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The geometry of solution trajectories for three first-order coupled linear differential equations
can be related and classified using three matrix invariants. This provides a generalized
approach to the classification of elementary three-dimensional flow patterns defined by
instantaneous streamlines for flow at and away from no-slip boundaries for both compressible
and incompressible flow. Although the attention of this paper is on the velocity field and its
associated deformation tensor, the results are valid for any smooth three-dimensional vector
field. For example, there may be situations where it is appropriate to work in terms of the
vorticity field or pressure gradient field. In any case, it is expected that the results presented
here will be of use in the interpretation of complex flow field data.

I. INTRODUCTION

Modern experimental and computational fluid mechan-
ics is increasingly concerned with the three-dimensional na-
ture of fluid motion. Rapid advances in computer science
and experimental instrumentation have made it possible to
generate vast quantities of data. Before similar advances can
occur in our ability to grasp complex fluid motion there is a
need for a systematic study of basic three-dimensional flow
fields and their diagrammatic representation. Such a study is
presented here in the hope that it will provide a framework
for the interpretation of complex flow data in terms of ele-
mentary flow patterns. In the past the study of flow topology
has been confined mainly to incompressible flow (Perry and
Chong'). More recent work in the simulation of compress-
ible flows (Kaynak er al.? and Chen, Cantwell, and Man-
sour’), and in the measurement of flows with heat release
(Lewis et al.*), has revealed a larger variety of local flow
fields than occurs in incompressible flow. These new mo-
tions need to be analyzed and classified.

In this paper we consider fluid motions that are describ-
able by the leading terms of a Taylor series expansion for the
velocity field in terms of space coordinates. This excludes
such singular cases as vortex sheets and shock waves. The
coordinate system is assumed to translate without rotation
with the origin following a fluid particle. In such a reference
frame the flow at the origin is a critical point and the coeffi-
cients of the linear terms are elements of the rate-of-defor-
mation tensor. If the origin of the coordinate system is locat-
ed at a no-slip boundary and if a critical point occurs at the
origin, the expansion starts with second-order terms and the
interpretation of the associated coefficients is more compli-
cated. In unsteady flow, the expansion is applied at an in-
stant in time and the solution trajectories are obtained by
integrating the velocity field assuming that the field is frozen
in time. This gives instantaneous streamlines as defined by
Perry and Chong' and other workers in this field.

The work is concerned with the streamlines defined by
the solution trajectories of three linear, coupled, first-order
ordinary differential equations. Although the eigenvalues
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and eigenvectors of the associated 3 X 3 matrix can be deter-
mined with elementary, well-known techniques, the rela-
tionship between these properties of the matrix and the ge-
ometry of the solution trajectories is neither well known nor
well understood despite the classical nature of the subject.
For example, unknown to many researchers, some of the
current arguments over the definition of a vortex are virtual-
ly discussions concerning the relative strengths of the rate-
of-strain tensor and this is discussed in Sec. VI.

We have found that the relationship between the matrix
properties and geometry is not trivial and that the topologi-
cal classification of the geometry of the solution trajectories
has never been fully elucidated. The problem is discussed
briefly in the electrical engineering text by Blaquire,® and a
classification of possible solution geometries is given in the
paper of Reyn® who, in passing, discusses the possible useful-
ness of the approach in the interpretation of compressible
flow patterns but does not directly connect his results with
fluid mechanics. Moreover, neither author correctly de-
scribed the properties of the three-dimensional space of ma-
trix invariants that is used to relate eigenvalues and eigen-
vectors to the geometry of the solution trajectories. In the
present work we have attempted to provide a complete de-
scription of all possible cases and to relate these to examples
from fluid mechanics. In the process a number of new results
have been obtained. We feel that the work will be of use in the
interpretation of complex flow field data.

Historically, critical point theory has been used primar-
ily to examine the solution trajectories of ordinary differen-
tial equations (e.g., see Kaplan,” Pontryagin,® Andronov et
al.,’ and Minorsky'?). The technique can also be adopted to
describe the topological features of flow patterns and is
based on the idea mentioned earlier of forming a local Taylor
series expansion of the flow field (see Perry and Fairlie'' and
Perry and Chong' for an extensive review of the method). A
critical point is a point in the flow field where all three veloc-
ity components are zero and the streamline slope is indeter-
minate. In the past, the topologies of critical points in three-
dimensional flows have been examined by the use of simple
two-dimensional phase-plane methods. This approach
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makes use of the fact that in three dimensions there are
planes (which we will call the eigenvector planes) that con-
tain solution trajectories. By considering each of the eigen-
vector planes in turn, the velocity field is expressed as a set of
linearized Taylor series expansions which makes use of a
2 X 2 matrix. This has two invariants p and g and these invar-
iants are used to define the various types of critical points
(nodes, saddles, foci, and associated degenerate cases) that
can be classified on a p-g chart (see Perry and Fairlie,!' Per-
ry and Chong,' and textbooks on ordinary differential equa-
tions such as those of Kaplan’ and Hirsch and Smale'?).
The eigenvector planes in many of the cases studied in
the past were easily identified and located, particularly if
there were planes of symmetry involved or if a solid surface
was specified as a boundary to the pattern. In the more gen-
eral case where such simplifying features are not present, it
becomes necessary to use an analysis based on three invar-
iants of a 3X3 Jacobian matrix to locate the eigenvector
planes. These three invariants are sufficient to completely

classify the topology of the three-dimensional flow pattern.

Investigating the properties of the patterns in the various
eigenvector planes is necessary only for determining the ori-
entation of the critical point pattern (i.e., which plane con-
tains the nodes, saddles, and/or foci).

il. THE TOPOLOGY OF THREE-DIMENSIONAL
CRITICAL POINTS

A three-dimensional set of first-order differential equa-
tions can be written as

X a5 a4, ap\(x,
X|={an a» an]x; (1
X3 d31 Q43 33/ \X;3
or
X = Ax,

where a;; are real constants. In the case of a fluid flow the a;;
are the elements of the rate-of-deformation tensor dx, /dx;
evaluated at (x,,x,,x;) = (0,0,0). If the flow is steady then
solution trajectories correspond to streamlines. If the flow is
unsteady then solution trajectories correspond to particle
paths, which, in general, do not coincide with streamlines
except at an instant. This paper is limited to an identification
of the various kinds of local streamline patterns that can
occur in three-dimensional flows which can be locally linear-
ized in space, and so, degenerate cases are excluded. Issues of
structural stability, bifurcation processes, and the possible
onset of chaos which arise when the topology of a general
flow is considered, while of considerable importance, are not
of primary concern here. (For a discussion of these aspects
of the problem the reader is referred to the books by Hirsch
and Smale,'? Guckenheimer and Holmes,'? and the recent
text by Wiggins.'4)

Let the rate-of-deformation tensor be broken up into a
symmetric and antisymmetric part dx,/dx; =S, + R,
where S; = (9x,/dx; + dx;/dx;)/2 and R; = (9x,/0x;

— dx;/dx,)/2 (not to be confused with the scalar invariant
R defined later) are the rate-of-strain and rotation (or spin)
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tensors, respectively. If 4,, A4,, and 4, are the eigenvalues of
A, then

[A—-Alle=0, (2)

where e is the eigenvector. The eigenvalues can be deter-
mined by solving the characteristic equation

detfA — AI] =0, (3)
which, for a 3 X 3 matrix, can be written as

AP+ PA24+ QA+ R=0, 4
where

P= —(a,,+a,+ay;)= —tr[A]l = - §,, (5)

0= a, 4ap a, 4 a; ap
a ax as; Qs s, Q3
=%(P2—tr[A2]) =%(P2—Sijsji _Rinj.'), (6)
and
a, 4ay, ag
R= —la, a, ay;|= —det[A] 7N

azy 43 a4y

={(—P*+3PQ - t[A’])
= %( —_ P3 + 3PQ - SU‘S}’\S’“ - 3R,_,lesk,).

The characteristic equation can have (i) all real roots which
are distinct, (ii) all real roots where at least two roots are
equal, or (iii) one real root and a conjugate pair of complex
roots.

It can be shown that in the P-Q-R space the surface S,
which divides the real solutions from the complex solutions,
is given by

27R? 4 (4P° — 18PQ)R + (4Q° — P?Q%) =0, (8)

where terms have been gathered to form a quadratic equa-
tionin R. Figure 1 shows the intersection of this surface with
planes of constant P. On this surface, the eigenvalues are real
but two of them are equal. It can be shown that for real P, Q,
and R this surface can be split up into two surfaces, S|, and
S\, which are, respectively, given by

IP(Q—3P%) —4(—3Q0+ P _R=0 (9)
and

P(Q—3P") + 4(—3Q+P*)*?—-R=0. (10)
Note that S, is antisymmetric with respect to P.

Surface §,, osculates (or kisses) surface S, to form a
cusp. At the cusp the eigenvalues are real and all of them are
equal.

The matrix A can be transformed to another matrix A’,
which is in canonical form, and matrices A and A’ have the
same eigenvalues. If the eigenvalues are real and distinct, A’
is given by

A, 0 O
A'=]0 4, O]} (11)
0 0 A4,
If the eigenvalues are complex A’ is given by
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where
A, =04 iw,
A;=0b.

The solution in canonical form is

kl p— A'.xl’
where
x' = Bx.

Here, B is the transforming matrix and from the above with
Eq. (1) it can be shown that

B-A=A"B (13)
or
x'= (B-AB~')x'. (14)

Since it is always possible to find a matrix B that transforms
the noncanonical solutions to the canonical solutions, it
would be more convenient to consider the solution trajector-
ies in canonical form where, if the eigenvalues are real,

P= — (A, +4,+4,), (15)

Q=44+ A A3+ A, (16)

R= -4 A4, (17)
and if the eigenvalues are complex,

P= — (20 +b), (18)

Q=0"+ o’ + 20b, (19)

R= —b(® + &?). (20)

Therefore, if P is fixed, solutions with real and different
eigenvalues must lie in the shaded region shown in Fig. 2.
This region is defined by

Q<P*/3
and

R, <R <R, (21)
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where

R, ={P(Q—3P%) — 2( =30+ P**? (22)
and

R, ={P(Q—3P%) + &(—3Q+ P>~ (23)

If all the eigenvalues are real and if two of them are equal,
then

R=R, or R=R, (24)
and

Q<P?%3.
If all the eigenvalues are real and equal, then

R=P3/27, Q=P?%3. (25)
If

0> P?*/3,

we have one real root and a pair of complex conjugate roots,
but if

Q< P?/3,

we have one real root and a pair of complex conjugate roots
when

R<R, or R>R,. (26)

Bquation (27)
Surface S2

Bquation (23)
Surface Sl(slb)

FIG. 2. The Q-R plane ( P = const) showing the surface which divides the
region of real solutions (shaded) from the region of complex solutions (un-
shaded).
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If the complex eigenvalues are such that they are purely
imaginary, it can be shown that they must lie on a surface S,
given by

PQ—R=0. (27)

It can be shown that for constant P the surface S, intersects
surface S, at @ = 0, R = 0, (i.e., along the Paxis), and oscu-
lates the surface S, at Q = — P?and R = — P°. The inter-
section and osculation merge to a point at the origin for
P =0and S, contains the Q axis.

Iil. SOLUTION TRAJECTORIES

The possible combinations of solution trajectories in the
various eigenvector planes are given in the following subsec-
tions.

A. Real solutions

If the eigenvalues are real and distinct there exist three
eigenvector planes, defined by the linearly independent ei-
genvectors, which contain solution trajectories. All other so-
lution trajectories asymptote to these eigenvector planes as
the critical point is approached with the direction of time
chosen appropriately. These eigenvector planes may contain
nodes and saddles and the possible saddle-node combina-
tions (readers are referred to Perry and Chong' for the defin-
ition of the various types of patterns) are nodes in all three
eigenvector planes or saddles in two of the eigenvector
planes and a node in the remaining eigenvector plane. A case
of interest is when R =0, which represents a two-dimen-
sional pattern for the canonical case as shown in Fig. 3(a),
and this two-dimensionality is skewed for the noncanonical
case as shown in Fig. 3(b). This skewed two-dimensional
flow or “planar” flow is also found to occur as a degenerate
case in the three-dimensional separation pattern as studied
by Perry and Fairlie'' [see their Figs. 4(b) and 5(b)].

If the eigenvalues are real and two of them are equal
(i.e., if we are on the surface S;, or S, defined in Sec. II),
then instead of having a node in one of the eigenvector planes

a) »)

!

FIG. 3. Comparison between the two-dimensional critical point (canoni-
cal) and skewed two-dimensional critical point (noncanonical); (a) two-
dimensional critical point; (b) skewed two-dimensional critical point.
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we have a star node. In canonical form the matrix A’ can be
expressed as

A, 0 0
A=lo 1 o} (28)
0 0 4

In this case one coordinate plane will contain a star node.
The direction of the eigenvector in this plane is indetermin-
ate and any ray of the star node can be an ‘“‘eigenvector.”
Hence any plane that is normal to the plane of the star node
and passes through the origin will contain solution trajector-
ies. However, it is not always possible to find a transforma-
tion that:will diagonalize A into the canonical form given
above. In such a case the canonical form must be expressed
as

i, 0 O
A=lo 1 1 (29)
0 0 A

Here the solution trajectories in one of the coordinate planes
form a degenerate logarithmic node where the solution tra-
jectories are given by

x; = (1/A)x; [In(Cx3) ]. (30)

In this plane of the degenerate node there is only one eigen-
vector and there is only one other plane which will contain
solution trajectories.

In this case where all the eigenvalues are real and equal
(and this occurs at the point where surface S, osculates the
surface S, ), the forms of canonical solutions are given by

A 0 O A 0 0O
A=|l0 4 0] or A'=|0 A4 1
0 0 4 0 0 4
or
A 1 O
A'=10 4 1 31
0 0 4

In the first case we have star nodes everywhere (i.e., any
plane that passes through the origin will contain solution
trajectories). In the second case only two planes will contain
solution trajectories. These will be the coordinate planes
where one will contain a degenerate logarithmic node and
the other will contain a star node. In the third case there will
exist only one coordinate plane which contains solution tra-
jectories and here we have a logarithmic node.

B. Complex solutions

In canonical form the complex solutions are represented
by Egs. (18)-(20). There will exist only one plane that con-
tains solution trajectories and in this plane we can have a
focus or a center. Using polar coordinates it can be shown
that in canonical form the solution trajectories are given by

r= Ce™, (32)

where m = o/w and C depends on initial conditions.

From Eqgs. (12) and (32), it can be seen that the topol-
ogy of the flow pattern depends on m and b. It can be shown
that
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R=(P+20)0+20(P+20)2 (33)

Hence on a Q-R plane (i.e., a plane of constant P) lines of
constant o (and hence constant b) are straight lines and
these lines osculate surface S, as shown in Fig. 4. In canoni-
cal form the sign of b determines whether the trajectory ar-
row is directed away or toward the plane that contains solu-
tion trajectories (i.e., the plane of the focus). In the case
where b is positive, the spiraling is away from the plane of the
focus [e.g., see Fig. 8(c) in the Appendix], and if b is nega-
tive the spiraling is toward the focus plane. The degenerate
case is for & = 0 and here we have the two-dimensional case.

The rate and direction of spiral of the solution trajector-
ies in the focus plane depend on m. For m positive we have an
unstable focus (spiraling is away from the origin for increas-
ing time) and for m negative we have a stable focus (spiral-
ing is toward the origin for increasing time). The degenerate
case is for m = 0 where instead of a focus we have a center.
This corresponds to the case when R = PQ [i.e., Eq. (27),
surface S, ]. Hence this surface divides the complex zone into
a region where the focus is stable and a region where the
focus is unstable. For m approaching large values the rate of
spiral of the solution trajectories will decrease and in the
limit we obtain a star node. Also shown in Fig. 4 are lines of
constant o/w.

A complete classification of all possible critical points
has been carried out and is included in the Appendix.

V. FREE-SLIP AND NO-SLIP CRITICAL POINTS

The critical point described by Eq. (1) is known as a
free-slip critical point so as to distinguish from a second type
of critical point that occurs on a no-slip boundary. If x is the
normal distance from the no-slip boundary, then by using a
transformed time variable dr=x;dt and putting
Xx; = dx,/dr, Eq. (1) can be used for describing and classify-
ing no-slip critical points (see Oswatitsch,'® Lighthill,'® and
Perry and Fairlie''). However, the elements of matrix A will
no longer be elements of the rate-of-deformation tensor but
are higher-order quantities related to gradients of vorticity
and pressure gradients. For details, the reader is referred to
Perry and Fairlie'' and Perry and Chong.! In the limit of

] N
Pa0.5 \ |
wf \{
A |
> positive b \
NN STt neqative b
NN \

o ~. |

FIG. 4. Map of complex solutions. The complex region is shown unshaded;
—-—: lines of constant m = o/w; - - -: lines of constant b.
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x;—0 we have the so-called limiting surface streamlines, sur-
face trajectories, or lines of surface shear stress.
The continuity equation for compressible flow is

Dvi= L2 L%, %
p Dt p\ot ox,
. dp | . c?p)

= ==, 34

+xzax2+x3ax3 (34)

where x is differentiated with respect to conventional time .
Atacritical point, X, = X, = X, = 0 and the flow divergence
at the critical point is proportional to the time rate of change
of the density at the point. If the flow is compressible and
unsteady then it may be possible to obtain all the flow pat-
terns described in Figs. 8(a)-8(f) in the Appendix. How-
ever, if the flow is incompressible or if the flow is compress-
ible and steady then Div x = 0 at the critical point and the
number of possible flow patterns is limited. In this case

3, 3%, , O

dx, Jx, Ox,
A comparison of Eq. (35) with Eq. (5) shows that P must
equal zero for this case. Therefore in the P-Q-R space all
(steady or unsteady) incompressible or steady compressible
free-slip critical points must lie on the plane P = 0. The types
of possible flow patterns are shown in Fig. 8(b) in the Ap-
pendix.

Applying continuity to the no-slip critical points gives

ay; = — (a,, +ay)/2,

a3 =as =0,

=da,, +0ay;+a3,;=0 (35)

(36)

for incompressible flow and steady imcompressible flow,
and it can be shown that these critical points must lie on the
surface S; defined by

PQ+2P>+R=0. (37)

It can be shown that if the solution is complex the above
equation still applies. Figure 5(a) shows surface S, in rela-
tion to surface S, and S, in a Q-R plane (P = const). It can
be shown that S, intersects S, at Q= — P?’and R = — P?
(i.e., the point where S, osculates S, ). Surface .S; also oscu-
lates S, at Q = — 5P2and R = 3P3. Figure 5(b) shows sur-
faces S|, S,, and S; in the Q-P plane (R = const).

V. APPLICATION TO A THREE-DIMENSIONAL FLOW
PATTERN

It is often difficult to study the topology of three-dimen-
sional flow patterns, but with the use of the above classifica-
tion the topology of the flow can be more easily understood.
For example, Fig. 6 shows a three-dimensional separation
pattern that has been classified as a U separation (Perry and
Hornung'?). The flow field has been obtained by solving the
Navier—Stokes equations locally (see Perry and Chong'®)
using a third-order Taylor series expansion, and assuming
that the flow pattern is symmetrical (i.e., x, and x, are as-
sumed to be even in x, and X, is assumed tobe odd in x, ). The
x,-x, plane represents the no-slip boundary and this plane
contains solution trajectories. Figure 6(a) shows the limit-
ing surface streamlines on this plane. Because of the symme-
try condition (X, = 0 when x, = 0), the plane of symmetry
(i.e., the x,-x; plane) also contains solution trajectories and
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(a)

P=2.5

FIG. 5. Relation of surface S, to surfaces .S, and S,. No-slip critical points
must lie on surface S,. (a) Surfaces S, S,, and S, for constant P. (b) Sur-
faces S|, S,, and S, for constant R.

Fig. 6(b) shows the solution trajectories in both the surface
and the plane of symmetry. Hence it can be seen that there
are three major critical points of interest [labeled 1, 2, and 3
in Fig. 6(b) ]. Critical point 1 is a no-slip saddle and critical
point 2 is a no-slip node in the x,-x, plane. Critical point 3isa
free-slip focus in the x,-x, plane.

The above flow pattern is an idealized one since perfect-
ly symmetrical flow situations rarely, if ever, exist in prac-
tice. If the above flow pattern is perturbed slightly such that
the symmetry condition is destroyed the geometry of the
flow pattern is more difficult to “visualize.” Figure 7(a)
shows the surface streamline pattern for an unsymmetrical
U separation. It can be seen that this is still topologically
equivalent to the symmetrical pattern. However, the plane of
symmetry is now destroyed and the no-slip surface is the
only plane surface that contains solution trajectories for ar-
bitrary distances from the origin. Figures 7(b) and 7(c)
show an oblique view and side view, respectively, of the flow
pattern and it can be seen that the trajectories above the
surface are complicated. However, if we linearize the solu-
tion about the critical point above the surface and plot the
linearized solution we can see from Fig. 7(d) that we have a
free-slip focus above the surface and that the unsymmetrical
U separation is topologically similar to the symmetrical U
separation. Figure 7(e) shows the critical point above the
surface such that the plane containing the focus is viewed
“edge-on” and it can be seen that the focus is in a noncanoni-
cal form.
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VI. WHEN IS A REGION OF VORTICITY A “VORTEX"?

There is currently occurring among many prominent
workers in wall turbulence a debate as to how a vortex
should be defined (see Lugt'® and Kline*’). Now that full
direct simulations of the Navier-Stokes equations have re-
cently been applied to wall turbulence (e.g., Spalart®' and
Robinson, Kline, and Spalart®?), reliable computer-genera-
ted data are available which will enable a “picture” of the
structure of wall turbulence to be constructed. Graphical
representations of the velocity vector field and vortex lines
have been constructed and the question many researchers
are asking is whether there exist ‘“horseshoe” vortices and
whether the wall streaks are the result of longitudinal vorti-
ces in or near the sublayer region. Considerable confusion
occurs when the instantaneous velocity vector fields are be-
ing discussed. The following are examples of statements that
have been made regarding vortices.

“One must be careful when talking about vortices.
There might be vorticity present but that does not necessar-
ily mean that we have a vortex.”

“Streamwise vortex lines persist for long streamwise
distances but the streamwise vortices are quite short.”

“A study of vortex lines suggests the existence of horse-
shoe vortices in wall turbulence but after examining the ve-
locity vector field of some of these structures, one must con-
clude that only one leg is really a vortex.”

These statements reflect typical conflicts which arise in
the attempt to relate the instantaneous velocity and vorticity
fields to the results of flow visualization, which usually in-
volves the time-integrated effect of the flow on a tracer.

Hidden behind such statements are some implied vague
unstated assumptions as to how a “vortex” should be de-
fined. The instantaneous streamlines produced by integrat-
ing the velocity vector field resolved onto some chosen plane
must exhibit either closed orbits or spirals. Also there is
usually the notion of vortex lines being bunched or vorticity
being concentrated. These qualities are usually thought to be
essential aspects of a vortex. However, there are some diffi-
culties. The topologies of velocity fields (and streamline pat-
terns) depend on the velocity of the observer. Moreover,
integrated particle paths can cross instantaneous stream-
lines in complicated ways. It has been shown by Cantwell
and Allen? that a focus is produced in a low Reynolds num-
ber impulsively started jet without any local concentration
of vorticity. It is our opinion that it is unlikely that any defin-
ition of a vortex will win universal acceptance. However, we
suggest that a definition which might be acceptable to most
is that a vortex core is a region of space where the vorticity is
sufficiently strong to cause the rate-of-strain tensor to be
dominated by the rotation tensor, i.e., the rate-of-deforma-
tion tensor has complex eigenvalues. This definition is con-
sistent with the approach suggested by Cantwell**?* for
characterizing the structure of time-dependent self-similar
flows. This definition has also been suggested more recently
by Vollmers?® and Dallmann.?’ Since this definition depends
only on the properties of the deformation tensor, it is inde-
pendent of the frame of reference of the observer. Thus,
whether or not a region of vorticity appears as a “vortex”
depends on its environment, i.e., on the local rate-of-strain
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field induced by motions outside of the region of interest.

A horseshoe vortex in isolation would have the proper-
ties of a vortex according to the velocity field definition dis-
cussed here. However, if it were to be placed in an environ-
ment of high rate of strain (which could be induced by
surrounding horseshoe vortices), it may not appear as a vor-
tex according to the velocity field definition. However, as far
as the Biot—Savart law is concerned, it is no less a vortex than
it would be if it were isolated. Thus in computations of the
evolution of vortical flow fields it is the vorticity that is im-
portant and this quantity is independent of any nonrotating
frame of reference. Vortices which conform with the velocity
field definitions are of no special consequence, although they
would possess special local mixing properties. Fluid inter-
faces tend to be rotated and wrapped when placed in such
“vortices.”

VIl. SUMMARY OF P-Q-R SURFACES

The topological classification given in this paper maybe
useful in the understanding of complicated flow patterns.
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FIG. 6. Third-order symmetrical U separa-
tion. (a) Surface streamline pattern. (b)
Oblique view showing the surface streamline
pattern on the x,-x, plane and solution trajec-
tories in the plane of symmetry (i.e, x,-x,
plane).

The invariants P, Q, and R of a three-dimensional set of
linear first-order differential equations define the topology
of possible patterns. The boundaries between the different
possible topological patterns are surfaces which are defined
by the following equations.

(a) Surface S\, i.e.,

27R? + (4P — 18PQ)R + (4Q° — P?Q?) =0,

This surface divides the region of the complex solutions from
the region of real solutions. On this surface the eigenvalues
are real but at least two of them are equal. All the eigenvalues
are real and equal at the cusp.

(b) Surface S,, i.e.,

PQ—R=0.

This surface divides the complex region into two regions:
one where the solution trajectories are unstable and one
where the solution trajectories are stable. On this surface the
complex eigenvalues are purely imaginary, the pattern is de-
generate, and we obtain a center.

(c) Plane surface R = 0. On this surface the pattern is
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(d)

x

—t -

—_——— 1

——-—-’<

Plane of focus

(e)

FIG. 7. Third-order unsymmetrical U separation. (a) Surface streamline pattern. (b) Oblique view shawing the surface streamline pattern and streamlines
above the surface. All streamlines except for 4-4 and B-B are surface streamlines. (c) Side view of (b) showing streamline 4-4. (d) Solution trajectories of
the linearized solution about a critical point above the surface. The critical point is a focus. (e) View of (e) such that the plane containing the focus is viewed
“‘edge-on.”
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two dimensional in canonical form. In noncanonical form
the two-dimensionality is skewed.

(d) Plane surface P = 0. All possible critical points of a
three-dimensional solenoidal vector field can be described in
this plane. The eigenvector plane patterns have one node and
two saddles and it is not possible to have centers unless the
flow is two dimensional.

(e) Surface S, i.e.,

(a)

Q-R PLANE (P > 0)

la. stable node/stable node/stable node

2a. stable node/stable node/stable star node

3a. stable star node/stable star node/stable star node

4a. stable line node-saddle/stable line node-saddle/stable
node

Sa. stable line node-saddle/stable line node-saddle/stable
star node

6a. stable node/saddle/saddle

6b. unstable node/saddle/saddle

7a. stable star node/saddle/saddle

7b. unstable star node/saddle/saddle

8a. stable line node-saddle/stable line node-saddle/no flow

Bc. stable line node-saddle/unstable line node-saddle/no flow

%a. stable focus/stretching (b >0) |

10a. stable focus/compressing (b < 0)

10b. unstable focus/compressing (b < 0)

1la. stable focus/no flow (b = 0}

12b. center /compressing(b < 0)

(b)

%a 10b

Q-R PLANE (P = 0)

6a. stable node/saddle/saddle

6b. unstable node/saddle/saddle

7a. stable star node/saddle/saddle

7b. unstable star node/saddle/saddle

8c. stable line node-saddle/unstable line node-saddle/no flow
9a. stable focus/stretching (b >0)

10b. unstable focus/compressing (b < 0)

12c¢. center /no flow{b = 0)

PQ+2P*+ R =0.

For incompressible fluids, all no-slip critical points must lie
on this surface.

VIll. CONCLUSIONS

All possible linear local flow trajectories of a moving
continuum for both compressible and incompressible fluids

Q-R PLANE (P < 0)

1b. unstable node/unstable node/unstable node

2b. unstable node/unstable node/unstable star node

3b. wunstable star node/unstable star node/unstable star node

4b. wunstable line node-saddle/unstable line node-saddle/unstable
node

Sb. wunstable line node-saddle/unstable line node-saddle/unstable
star node

6a. stable node/saddle/saddle

6b. unstable node/saddle/saddle

7a., stable star node/saddle/saddle

7b. ' unstable star node/saddle/saddle

8b. unstable line node-saddle/unstable line rode-saddle/no flow

8c.. stable line node-saddle/unstable line node-saddle/no flow

Sa. stable focus/stretching (b >0)

9b. unstable focus/stretching (b >0)

10b. unstable focus/compressing (b < 0)

ilb. unstable focus/no flow (b = 0}

12a. center /stretching (b > 0)

P-Q PLANE (R > 0)

la. stable node/stable node/stable node

2a. stable node/stable node/stable star node

3a. stable star node/stable star node/stable star node
6b. unstable node/saddle/saddle

7b. wunstable star node/saddle/saddle

10a. stable focus/compressing (b < 0)

10b. unstable focus/compressing (b < 0)

12b. center /compressing(b < 0}

FIG. 8. Classification of critical points in P-Q-R space. (a)—~(c) Planes of constant P. (d)—(f) Planes of constant R.
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P-Q PLANE (R = 0)

4a. stable line node-saddle/stable line node-saddle/stable
node
4b. unstable line node-saddle/unstable line node-saddle/unstable
node
5a. stable line node-saddle/stable line node-saddle/stable
star node
Sb. wunstable line node-saddle/unstable line node-saddle/unstable
star node
Ba. stable line node-saddle/stable line node-saddle/no flow
8b. unstable line node-saddle/unstable line node-saddle/no flow
8c. stable line node-saddle/unstable line node-saddle/no flow
1la. stable focus/no flow (b = 0)
11b. unstable focus/no flow (b = 0)
12¢. center /no flow{(b = 0)

FIG. 8. (Continued).

can be completely categorized in the space of the rate-of-
deformation tensor invariants P, Q, and R. A set of surfaces
can be defined in this space which defines boundaries
between topologically distinct flow patterns and serves as a
guide for identifying critical points. Some useful properties
of the P-Q-R space are illustrated and are applied to a frame
invariant definition for a vortex, a skewed two-dimensional
flow, and a three-dimensional separation pattern. Although
the attention of this paper is focused on the velocity field and
its associated rate-of-deformation tensor, the results are val-
id for any smooth three-dimensional vector field. For exam-
ple, there may be situations where it is appropriate to work in
terms of the vorticity field or pressure gradient field. In any
case, it is expected that the results presented here will be of
use in the interpretation of complex flow field data.
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APPENDIX: CLASSIFICATION OF P-Q-R SPACE

All possible solution trajectories can be classified in the
P-Q-R space. Figures 8(a)-8(c) show the location of the
various three-dimensional critical points in constant P
planes and Figs. 8(d)-8(f) show the locations in constant R
planes. The possible types of three-dimensional critical
points can be classified as follows.
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P-Q PLANE (R < 0)

1b. wunstable node/unstable node/unstable node

2b. unstable node/unstable node/unstable star node

3b. wunstable star node/unstable star node/unstable star node
6a. stable node/saddle/saddle

7a. stable star node/saddle/saddle

9a. stable focus/stretching (b >0)

9b. unstable focus/stretching (b >0)

12a. center /stretching (b > 0)

1. Node/node/node
la: Nodes are stable if

P>0, 0<Q<P?3, 0<R<R,;
1b: nodes are unstable if
P<0, 0<Q<P?/3, R,<R<0

2. Node/node/star node
2a: Nodes are stable if

P>0, P?/4<Q<P%*3, R=R,
or

P>0, 0<Q<P?3, R=R,;
2b: nodes are unstable if

P<0, P*/4<Q<P?/3, R=R,
or

P<0, 0<Q<P?3, R=R,.

3. Star node/star node/star node
3a: Nodes are stable if

P>0, Q=P%*3, R=R,=R,=P3/27,
ie,R>0;
3b: nodes are unstable if

P<0, Q=P%*3, R=R,=R,=P3/27,
ie, R <0.
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FIG. 9. Examples of three-dimensional critical points and their location in P-Q-R space (located by@). (a) Unstable node/saddle/saddle; (b) stable star
node/saddle/saddle; (¢) unstable focus/stretching (4 <0); (d) center/stretching (&> 0).

4. Line node-saddle/line node-saddle/node
4a: Nodes are stable if

P>0, 0<Q<P%4, R=0;
4b: nodes are unstable if

P<0, 0<Q<P?*4, R=0.
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5. Line node-saddie/line node-saddie/star node
5a: Nodes are stable if

P>0, Q=P?*4, R=R,=0;
5b: nodes are unstable if

P<0, Q=P*4, R=R,=0.
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6. Node/saddle/saddle
6a: Node is szable if

P>0, Q<P?4, R,<R<O
or

P<0, @<0, R,<R<O0;
6b: node is unstable if

P<0, Q<P?4, O<R<R,
or

P>0, Q<0, O0<R<R,.

7. Star node/saddle/saddle
7a: Node is stable if

P>0, Q<P?4, R=R, (ie,R<0)
or

P<0, Q0<0, R=R, (ie,R<0);
note, when P=0, R = — (2y3/9)0%
7b: node is unstable if

P<0, Q<P%*4, R=R, (ie,R>0)
or

P>0, 9<0, R=R, (ie,R>0);

note, when P=0, R = + (2/3/9)Q*2

8. Line node-saddie/line node-saddie/no flow
8a: Both line node-saddles are stable if

P>0, 9=0, R=0;
8b: both line node—saddles are unstable if

P<0, 9=0, R=0;

8c: one line node—saddle is stable and the other is unstable if
for all P,

0<0, R=0.

9. Focus/stretching (b> 0)
9a: Focus is stable if
P>0, Q>P?4, R<O,
P>0, Q<P%4, R<R,,
P<0, 9>0, R<PQ,
P<0, Q<0, R<R,;
9b: focus is unstable if
P<0, QO>P%/3, PQ<R<O,
P<0, P’/4<Q<P?/3, R,<R<O0.
P<0, 0<Q<P?3, PQ<R<R,.

10. Focusing/compressing (b <0)

10a: Focus is stable if
P>0, O>P%3, 0<R<PQ,
P>0, P*/4<Q<P?3, O0<R<R,,
P>0, 0<Q<P?3, R,<R<PQ

776 Phys. Fluids A, Vol. 2, No. 5, May 1990

10b: focus is unstable if
P<0, Q>P%/4, R>0,
P<0, Q<P?*4, R>R,,
P>0, 0>0, R<PQ,
P>0, 0<0, R>R,.

11. Focus/no flow

11a: Focus is stable if

P>0, Q>P?%4, R=0;
11b: focus is unstable if

P<0, Q>P?4, R=0.

12. Center

12a: Stretching (b>0) if
P<0, @>0, R=PQ,

12b: compressing (b <0) if
P>0, Q>0, R=PQ,

12¢: no flow (b = 0) if
P=0, O0>0, R=0.

Note the association between the above listing of cases, the
region identifiers in Figs. 8 (a)-8({), and the figure captions.
The procedure for identifying the topology of a given flow is
as follows.

(i) Locate the critical points of the vector field in ques-
tion and evaluate various first partial derivatives at the
points.

(ii) Evaluate P, Q, and R at the critical points. Locate
these coordinates according to the above description of the
boundaries of various domains. The topology of local solu-
tions near each critical point is now knowr.

(iii) The time evolution of the flow topology is followed
by repeating steps (i) and (ii) at each instant and plotting
the resulting trajectories of each critical point in (P,Q,R)
space. Bifurcations in the flow topology occur when critical
points merge, split, or change type as their trajectories cross
the boundaries between topological domains.

Some examples of the topology of the patterns in canoni-
cal form and their location in the P-Q-R space are given in
Fig. 9.
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