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The geometry of dissipating motions in direct numerical simulations (DNS) of the 
incompressible mixing layer is examined. All nine partial derivatives of the velocity field are 
determined at every grid point in the flow, and various invariants and related quantities are 
computed from the velocity gradient tensor. Motions characterized by high rates of kinetic 
energy dissipation and high enstrophy density are of particular interest. Scatter plots of the 
invariants are mapped out and interesting and unexpected patterns are seen. Depending on 
initial conditions, each type of shear layer produces its own characteristic scatter plot. In order 
to provide more detailed information on the distribution of invariants at intermediate and large 
scales, scatter plots are replaced with more useful number density contour plots. These 
essentially represent the unnormalized joint probability density function of the two invariants 
being cross-plotted. Plane mixing layers at the same Reynolds number, but with laminar and 
turbulent initial conditions, are studied, and comparisons of the rate-of-strain topology of the 
dissipating motions are made. The results show conclusively that, regardless of initial conditions, 
the bulk of the total kinetic energy dissipation is contributed by intermediate scale motions, 
whose local rate-of-strain topology is characterized as unstable-node-saddle-saddle (two 
positive rate-of-strain eigenvalues, one negative). In addition, it is found that, for these motions, 
the rate-of-strain invariants tend to approximately follow a straight line relationship, 
characteristic of a two-dimensional flow with out of plane straining. In contrast, fine-scale 
motions, which have the highest dissipation, but which only contribute a small fraction of the 
total dissipation tend toward a fixed ratio of the principal rates of strain. 

I. BACKGROUND AND METHOD OF APPROACH 

Direct numerical simulations of turbulence generate 
vast amounts of information, and efficient methods are 
needed for identifying significant features in the data. In 
the present approach, a concise description of the flow is 
produced in terms of cross-plots of the invariants of the 
velocity gradient tensor. These plots reveal significant fea
tures of the data, which would be difficult or impossible to 
find using standard visual display techniques. Reference 1 
is essentially a road map for relating tensor invariants to 
local flow patterns in compressible and incompressible 
flows. Figure I shows the various possibilities that can oc
cur in an incompressible flow. It should be noted that the 
method can be applied to the gradient tensor of any 
smooth vector field that may be of interest, including the 
vorticity field, pressure gradient field, and concentration 
gradient field. 

dimensional field can be collapsed into a compact region of 
a two-dimensional space. Finally, turbulent flow is charac
terized by a wide range of scales. Relatively small velocity 
gradients on the order of U /{j occur at large scales, and 
much larger gradients on the order of U /(j(R 8) 1/2 occur at 
small scales. The quantities U and {j are integral velocity 
and length scales and R8 is the flow Reynolds number. The 
sorting of different length scales into different regions of 
the invariant plots permits general topological features of 
various scales to be easily identified. 

There are several reasons for studying velocity gradient 
tensor invariants. First, because one is working with the 
invariants, the results obtained are coordinate independent 
(invariant under an affine transformation). Moreover, the 
velocity gradients are independent of the frame of reference 
of a moving observer. Second, in the case of incompressible 
flow for which the first invariant is zero, an infinite three-

An important aspect of the method is the association 
which can be made between structural features of the in
variant plots and local flow patterns in physical space. This 
has turned out to be a very sensitive way to pick up subtle 
but possibly important properties of the flow field in phys
ical space. For example, the method was recently used to 
identify local vortex breakdown in streamwise vortices in a 
plane mixing layer. Invariant plots studied by Chen et al. 2 

revealed a region within the streamwise vortices, where the 
topology alternately changes from stable-focus stretching 
to unstable-focus compressing. Subsequent detailed studies 
in physical space by Lopez and Bulbeck3 revealed that 
these regions contain all the kinematic features character
istic of spiral vortex breakdown. 
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FIG. 1. Three-dimensional topologies in the Q-R(P=O) plane. 

II. THE VELOCITY GRADIENT TENSOR 

The velocity gradient tensor may be broken up into a 
symmetric and an antisymmetric part, Aij=au/aXj 
=Sij+ W jj , where Sij=(aU/aXj+aU/aXi)!2 and 
wij=(au/aXj-au/axi)/2 are the rate-of-strain and 
rate-of-rotation tensors, respectively. The eigenvalues of 
Aij satisfy the characteristic equation 

A3+PA2+QA+R=O, (1) 

where the matrix invariants are 

and 

I
All AI21 IAll A131 IAn A231 

Q= A21 A22 + A31 A33 + A32 A33 

=! (p2-trace[A2]) =!Cp2-SijSji- WijWji]), (3) 

All A12 A13 

R= - A21 A22 A 23 

A31 A32 A33 

= -det[AJ 

=H -P+3PQ-trace[A3]) 

=1C -P+3PQ-SijSjlPki-3WijWj,.8ki)' (4) 

It can be shown that, in the P-Q-R space of matrix invari
ants, the surface that divides characteristic equations with 
three real eigenvalues from characteristic equations with 
one real and two complex eigenvalues is 
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A detailed discussion of the properties of this surface is 
given in Chong, Perry, and Cantwell, l along with a guide 
to the various possible elementary flow patterns that can 
occur in different domains. 

Much of the discussion in this paper concerns the sym
metric part of the velocity gradient tensor, the second in
variant of which is proportional to the negative of the ki
netic energy dissipation. The invariants of the rate-of-strain 
tensor, Ps , Qs, and Rs are generated by setting the com
ponents of Wij to zero in the above relations. The flows 
considered are, with one exception, incompressible; hence 
P=Ps=O. Thus the local geometry of the flow is com
pletely described by the second and third invariants (Q,R) 
and (Qs,Rs )' The second invariant of the rate-of-rotation 
tensor, Qw, obtained by setting P and Sjj to zero, is non
zero and is proportional to the enstrophy density (cop>/2). 
The first and third invariants of Wij are identically zero. 

Figure 1 illustrates the various flow topologies that can 
occur in the plane p=o. The intersection of this plane with 
the surface (5) is given by 

2~ 
R= ±T (_Q)3/2, (6) 

which divides real solutions from complex solutions, as 
indicated. For the case P=O, the second invariant is 

(7) 

where the indices have been switched to indicate explicitly 
that Q is formed from the difference of two terms, each of 
which is a positive sum of squares. The local topology has 
complex or real eigenvalues depending on whether the 
(Q,R) pair evaluated at a given point in the flow lies above 
or below (6). 

The mechanical dissipation of kinetic energy due to 
viscous friction is 

(8) 

Large negative values of Qs correspond to large rates of 
dissipation of kinetic energy. Large negative values of Q 
indicate regions where the strain is both large and strongly 
dominant over the enstrophy. Large positive values of Q 
indicate the reverse. 

III. CONSTRUCTION OF INVARIANT PLOTS 

The invariant plot method for analyzing flow fields was 
first developed by Chen et aI., 2 and the procedure for con
structing the plots is summarized as follows: (i) The nine 
partial derivatives of the velocity gradient tensor are eval
uated at every point in the computed field; (ii) the invari
ants Q, R, Qs, R s , and Qware determined at every point; 
and (iii) the resulting (Q,R), (Qs,Rs ), and (-Qs,Qw) 
pairs are cross-plotted, resulting in scatter diagrams typi
fied by the results shown in Fig. 2. 

In practice, while the scatter plots are very useful for 
revealing topological features of the finest-scale motions 
which are characterized by the largest gradients in the 
flow, lower gradient motions characterizing intermediate 
or larger scales are obscured by layers and layers of over~ 
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FIG. 2. Scatter plots of (a) Q vs R; (b) Qs vs Rs; (c) -Qs vs Qw for 
HIGHIP at tU/Oo=29.8; and (d) Qs vs Qw for a compressible mixing 
layer computed by Chen6 at tU/oo=72.0. 

lapping points. To remedy this the scatter plots are re
placed by plots of contours of the number density of points 
(corrected for nonuniform grid spacing) lying within a 
unit area in invariant space. These plots are essentially 
equivalent to unnormalized plots of the joint probability 
density function. Because of the extreme variations of 
number density that occur, contour levels are chosen log
arithmically to have the values 1, 10, 100, 1000, etc. 
Choosing the lowest contour value to be unity ensures that 
isolated points are captured thus retaining the features of 
the scatter plot far from the origin, while providing infor
mation about the distribution of invariants near the origin 
corresponding to intermediate- and large-scale motions. 
This is the basis of Figs. 6-18 and 22-24. 

IV. DISCUSSION OF RESULTS 

A. Simulation cases studied 

We consider in this paper several cases of the incom
pressible (P=O) plane mixing layer computed by Moser 
and Rogers.4,s Three direct numerical simulations are con
sidered, namely, HIGHIP, HIGH2P, and tbl. The cases 
HIGHIP and HIGH2P were initiated from laminar error 
function profiles to which were added small disturbances in 
the form of streamwise vortices. The case tbl was initiated 
with two turbulent boundary layer realizations with equal 
and opposite free-stream velocities placed on opposite sides 
of a dividing plate, which was dissolved at time t=O. The 
initial turbulent boundary layers were DNS computations 
of Spalart.6 All cases were computed as time developing 
layers, and Table I shows the initial Reynolds numbers of 
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TABLE I. Flow parameters. 

HIGHIP HIGH2P tbI 

UZ-U1 2 2 2 
Initial vorticity thickness, l)o 1 1 1.4 

1 ...L ...L Viscosity, v 130 250 500 
Initial Re=(U2 - U1)l)o/2v 250 250 700 

the three cases of interest. Details of the HIGHIP and 
HIGH2P results have been reported by Moser and 
Rogers.5 See Table II of Ref. 5 for a detailed description of 
initial conditions. Unless otherwise stated, all results in the 
present paper are normalized by half the velocity difference 
across the layer, U, and the initial vorticity thickness 80 , 

B. Scatter plots 

Figures 2(a)-2(c) show scatter diagrams for HIGHIP 
taken from Chen et aL 2 These diagrams are made up of the 
entire data set for a given time step. Figure 2(a) shows that 
the bulk of the data tends to be concentrated near the 
origin, while most of the high gradient motions lie either in 
the lower right quadrant or along a nearly straight ridge 
line in the upper left quadrant with the local topology 
stable-focus stretching. When only the symmetric part of 
the velocity gradient field is studied, as in Fig. 2 (b), it is 
seen that there is a strong tendency to the rate-of-strain 
topology unstable-node-saddle-saddle. Figure 2(c) is par
ticularly interesting. Figure 3 schematically indicates the 
physical interpretation for various regions of Fig. 2 (c). 
Data that falls on a 45° line through the origin represents 
points in the flow with high dissipation accompanied by 
high enstrophy density. It can be shown that such points 
are consistent with the physical picture of a local vortex 
sheet, where most of the rate of strain is dominated by the 
velocity gradient within the sheet. Data that lies along the 
horizontal axis represents points with high enstrophy but 
little dissipation, as would occur in solid body rotation 
near the center of a vortex tube. Note that there is a ten
dency for points with the largest enstrophy to be of this 
type. In the work of Chen et af. 2 this data was traced to 

-Q .. = iSijS;j ,..., Dissipation 

.~j/ Irrotational dissipation 

Vortex tubes 

Q .. = {WijW;; - Enstropy density 

FIG. 3. Physical interpretation of various regions in the - Qs vs Qw plot. 
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regions of high enstrophy lying within streamwise rib vor
tices, which connect adjacent spanwise rollers in the 
HIGHIP simulation. Data along the vertical axis repre
sents points where the enstrophy density is considerably 
smaller than the dissipation. In the simulations studied 
here such points, although they are fairly common, tend 
not to be associated with very large rates of dissipation [cf. 
Fig. 2 (b ) ]. As a matter of interest, Fig. 2 ( d) shows a plot 
from a compressible plane mixing layer computation by 
Chen.6 This flow is slightly compressible, and the indica
tion is that in this case virtually all the motion is in the 
form of vortex sheets (high enstrophy corresponding to 
high dissipation). 

c. Mean dissipation 

Classical arguments, based on the idea that dissipation 
of turbulent kinetic energy scales with production, lead to 
the following estimates: 

-au 
28'S' " €= ~ ij ijr;;;,[, - U v ay' (9) 

where the Slj are fluctuating, non-normalized strain rates. 
Results from experiment show that for fully developed 
shear layers, 

U'v' 
- (2U)2 ~0.012. ( 10) 

From (9) and (10) and using aUlaYr;;;,[,2UI8, we have 

U3 

€= 2vS;jS;j =0.096 T' (11 ) 

For time tUI80 =29.8 in HIGHIP, where the vorticity 
thickness has increased by a factor of 6.5 over the initial 
thickness, the Reynolds number R8 based on the current 
vorticity thickness, 6, and the velocity difference across the 
layer, 2U, is 3000. Hence 

S;jS;j8~ 0.096 (80 ) 2 
-Qs 2U2 g,;-8- R8 "8 =0.852. (12) 

One would expect the average value of - Qs at the mid
plane of the mixing layer to be of this order. Profiles of 
-Qs averaged over horizontal planes in the mixing layer 
at various times are shown in Fig. 4(a). The average at the 
midplane agrees quite well with the estimate indicated by 
(12), which is indicative of the production of kinetic en
ergy. This result is consistent with the fully developed 
time-averaged value obtained from experiments by Brad
shaw and Ferriss.7 An order of magnitude analysis similar 
to (12) reported by Chen et al.,2 giving the value of 18.2, 
was in error due to incorrect normalization of the vari
ables. 

Figures 4(b) and 4(c) show the horizontally averaged 
- Qs for HIGH2P and tbi. Along with providing informa
tion on the mean dissipation, these figures also indicate the 
growth of each layer at successive times. A feature to note 
here, which will be returned to in the later discussion, is 
the considerably more rapid growth of HIGH2P compared 
to tbi. Another feature of Figs. 4(a)-4(c) concerns the 
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FIG. 4. Planar x-z average Qs versus cross-stream direction yl80 for (a) 
HIGHIP at tUI8o=19.3, 22.3, 25.3, and 29.8; (b) HIGH2P at 
tU/8o= 19.1, 25.1, 34.9, and 49.4; and (c) thl at tUI8o=O.O, 21.1, 31.4, 
37.5, and 61.4. 

behavior of the maximum averaged dissipation with time. 
In the case of HIGHIP, the dissipation near the centerline 
increases throughout the computation, indicating that, in 
spite of the agreement cited above with the fully developed 
value, HIGHIP is probably out of equilibrium. The case 
HIGH2P is computed to considerably larger times, and the 
dissipation, after increasing slightly at first, then decreases, 
as would be expected for an eqUilibrium layer. In the case 
of tbl the dissipation grows rapidly from the initial condi
tion, then decays similarly to HIGH2P. 

Figure 5 (a) shows the probability density function 
F ( - Qs) and weighted probability density function 
-QsF( -Qs) over the entire volume of the mixing layer 
for the case HIGHIP. Most of the contribution to the 
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FIG. 5. Weighted probability density functions Fe -Qs) and 
(-Qs)FC -Qs) VB -Qs for Ca) HIGHIP at tU/oo=25.3, Cb) HIGH2P 
at tU/oo=34.9, and Cc) tbl at tU/oo=37.5. 

volume-averaged - Qs comes from points with - Qs be
tween 0 and 3. Although the far flung values of -Qs on 
the scatter diagram in Fig. 2(b) tend to follow interesting 
patterns, at the Reynolds number of this simulation, they 
contribute only a few percent of the total energy dissipa
tion. This was one of the major reasons why it was felt that 
scatter diagrams should be replaced by number density or 
joint probability density diagrams with contours corre
sponding to the logarithm of the number density function, 
so that possible ridges could be seen in regions that are 
highly darkened in the scatter plots. Figures 5 (b) and 5 (c) 
show similar results for HIGH2P and tbl. The latter case 
shows a somewhat broader distribution than either of the 
two laminar initial condition cases. 

Figure 6 shows a plot of the time history of the Rey-
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FIG. 6. Vorticity thickness Reynolds number R6 vs nondimensional time 
for the incompressible mixing layers. 

noIds number based on current vorticity thickness for the 
three cases of interest, and will be used later to define local 
length scales for making comparisons between HIGH2P 
and tbl at the same Reynolds number. 

Q 
30 

-10 

Q 
30 

(a) 

30 Q 

30 Q 

-10 

FIG. 7. Number density contour plot of Q VB R for HIGHIP at 
tU/oo= Ca) 19.3, (b) 22.3, Cc) 25.3, and Cd) 29.8. 
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FIG. 8. Number density contour plot of Qs vs Rs for HIGHIP at 
tUI8o=(a) 19.3, (b) 22.3, (c) 25.3, and (d) 29.8. 

D. Number density contour plots 

Figures 7-10 show the number density contour plots 
for HIGHIP. Figures 11-14 show the results for HIGH2P, 
and Figs. 15-18 show the same for tbl. These results are 
similar to the scatter diagrams given in Fig. 2, but are 
corrected for nonuniform grid spacing and presented in the 
form of contour plots as discussed above. 

1. The case HIGH1P 

In the contour plots more structural features are ap
parent. A property of Figs. 7, 8, and 10 that is related to 
the previous discussion of Fig. 4(a) is that velocity gradi
ents tend to increase with time. However, in contrast to the 
planar-averaged - Qs the points with the largest invariants 
show a slight decrease at the latest time depicted. In fully 
developed turbulent plane mixing layers, if dissipation 
scales with production, then according to Kolmogorov 
scaling, the velocity gradients should decrease with time. 
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FIG. 9. Number density contour plot of Qs VB Rs for HIGHIP at 
tUI8o=25.3. Axes magnified by a factor of (a) 10 and (b) 300. 

According to this reasoning, HIGHIP is underdeveloped 
with production exceeding dissipation for most, if not all, 
of the times shown. Perhaps the most striking feature of 
Fig. 7 is the very pronounced nearly straight ridge line 
extending into the upper left quadrant at all four times 
depicted (cf. Fig. 1; the topology stable-focus stretching). 
The points that form this ridge line are found in Fig. 10, 
extending along the horizontal axis, where they are found 
to be associated with extremely low rates of dissipation. 
Indeed, the most strongly rotational points in the flow are 
associated with nearly zero dissipation, suggesting that the 
flow is local in nearly solid body rotation. In physical space 
these points are found within the ribs that connect adjacent 
large spanwise rollers.2 On the other hand, points with the 
highest dissipation in the flow tend to be associated with 
comparably strong enstrophy density, i.e., they lie along a 
roughly 45° line in Fig. 10 suggesting that the largest dis
sipation rates occur in sheets. 

Figure 8 shows the evolution of the rate-of-strain in
variants for HIGHIP. The most striking feature of these 
plots is the very pronounced preference for a rate-of-strain 

Soria et af. 



-Os 
25 

-Os 
25 

-as 

o 25 

'. , ..... 
• ... 9:, ~ . " .. 
,' .. \\ ..... , 

. . .. ~ .. !.- ", . '~ .. 

-Os 
(e) 

,. 

(b) 

o 25 

(a) 

o 25 

FIG. 10. Number density contour plot of -Qs vs Qw for HIGHIP at tU/{)o= (a) 19.3, (b) 22.3, (e) 25.3, and (d) 29.8. 

topology of the type saddle-saddle-unstable-node (two 
positive eigenvalues, one negative). Figure 9 shows the 
rate-of-strain invariants plotted at two magnifications to 
enable features near the origin to be viewed. These plots 
will be discussed further in Sec. VI. 

2. The case HIGH2P 

Figures 11-14 show the results for HIGH2P. The very 
largest gradients in this flow are quite different from the 
case HIGHIP, in spite of the similarities in the initial con
ditions. There is no pronounced ridge line in the upper left 
quadrant, hut only a scattering of points, which constitute 
a very small fraction of the flow. These few points are 
found along the horizontal axis in Fig. 14, as might be 
expected. What is missing from Fig. 14 in comparison to 
Fig. 10 is the structure along a 45° line. Instead the dissi
pating points in HIGHI P appear to have a wide range of 
enstrophy density. Nevertheless, the strain invariants 
shown in Figs. 12 and 13 show the usual strong preference 
for positive Rs. 

Phys. Fluids, Vol. 6, No.2, February 1994 

3. The case tbl 

Figures 15-18 show the results for fbi, which started 
out as two turbulent boundary layers, and then developed 
to a much higher Reynolds number than HIGHIP. Figure 
15 is most interesting. It shows that all data points for the 
turbulent boundary layer cluster near the origin of the Q vs 
R plot and suddenly explode to much larger values in the 
plane mixing layer. It should be noted that in the wall 
region of a turbulent boundary layer, Q and R are small, 
even though the gradients are not small, i.e., near the wall 
the two oppositely signed terms that make up the invari
ants are formed from the same quantities. Nevertheless, 
these pictures graphically illustrate how much larger ve
locity gradients become when the wall constraint of a tur
bulent boundary layer is removed. A clearer measure of the 
relative magnitudes of the velocity gradients can be in
ferred from Fig. 16, which involves only positive definite 
quantities, and indicates that indeed the gradients tend to 
grow substantially and then diminish at late times. The 
plots in Fig. 18 show that the turbulent boundary layer 
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FIG. 11. Number density contour plot of Q vs R for HIGH2P at 
tU/15o=(a) 19.1, (b) 25.1, (e) 34.9, and (d) 49.4. 

structures at t' =0 are sheet-like, but, in contrast to 
HIGHIP, there are no preferred structures revealed by the 
-Qs vs Qw plot for later times, and there is no evidence 
whatsoever for a pronounced ridge line in the (Q,R) plane 
with strongly stable-focusing topology. As with HIGHIP 
and HIGH2P, the Q vs R plot shows that most points tend 
to cluster around the origin, with the main distribution of 
data lying in a roughly elliptical region with its major axis 
aligned with the upper left quadrant corresponding to the 
topology stable-focus-stretching and the lower right quad
rant with the topology unstable node-saddle-saddle. The 
rate-of-strain invariants shown in Fig. 16 show the usual 
strong preference for Rs> 0, consistent with the other 
cases. The very regular banded structure of the rate-of
strain invariants shown in Fig. 17 is quite interesting and 
will be discussed shortly. 

The highly organized flow structures observed in 
HIGHIP and discussed in Chen et al 2 are replaced by 
most complex structures in tbl. Vortex lines for tbl are 
shown in Figs. 19 and 20. Shown in Fig. 19 is the initial 
turbulent boundary layer and the attached eddies that lean 
approximately 45° to the mean flow direction are apparent. 
In Fig. 20 are shown vortex lines of the plane mixing layer 
after some development. Although no clear spanwise roll
ups are apparent from this vorticity plot, Fig. 21 shows 
instantaneous streamline patterns that close on themselves 
indicating a general spanwise roll-up at the largest scale of 
the flow. 
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FIG. 12. Number density contour plot of Qs vs Rs for HIGH2P at 
tU/15o=(a) 19.1, (b) 25.1, (e) 34.9, and (d) 49.4. 

V. MODELS OF THE EVOLUTION OF THE VELOCITY 
GRADIENT TENSOR 

Figures 7, 11, and 15 show a series of snapshots of the 
current values of Q and R for a large number of fluid 
elements at various stages in the evolution of the flow. 
There are three salient features of these plots. 

( 1) A significant fraction of the data lies in the lower 
right quadrant along the (R > 0, D=O) branch. These 
points tend to be characterized by relatively high rates of 
kinetic energy dissipation. 

(2) By far the preponderance of points collects in a 
roughly elliptical region about the origin, with its major 
axis aligned with the upper left and lower right quadrants. 

(3) For certain cases, a small fraction of the data ex
tends a considerable distance into the upper left quadrant. 
For points far from the origin, the local vorticity strongly 
dominates the local strain. Moreover, points far from the 
origin tend to be associated with relatively small rates of 
kinetic energy dissipation (cf. Figs. 10, 14, and 18). Such 
points are quite common in HIGHIP, less so in HIGH2P, 
and extremely rare in tbl. The presence or absence of these 
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FIG. 13. Number density contour plot of Qs vs Rs for HIGH2P at 
tU/oo=34.9. Axes magnified by a factor of (a) 10 and (b) 300. 

kinds of motions appears to be closely related to the regu
larity of the initial conditions. These features of the Q-R 
plots have been observed in a variety of inhomogeneous 
flOWS,10 suggesting that they may be universal. While the 
Q-R plots are not yet fully understood, transport equations 
for A ij , Q, and R can be generated from the equations of 
motion and studied. These studies do give some insight 
into the shapes of the invariant plots. Analysis of solutions 
of a restricted Euler model for the evolution of A ij , 11 to
gether with a fairly general analysis of the equations for Q 
and R, suggests that the velocity gradient tensor in three
dimensional flow tends to evolve toward an attractor in the 
space of tensor invariants. 12 In addition, these studies sug
gest that in a general flow the rate-of-strain and rate-of
rotation tensors should evolve to a configuration with two 
positive principal rates of strain and the vorticity aligned 
with the smaller positive strain. The shape of the attracting 
region closely resembles the distribution of points seen in 
Figs. 7, 11, and 15 (see Fig. 4 in Ref. 12). 
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VI. THE GEOMETRY OF DISSIPATION 

From ( 11) and (12), it can be seen that Qs normalized 
by the current vorticity thickness scales with Rfj, and, 
therefore, it seems likely that Rs should scale with R~/2 . 
This would imply that the data should follow a curve, 

(13) 

This relationship is what one might expect purely on di
mensional grounds, but there is no rigorous proof. It is 
interesting to note that such a curve on the Qs vs Rs plot 
represents a rate of strain geometry, where the principal 
rates of strain a, (3, and yare in a constant ratio to one 
another. For the data set HIGHIP, points of high dissipa
tion follow closely the curve corresponding to the ratio of 
a:{3:y=3:1:-4 [see Fig. 8(d)], which was observed by 
Ashurst et al. 9 in studies of forced isotropic turbulence. In 
addition, as noted by Sondergaard et aI., 10 who studied a 
variety of inhomogeneous shear flows, the vorticity vector 
tends to align itself with the second principal rate of strain 
(3. It should be noted that while other data sets analyzed by 
Sondergaard et al. 10 show the same vorticity alignment, the 
3:1:-4 ratio of rates of strain is not always observed. The 
Qs vs Rs plots for tbl shown in Fig. 16, indicate that the 
strain rates in this case tend to follow a different curve, 
closer to the real-imaginary dividing surface (6) corre
sponding to a:{3:y= 1:1:-2. Hence, this aspect of the fine
scale motion appears to be dependent on initial conditions 
and is also very likely dependent on Reynolds number. The 
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dependence on Reynolds number is apparent from the vari
ation with time of the Qs vs Rs plots for a given flow. 

The results depicted in Figs. 8, 12, and 16 show that 
motions characterized by high rates of dissipation (large 
-Qs) clearly show a preference for Rs>O, corresponding 
to a local topology of the rate of rate-of-strain tensor that 
is of the type saddle-saddle-unstable node (cf. Fig. 1), It 
appears that, with a modest amount of scatter, the fine
scale motions with the largest gradients follow a relation
ship of the form 

RsG3K( _QS)3/2. (14) 

The positive quantity K is expected to be a function of 
Reynolds number and initial conditions with an upper 
limit of K =2~/9 corresponding to locally axisymmetric 
flow (a:j3:y= 1:1:-2). The relation (14) appears to char
acterize the highest dissipating points in the flow. How
ever, as was pointed out earlier, these points constitute 
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only a small fraction of the total dissipation. It is therefore 
of interest to investigate the dissipation associated with 
intermediate and large scales, particularly with values in 
the range 0 < - Qs < 3, which, as was pointed out earlier, 
contribute the bulk of the dissipation. 

This brings us to the discussion of Figs. 9, 13, and 17; 
the magnified plots of the rate-of-strain invariants. Figures 
9 ( a), 13 (a), and 17 (a) show the number density contours 
plotted over the range of Qs, which contributes the bulk of 
the total dissipation. Figures 9(b), 13(b), and 17(b) show 
a range of Qs that encompasses the largest scales in the 
flow. Note that throughout this paper we have used the 
initial thickness, 8o, for normalizing velocity gradients. 
This leads to typical values of Qs on the order of 0.0 1-0.02 
for large eddies that span the flow. The most striking fea
ture of all three plots is that the rate-of-strain tensor 
strongly prefers the topology unstable-node-saddle-saddle 
at intermediate and large scales (Qs close to zero). This 
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rate-of-strain geometry is not just a property of the fine 
scales. Another interesting feature is that structures that 
mark the finest scales can sometimes be traced well into the 
region of intermediate scales. The ridge line penetrating 
into the lower right portion of Fig. 9(a) (case HIGHIP) is 
the continuation of the same structure that can be seen 
approximately midway across the right side of Fig. 8 (c). A 
similar ridge line can be seen in Fig. 13 (a) ( case 
HIGH2P), although its continuation in Fig. 12(c) is not so 
apparent. 

Before discussing these plots further we need to make 
a brief digression. It has been pointed out by Jimenez13 
that, in the neighborhood of a localized region of stretched 
vorticity, when the maximum vorticity is much larger than 
the ambient, the velocity gradient tensor will tend to be of 
the form 

(15) 
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FIG. 17. Number density contour plot ofQs vs Rs for tbl at tUI8o=37.5. 
Axes magnified by a factor of Ca) 10 and (b) 300. 

where the out of plane rate of strain, b, is positive. It 
should be pointed out that the velocity gradient tensor at 
any point in the flow can be put in the form (15) by use of 
an affine transformation. 1 In the event that the real eigen
value, b, is constant over a finite volume of the flow then 
such a region can be regarded as a locally two-dimensional 
flow with out of plane strain. An axisymmetric example of 
such a flow is the Burger's vortex. For such a flow, at the 
radius of maximum dissipation surrounding the vorticity 
maximum, the rate-of-strain tensor will tend to have two 
positive eigenvalues and the vorticity will tend to be 
aligned with the smaller positive principal rate-of-strain 
direction. It can be easily shown that the invariants of (15) 
satisfy 

R+bQ+b3=O. (16) 

In Ref. 12 a basic analysis of the equations of motion is 
used to show that flow structures characterized by (16) 
should evolve as typical features of turbulent flow. For any 
value of b there exists a point of oscillation between (16) 
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FIG. 19. Vortex lines for tbl at tUI8o=0.0. 
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FIG. 20. Vortex lines for tbl at tUI8o=76.3. 

and (6); thus, for -00 <b< 00, the straight line (16) is 
the generator of (6). It can be easily shown that the rate
of-strain invariants of (15) satisfy 

R s+bQs+b3=0. (17) 

Based on this simple kinematical arguement and the 
relatively straight banded structure of the number density 
contours seen in these figures, particularly Figs. 9(b) and 
17, it would appear that the dominant topological structure 
of the intermediate scales that are responsible for the bulk 
of the dissipation is that of a locally two-dimensional flow 
with out-of-plane straining. The number density contours 
in Fig. 17 for the case tbl are particularly interesting. Al
though there is some curvature evident in the contours, the 
straight line relationship (17) approximately describes the 
behavior of the invariants throughout the range of inter
mediate scales and up into the range oflarge scales. For the 
tbi flow. the joint PDF of rate-of-strain tensor invariants 
appears to be self-similar at intermediate and large scales. 

In general, the rate-of-strain invariant data suggests 
that the relationship (14) describes the strongest dissipat
ing motions at the finest scales, while the relationship (17) 
seems to hold for intermediate scale motions that accom
plish most of the dissipation. 

VII. COMPARISON OF LAMINAR AND TURBULENT 
INITIAL CONDITIONS AT THE SAME REYNOLDS 
NUMBER 

From Fig. 6, it can be seen that there is an overlap of 
Reynolds numbers for HIGH2P and tbi. In fact, they both 
share a Reynolds number of 5000, as indicated in the fig
ure. Figures 22(a) and 22(b) show Q vs R plots of tbl and 
HIGH2P, each scaled with the current vorticity thickness 
and appropriate velocity U. The vorticity thickness in each 
case has grown considerably, and this accounts for the 

FIG. 21. Streamlines for tbl at tUI8o=76.3. 
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much larger numbers on the axes in the plots of rescaled 
invariants in Figs. 22-24. Figures 23 and 24 show the cor
responding Qs vs Rs and - Qs vs Qw plots for comparison. 
Although the shapes of the plots are roughly the same, 
there appears to be a major difference in the scaling, indi
cating that the velocity gradients normalized by the cur
rent thickness in tbl are considerably lower than in 
HIGH2P for the same Reynolds number. This is consistent 
with the lower growth rate of tbl compared to HIGH2P 
seen in Figs. 4(b) and 4( c); by the time tbl has reached the 
same thickness as HIGH2P the normalized gradients in tbl 
have dropped considerably in comparison. 

VIII. CONCLUSIONS 

In all flow cases considered here, motions over the bulk 
of the flow volume were distributed in a roughly elliptical 
region about (Q,R) = (0,0), with the major axis aligned 
with the upper left and lower right quadrants. In the case 
designated as HIGHIP, the flow is initiated from a laminar 
layer with an error function profile, and the maximum 
Reynolds number R/j to which the flow evolves is approx
imately 3000. Here, the highly dissipative motions are al
ways accompanied by high enstrophy, indicating a vortex 
sheet-like structure, although the highest enstrophy mo
tions are situated in tube-like structures in nearly solid 
body rotation. In the case HIGH2P, the tube-like struc
tures are much less apparent. 

The rate-of-stain tensor in all three cases indicated that 
dissipating points were of the topology unstable-node
saddle-saddle (Rs> 0), with the largest rates of strain 
tending toward a fixed ratio. Examination of magnified 
(Qs,Rs) plots indicated that the tendency toward Rs>O 
characterizes the full range of motions responsible for vir-

Soria et al. 883 



tually all the dissipation. At intermediate scales the rate
of-strain invariants tend to approximately follow a straight 
line relationship characteristic of a two-dimensional flow 
with out-of-plane straining. 

In the case of tbZ, which was initiated from two turbu
lent boundary layers placed back to back, the highest local 
Reynolds number considered was Ra=9000. Here, the 
- Qs vs Qw plots indicated no pronounced tube-like struc
tures, as in the cases initiated with laminar initial condi
tions. The Q-R plots did indicate a general preference for 
stable-focus stretching and the Qs vs Rs plots showed that 
the highly dissipating motions tend to a:f3:y= 1:1:-2. In 
this case the intermediate-scale motions showed the clear
est tendency for Qs and Rs to follow a straight line. 

Comparison was made of two flows at the same Rey
nolds number, but with laminar and turbulent initial con
ditions. Care was taken to normalize the data with the 
local layer thickness. Although the shape of the invariant 
plots are roughly the same, there appears to be a major 
difference in the scaling, indicating that the velocity gradi
ents in tbZ are considerably smaller than in HIGH2P for 
the same Reynolds number. 
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