatial association with the instantaneous pressure field (dark grey).

(1990) on the same numerical simulation data presented here. In that work, the author
prepared a taxonomy of all the different types of coherent events that have been
observed in turbulent flows. He points out the importance of vortical motions and
how they could be used to connect various other types of flow structures and he uses
the pressure field as a means of identifying these vortical motions. The rationale is
that, for a two-dimensional vortex with near-circular streamlines the pressure must
reach a minimum at the vortex centre. In the absence of such near-circular streamlines
however, the extrema in the pressure field need not occur.

Figure 15(a, b) shows the same view of the computational domain used in figure 3
with surfaces of constant pressure superimposed onto the structures visualized using
the discriminant. The free stream pressure is zero in the computation. These latter
contours were made transparent to facilitate the comparison since pressure minima
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Dynamics of a low Reynolds number turbulent boundary layer 103

commonly lie inside the surface D = 0. Two pressure thresholds were used at
p/(ρu2

τ) ≈ −7.5 (figure 15a) and p/(ρu2
τ) ≈ −4.3 (figure 15b). This last level encloses

the regions of the flow with the lowest instantaneous pressure and is the same one
used by Robinson (1990) in his study. As can be seen in the figure, there is a general
correspondence between the two fields. In particular, pressure minima generally occur
where the discriminant is positive. The association however is not universal.

This issue can be further explored by examining some of the properties of the
pressure field which is governed by Poisson’s equation. Using the definition of the
second invariant Q (equation (1.2)) this equation can be written as

∇2p = 2Q. (2.7)

For any three-dimensional function, a necessary condition for the existence of a
local minimum is

∇2p > 0, (2.8)

so local pressure minima and regions of positive discriminant can only coincide in
areas where Q > 0. As was shown in the joint probability distributions of Q and R
in figure 2, there is a significant number of flow structures where D > 0 and Q < 0.
These regions cannot be seen using isocontours of low pressure and, as indicated by
figure 7, these areas are important in Reynolds shear stress generation.

In addition, the use of the pressure field presents the additional complication that
a threshold level must be chosen. For a relatively simple flow, with no mean pressure
gradient like this one, this selection is not unduly cumbersome. For a more complex
flow with pressure gradients it may not be possible to do so without a certain
degree of arbitrariness. This problem is avoided by the use of the velocity gradient
tensor invariants, and the discriminant, since the threshold value used (D = 0) is
unmistakably determined by the boundary between complex and real roots for the
characteristic equation (equation (1.1)). See for example Chong et al. (1998) where
the method is applied to the separating flow computed by Na & Moin (1996).

3. Time-evolution of flow invariants
In the previous sections, the invariants of the velocity gradient tensor were used to

characterize a turbulent flow by separating it into two basic types of flow structures.
In one kind – focus type – the rotational part of ∂Ui/∂xj controls the shape of the
local streamlines. On the other – node–saddle–saddle type – the irrotational part of
the velocity gradient is the determining factor. The picture presented there seems to
indicate that additional insight into turbulent motions can be gained by studying the
evolution of these flow structures as well as the interactions between them. In this
section, this issue is further studied by tagging and following individual fluid particles
as they convect with the flow. In doing this, it was possible to gather information
about the time-evolution of the invariants Q and R (and hence the discriminant D)
in a Lagrangian frame of reference.

The exact evolution equations for the invariants of the velocity gradient tensor
were obtained by Cantwell (1992). The procedure for constructing these equations is
briefly summarized here. Taking the gradient of the Navier–Stokes equations (∂/∂xj)
and substituting Aij = ∂Ui/∂xj into the resulting relation leads to

∂Aij

∂t
+Uk

∂Aij

∂xk
+ AikAkj = − ∂2p

∂xi∂xj
+ ν

∂2Aij

∂xk∂xk
. (3.1)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 L

an
e 

M
ed

ic
al

 L
ib

ra
ry

 / 
St

an
fo

rd
 U

ni
ve

rs
ity

 M
ed

ic
al

 C
en

te
r,

 o
n 

09
 M

ar
 2

01
8 

at
 2

1:
11

:0
7,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/S
00

22
11

20
99

00
72

0X

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S002211209900720X


104 J. M. Chacin and B. J. Cantwell

Taking the trace of equation (3.1) leads to Poisson’s equation for the pressure field

AikAki = − ∂2p

∂xi∂xi
= −2Q. (3.2)

Subtracting equation (3.2) from equation (3.1) produces

∂Aij

∂t
+Uk

∂Aij

∂xk
+ AikAkj − (AkmAmk)

δij

3
= Hij, (3.3)

where the tensor Hij is given by

Hij = −
(

∂2p

∂xi∂xj
− ∂2p

∂xk∂xk

δij

3

)
+ ν

∂2Aij

∂xk∂xk
. (3.4)

The evolution equation for Q is constructed by multiplying equation (3.3) by Ajk
and taking the trace of the resulting tensor relation. Similarly, the equation for
the third invariant R is the trace of the tensor equation obtained after multiplying
equation (3.3) by AjkAkp. The final evolution equations are

dQ

dt
+ 3R = −AikHki, (3.5)

dR

dt
− 2

3
Q2 = −AikAknHni, (3.6)

where d/dt is the convective time-derivative operator. Relatively little is known about
the behaviour of Hij however. Cheng & Cantwell (1996) computed all the terms in
equation (3.4) for a homogeneous, isotropic turbulent flow and found that this tensor
has the tendency to behave approximately as

Hij ∼ −κAij , (3.7)

where κ is a positive constant with dimensions of 1/time. This tendency was partic-
ularly noticeable in regions of high dissipation of turbulent kinetic energy. This is
consistent with the model considered by Martin & Dopazo (1995). It was also found
by Cheng & Cantwell (1996) that κ seems to decrease with increasing Reynolds
number. Substituting this equation for Hij in equations (3.5) and (3.6) results in

dQ

dt
+ 3R = κAikAki, (3.8)

dR

dt
− 2

3
Q2 = κAikAknAni. (3.9)

However, from equations (1.2b, c) AikAki = −2Q and AikAknAni = −3R, therefore

dQ

dt
= −3R − 2κQ, (3.10)

dR

dt
= 2

3
Q2 − 3κR. (3.11)

It is also possible to derive a Lagrangian evolution equation for the discriminant
of the velocity gradient tensor under the same assumption of Hij ∼ −κAij . From
equation (1.3)

dD

dt
=

27

2
R

dR

dt
+ 3Q2 dQ

dt
. (3.12)
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Dynamics of a low Reynolds number turbulent boundary layer 105

Substituting equations (3.10) and (3.11) it is obtained after some algebra that

dD

dt
= −6κD. (3.13)

For κ = 0, the equations reduce to the restricted Euler model (Vieillefosse 1984) for
which an exact solution exists (see Cantwell 1992) and which has the property that
the discriminant is a materially conserved quantity. For any other positive value of
κ, equation (3.13) indicates that fluid particles will have a time-averaged tendency to
evolve toward D = 0.

Furthermore, observe that the system of ordinary differential equations given by
(3.10) and (3.11) has two critical points. One of them is located at the origin of coor-
dinates in the (Q,R)-plane (Q = 0, R = 0). The geometry of the solution trajectories
of this system in the neighbourhood of this point can be studied using standard two-
dimensional phase-space techniques. Since the critical point is located at the origin,
the quadratic term in equation (3.11) may be neglected and only the linear term need
be considered. Following the terminology of Perry & Chong (1987) (see figure 16) the
reduced system is written as

dQ

dt
dR

dt

 =

 −2κ −3

0 −3κ

 Q

R

 . (3.14)

Defining the second-rank tensor B as

B =

[ −2κ −3
0 −3κ

]
, (3.15)

then, the invariants of this two-dimensional system (p and q) are

p = −trace (B) = 5κ, (3.16)

q = det (B) = 6κ2. (3.17)

Therefore q/p2 = 6/25 < 1/4 and q > 0 independently of the value of κ. Referring
to figure 16, this result implies that solution trajectories for the system of differential
equations given by (3.10) and (3.11) will have a topology of a stable node in the
vicinity of the origin of the (Q,R)-plane.

The second critical point is located at the second root of the system

−3R − 2κQ = 0, (3.18)

2
3
Q2 − 3κR = 0, (3.19)

or (Q = −3κ2, R = 2κ3) which lies on the R > 0 branch of the D = 0 curve. This point
can also be classified using the same ideas by first defining a coordinate translation

Q̂ = Q+ 3κ2, (3.20)

R̂ = R − 2κ3, (3.21)

with the second critical point now lying at (Q̂ = 0, R̂ = 0). Substituting these new
variables into equations (3.10) and (3.11) results in

dQ̂

dt
= −3R̂ − 2κQ̂, (3.22)

dR̂

dt
= 2

3
Q̂2 − 3κR̂ − 4κ2Q̂. (3.23)
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Unstable
node

Stable
node

Unstable
focus

Stable
focus

Saddle

p

q

q=
p2

4

Figure 16. Summary of two-dimensional solution trajectories (from Perry & Chong 1987).

Proceeding as before, the invariants for the linear terms of this system can be easily
computed and are given by

p = 5κ, (3.24)

q = −6κ2, (3.25)

and, from figure 16, this corresponds to a saddle point for any value of κ.

Actual solution trajectories for the full nonlinear system given by equations (3.10)
and (3.11) were computed numerically for two widely different values of κ: κ = 0.1
and κ = 100 which, from Cheng & Cantwell (1996) would correspond to high and low
Reynolds number flows respectively. These trajectories are plotted in figure 17(a, b).
For this calculation, solution trajectories were only initialized at points in (Q,R)-
space where figure 2 indicates that actual turbulent data points exist. For the case
of κ = 100 (i.e. low Reynolds number flow), the second critical point is located far
to the right of the picture. Consequently the stable node geometry predicted near
the origin becomes the dominant flow characteristic with a strong tendency for the
data to evolve toward the origin of coordinates as shown in figure 17(b). For small
values of κ (i.e. high Reynolds number) the saddle point moves closer to the origin
(Q = −0.03, R = 0.002) and the trajectories show the combined character of both
critical points as demonstrated in figure 17(a). Points with initially large positive D
have a strong tendency to evolve toward R > 0 and the plot begins to approach the
restricted Euler solution.

In the next sections, the validity of some of these assumptions is tested by computing
the actual Lagrangian evolution of the invariants Q and R using the direct numerical
simulation data and comparing it to the behaviour predicted here.
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Q

R

D = 0

(a)

Q

R

D = 0

(b)

Figure 17. Lagrangian evolution trajectories in the (Q,R)-plane computed using the assumption
Hij ∼ −kAij . (a) κ = 0.1. (b) κ = 100.

3.1. Numerical method

The motion of a fluid particle in a three-dimensional flow field is governed by the
simple relation

dx

dt
= U (x, t), (3.26)

which can be integrated in a straightforward manner. The main difficulty with
this process is that, as time is advanced, the instantaneous particle position will,
in general, not coincide with any of the direct numerical simulation Eulerian mesh
points. Therefore, for every particle that is being followed, it is necessary to interpolate
this Eulerian vector U (x, t) to obtain the velocity at the particle’s new position at
the given time step. For a spectral DNS, the same series expansion used in the
calculation could be used to interpolate the velocity field with no loss of accuracy.
This approach is however far too expensive if a large number of fluid particles
are being followed. On the other hand, Yeung & Pope (1988) as well as Rovelstad,
Handler & Bernard (1994) carried out extensive studies of the effects of interpolation
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108 J. M. Chacin and B. J. Cantwell

errors on Lagrangian statistics of turbulence and concluded that lower-order schemes,
like linear interpolation and cubic splines, yield unacceptable results. Therefore, the
approach adopted here uses a mixed polynomial–spectral formula that is based on the
methods proposed and validated by Kontomaris, Hanratty & McLaughlin (1992) and
Balachandar & Maxey (1989). This interpolation formula uses Fourier series in the
streamwise and spanwise directions (x and z) and Nth-order Lagrange polynomials
in the wall-normal one (y) and is given by

Ur

(
xn◦, y

n
◦ , z

n
◦ , t

n
)

=
∑
j

∑
kx

∑
kz

Ûr(kx, yj , kz, t
n)eikxx

n◦eikzz
n◦Lj

(
yn◦
)
, (3.27)

where Ûr

(
kx, yj , kz, t

n
)

are the two-dimensional Fourier coefficients for the rth com-
ponent of the velocity vector, (xn◦, yn◦ , zn◦) refer to the particle’s position at time tn and
(xi, yj , zk) is the time-independent Eulerian mesh. The Lagrange polynomials (Lj)
were constructed by centring the interpolation stencil around the yn◦-coordinate of
each particle and using the standard formula

Lj(y
n
◦) =

j+N/2∏
i=j−N/2
i6=j

(
yn◦ − yi

)(
yj − yi) , (3.28)

where N was set to 6. The integration of equation (3.26) was carried out using the
following predictor-corrector set:

x∗ = xn◦ + ∆tU
(
xn◦, t

n
)
, (3.29)

xn+1
◦ = xn◦ +

∆t

2

{
U
(
xn◦, t

n
)

+U
(
x∗, tn+1

)}
, (3.30)

which is formally second-order accurate.
The accuracy of this scheme was tested by tracking forward a group of 5000

particles that were initially uniformly distributed on the computational domain. After
about 55 steps (or ∆tu2

τ/ν ≈ 24), the calculation was stopped and the particles were
tracked backward in time for the same number of steps. A global measure of the error
was computed by subtracting the positions of the particles in the return trajectories
from their corresponding positions in the forward one and averaging over all particles.
This is, after n steps

εn =
∑

particles

|xnforward − xnbackward|
number of particles

. (3.31)

Figure 18 shows the average error computed using equation (3.31) normalized
using an estimate of the Taylor microscale λ as a function of non-dimensional time
(tu2

τ/ν). The microscale was estimated using classical scaling arguments regarding the
production and dissipation terms in the TKE equation (see for example Tennekes &
Lumley 1974, chapter 2) which yield

λ =
δ

Re
1/2
δ

, (3.32)

where δ is the boundary layer thickness and Reδ = U∞δ/ν. As can be seen in the
figure, after a forward integration time of t+ ≈ 24, the particles returned to within an
average distance of less than 2λ of their initial starting location.
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1.5

1.0

0.5

0 5 10 15 20 25

tu2
τ/m

e
k

Figure 18. Global position error for an ensemble of 5000 fluid particles tracked forward and
backward as a function of the non-dimensional forward integration time. The average error ε was
normalized using an estimate of the Taylor microscale λ.

The study of the Lagrangian behaviour of the invariants was done by keeping track
of the evolution of these scalars in the (Q,R)-plane and was done in the following
manner: fluid particles were collocated with the Eulerian DNS grid and were followed
for one simulation time step while keeping track of the change in the values of Q
and R. With these data, it was possible to compute a pseudo-velocity vector for the
Lagrangian evolution of tensor invariants in the (Q,R)-plane. This vector is defined as

W =
DR

Dt
î +

DQ

Dt
ĵ , (3.33)

and it allows the construction of evolution trajectories in the (Q,R)-plane. After this
another set of particles, starting again on the DNS grid, were picked and followed
for one time step. This process was repeated in over 50 DNS flow realizations which
yielded a sample of over 15 million particles. Mean results were obtained by dividing
the (Q,R)-plane into 16 000 bin cells and ensemble averaging over all the data points
that fell into each bin.

The calculations just described involved a significant amount of high-order inter-
polation of the three-dimensional velocity field and, therefore, necessitated a large
amount of computer CPU time. For the particular interpolation scheme chosen here,
the computational cost was of order MN2 per time step (where M is the number of
fluid particles being followed and N is the number of grid points in the simulation).
Therefore, in order to limit the computer resources required, the results shown next
were obtained for a simulation with a Reynolds number Reθ = 300.

3.2. Time evolution of the invariants of the velocity gradient tensor

Figure 19 shows the time-averaged Lagrangian evolution trajectories of the Q and R
invariants in the (Q,R)-plane. The view showed is for the entire boundary layer. The
figure bears a striking resemblance to the results shown in figure 17(b) (low Reynolds
number case) and shows a clear tendency for fluid particles to move toward the
origin of coordinates in the (Q,R)-plane. This tendency is of course also consistent
with the probability distributions shown in figure 2 which indicates that most of the
data points are gathered near the origin. Also, the presence of two asymptotes is
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Q

Q

R

R

D = 0

Restricted Euler
Vieillefosse (1984)
Cantwell (1993)

Intermediate
asymptotic
model
Cantwell (1993)

Figure 19. Time-averaged particle trajectories in the (Q,R)-plane at Reθ = 300. The dashed line is
an asymptote of the form R + fQ+ f3 = 0 with f = 0.043

apparent in the trajectory diagram. The first one is the D = 0 curve. This is the line
that separates the regions where the velocity gradient tensor has complex eigenvalues
from those where the eigenvalues are real. This particular asymptote is clearly visible
in the lower-right quadrant where the particle paths seem to follow that curve toward
the origin. Recall that this calculation is for Reθ = 300 and one would expect, on the
basis of the earlier discussion, that at higher Reynolds number, the trajectories may
instead begin to resemble those shown in figure 17(a). See for comparison figure 12
of Ooi et al. (1999) where the evolution of Q and R is studied in a simulation of
isotropic turbulence at Reλ = 70.9.

Cantwell (1992) constructed exact solutions for the behaviour of the velocity
gradient tensor and its invariants under the assumption of Hij = 0 which corresponds
to the case κ = 0 discussed earlier (see equations (3.3), (3.4), (3.5) and (3.6)). Even with
the limitations imposed by this idealization, Cantwell (1992) observed that some of the
features of those solutions had also been observed in direct numerical simulations of
turbulence and, on that basis, it is possible that this simplified model might be useful
in explaining some of the mechanisms that govern the evolution of the small-scale
motion, particularly in the inertial subrange. One of the features of this model is
that the discriminant is a materially conserved quantity and fluid particles will evolve,
in time, toward the lower-right quadrant of the (Q,R)-plane. This trend can also be
observed in the evolution trajectories shown in figure 19 in that the particles in the
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Dynamics of a low Reynolds number turbulent boundary layer 111

lower-right quadrant tend toward the D = 0 curve. In the restricted Euler model,
these particles evolve toward an asymptotic state in which their rate-of-strain tensors
(Sij) have two positive and one negative eigenvalues and their vorticity vectors are
exactly aligned with the intermediate eigenvector of Sij . However, not enough flow
field information was obtained to verify whether this behaviour was also present in
the particles in the lower-right quadrant of figure 19. This issue remains an important
topic for future work as it suggests the existence of some universal characteristics for
the motions of the inertial subrange.

The second asymptote seems to be a straight line (indicated by the dashed line in
figure 19) that starts near the origin and extends into the upper-left quadrant (stable
focus–stretching). The tendency of the trajectories toward this line is also consistent
with the shape of the probability distribution for Q and R in that the contours of equal
probability seem to lean over into that upper-left region. Cantwell (1993) also studied
the evolution of the velocity gradient tensor under the relaxed assumption of Hij 6= 0
(but without assuming the behaviour Hij ∼ −κAij) and postulated the existence of an
intermediate asymptotic state where the angular momentum of fluid elements changes
slowly. In that argument, it was hypothesized instead that Aij evolves according to
the simple model

Aij(t) = Mij exp

[∫
f(t) dt,

]
(3.34)

DAij
Dt

= Aijf(t), (3.35)

where Mij is a constant matrix and f(t) is a scalar function of time. Under those
assumptions it can be shown that Q and R should evolve toward a region of attraction
near (Q = 0, R = 0). One feature of this model is the existence of an asymptote of
the form

R + fQ+ f3 = 0, (3.36)

with f = constant (i.e. a straight line in the (Q,R)-plane). In figure 19, the value
f = 0.043 was used to draw the dashed line shown. Cantwell (1993) also pointed out
that, under those assumptions about the form of Aij , flow patterns that conform to
equation (3.36) should be typical features of the flow. Such structures would also have
the property that, although the invariants may vary widely within the volume where
D > 0, the real eigenvalue within this volume is approximately constant.

Another important observation is that, with the exception of the small fraction
of trajectories that start in the upper-right quadrant (unstable focus–compression)
and cross over into the upper-left one (stable focus–stretching) toward the second
asymptote, the predominant time-averaged tendency is for fluid elements to evolve
retaining their topological classification. The computer visualization of the flow also
confirmed this tendency.

As was mentioned, figure 19 shows an ensemble average of particles from the entire
boundary layer. In order to look at the effects of the inhomogeneity of the flow, the
computation was repeated while keeping track of the particles’ wall-normal position.
Figure 20(a–d) shows the results of that computation as a function of y+. The most
striking departure from the overall features observed in figure 19 is seen in the viscous
sublayer (figure 20a). There is still a visible tendency for the fluid particles to move
toward the origin in the (Q,R)-plane but, as can be seen, they do so following a set of
clockwise-turning spiral patterns that show no sign of the asymptotic behaviour that
was previously mentioned. Using the same nomenclature shown in figure 16, these
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Figure 20. Time-averaged particle trajectories in the (Q,R)-plane at Reθ = 300 as a function of
distance from the wall. (a) y+ < 5.6, (b) 5.6 < y+ < 41, (c) 41 < y+ < 105, (d) y+ > 105.

trajectories now have a stable focus topology which also implies that, very near the
wall, the assumption of Hij ∼ −κAij no longer holds. In studying the solution of the
restricted Euler model, Cantwell (1992) suggested that such asymptotic behaviour, if
it exists at all in real turbulence, is unlikely to be found at the dissipative scales of
the flow since the effects of viscosity are important at those fine scales. Figure 20(a)
is consistent with that argument. Even accounting for the decay of the turbulence
as the wall is approached, the motions that produced that picture are those with
the smallest, most dissipative scales in this flow and restricted Euler-type behaviour
cannot be seen in it. Similarly, the largest eddies in the flow are characterized by
relatively low gradients of velocity and, consequently, could not have produced the
range of values for the invariants that can be observed in figures 20(b) and 20(c).
Therefore the behaviour suggested by the restricted Euler solution is most likely to
be a property of the intermediate scales of the flow.

Further away from the wall, in figures 20(b) (buffer region) and 20(c) (logarithmic
layer), the patterns exhibit the same characteristics described before for figure 19.
Moving away from the viscosity-dominated sublayer, and as the level of turbulence
intensifies, the trajectories acquire a node-like shape as predicted earlier for low
Reynolds number flows and the aforementioned asymptotes become clear. As was
the case for the joint probability distributions of Q and R, the only obvious difference
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between the plots for the buffer and the log region seems to be in the scale which
is a direct consequence of the range of velocity gradients in those regions of the
flow. Figure 20(d) shows the results for the wake region where the decreasing level
of the turbulence associated with the reduced mean shear make the figure relatively
featureless. Nonetheless, close inspection of the trajectories still reveals a tendency
toward the origin of coordinates in a node pattern.

4. Conclusions
At any point in a three-dimensional flow field, the local flow pattern is determined by

the combined effects of the rotation rate and the irrotational strain rate. The balance
between these two factors establishes the shape of the instantaneous streamlines.
The invariants of the velocity gradient tensor provide a quantitative measure of that
balance and hence an unambiguous framework for the description of turbulent flows.
From these invariants, the cubic discriminant (equation (1.3)) emerged as a scalar
flow marker that can be used effectively for the study of the structure of turbulence.
This methodology has the added advantage of being independent of the frame of
reference used, in principle does not require the setting of an arbitrary threshold and
it is directly applicable to any incompressible flow. The method can also be readily
extended to compressible cases.

The physical picture of near-wall structure constructed using the discriminant
indicates that regions where the rate of rotation determines the local fluid motion
(positive discriminant) form large-scale, coherent, connected flow structures. These
eddies consist mainly of intertwined streamwise tubes that extend from the beginning
of the wake region all the way down very close to the wall. Embedded among
these tubes, a small number of hairpin-shaped structures of various sizes were also
visible. This picture is consistent with the idea of attached eddies as first suggested
by Theodorsen (1955) and Townsend (1956) and complements the views of near-wall
turbulence structure of Kline et al. (1967). These large-scale structures are highly
correlated with motions with high instantaneous values of Reynolds shear stress
(u′v′), turbulent kinetic energy and dissipation. These regions, characterized by a
rapid change of sign of the discriminant, seem to illustrate what Townsend (1956)
once described as active and inactive turbulence. It is interesting to notice that the
most active motions in terms of u′v′ were preferentially located in regions where the
flow pattern indicated that vortex tubes are being locally compressed (the velocity
gradient tensor has two complex and one real, negative eigenvalue). For these same
regions, equation (2.7) indicates that the pressure field cannot reach a local minimum
since ∇2p > 0 is a necessary condition for such an extremum to occur. In fact, the
pressure could reach a local maximum which suggests the possibility of a vortex
breakdown-like mechanism for these events.

The evolution trajectories shown in figure 19 indicate the existence of two different
asymptotic states for the velocity gradient tensor which may allow the identification
of certain universal characteristics of fine-scale turbulence. They also suggest that,
at least in some regions or at the level of these small scales, the evolution of the
velocity gradient tensor could be modelled using simplified schemes. The two models
for the asymptotic behaviour as well as the assumption of Hij ∼ −κAij predict a
monotonic Lagrangian evolution of the velocity gradients and cannot fully account
for all the features observed in the stationary shape of the PDF of the invariants.
In statistically steady flows, like the one studied here, this monotonic evolution is
interrupted by events involving the production and dissipation of turbulent kinetic
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energy. Furthermore this process is likely to be modulated by the large scales and hence
it may be different for different flows. Neither model includes specific information
about the boundary conditions of the flow. For the motions in the lower-right
quadrant of the (Q,R)-plane (the tail of the distribution) that asymptote toward the
D = 0 line, this is probably adequate. These are the smallest-scale motions in the
flow and, as such, one would expect that only their scales – and neither their shapes
nor their character – would vary among different flows and Reynolds numbers. This
in fact seems to be the case in all the different flows studied thus far using this
method. One would not expect such insensitivity to boundary conditions to apply
to the asymptote that extends into the upper-left quadrant. These are the stretched
vortex tubes that form parts of the large-scale structures visualized in figure 3 and are
likely to be dependent on boundary and initial conditions. While all the flows studied
to date seem to have a preference for these kinds of flow patterns, the specific shape
and strength of the asymptote vary somewhat. They seem for instance to be much
more pronounced in the plane, time-developing mixing layer of Moser & Rogers
(1993) studied by Soria et al. (1994) than in the present boundary layer flow. The
intermediate asymptotic model leaves open the possibility of accounting for these
factors in the matrix Mij and the function f(t) in equations (3.34) and (3.35). This
would be an useful topic for further research.

Finally, the relationship between the invariants of the velocity gradient tensor and
the Reynolds stresses may prove useful in the context of the modelling of turbulence.
In applications such as subgrid-scale models for large-eddy simulations, the unresolved
stresses are usually assumed to depend only on the symmetric rate-of-strain tensor
(Sij). The peculiar double-peak shape of figure 7 (as well as relations like equation
(2.3)) suggest that it is the relative balance between the rotation and the strain rates
that determines the magnitude of Reynolds stress generating events.

The authors would like to express their sincere appreciation to Dr P. Spalart who
graciously provided us with the direct numerical simulation code from which these
results were obtained.
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