
Exact solution of a restricted Euler equation for the velocity 
gradient tensor 

Brian J. Cantwell 
Department ofderonautics and Astronautics, Stanford University, Stanford, California 94305 

(Received 30 July 1991; accepted 14 November 1991) 

The velocity gradient tensor satisfies a nonlinear evolution equation of the form 
(dA,/dt) + A,A, - (l/3) (A,,,+$,,,, )S, = H,, where A, = dui/axj and the tensor Hi/ 
contains terms involving the action of cross derivatives of the pressure field and viscous 
ditfusion of the velocity gradient. The homogeneous case ( Hii = 0) considered previously by 
Vielliefosse [J. Phys. (Paris) 43, 837 ( 1982); Physica A 125, 150 ( 1984) ] is revisited here and 
examined in the context of an exact solution. First the equations are simplified to a linear, 
second-order system (d ‘A,/dt ‘) + (2/3 ) Q(t) A, = 0, where Q(t) is expressed in terms of 
Jacobian elliptic functions. The exact solution in analytical form is then presented providing a 
detailed description of the relationship between initial conditions and the evolution of the 
velocity gradient tensor and associated strain and rotation tensors. The fact that the solution 
satisfies both a linear second-order system and a nonlinear first-order system places certain 
restrictions on the solution path and leads to an asymptotic velocity gradient field with a 
geometry that is largely but not wholly independent of initial conditions and an asymptotic 
vorticity which is proportional to the asymptotic rate of strain. A number of the geometrical 
features of fine-scale motions observed in direct numerical simulations of homogeneous and 
inhomogeneous turbulence are reproduced by the solution of the HI/ = 0 case. 

I. INTRODUCTION 

Dimensional arguments applied to the transport equa- 
tion for turbulent kinetic energy lead to the conclusion’that 
instantaneous velocity gradients in a turbulent flow are larg- 
er than mean gradients by at least a factor of order m 
where R, is a Reynolds number based on integral length and 
velocity scales. Since velocity fluctuations are limited by the 
mean flow, large velocity gradients must occur in microscale 
regions whose characteristic length is much smaller than the 
mean flow. Fluctuations in the instantaneous velocity gradi- 
ent contribute nothing to the mean transport of momentum 
because of the linearity of the viscous stress term in the Na- 
vier-Stokes equations. However, fluctuating gradients con- 
tribute a dominant portion of the kinetic energy dissipation 
which is quadratic in the strain rate. Thus the fine-scale 
structure of a turbulent flow plays a key role in the balance of 
turbulent kinetic energy. For this reason there is currently a 
considerable amount of research directed at gaining a better 
understanding of the instantaneous velocity gradient field. 

It is exceedingly difficult to directly measure instanta- 
neous velocity gradients in the laboratory because of the 
high spatial resolution required. The recent availability of 
direct numerical simulations of turbulent flows at moderate 
Reynolds numbers has provided a new avenue of approach 
that permits the study of all nine components of the velocity 
gradient tensor as well as various other quantities which con- 
tribute to the source term Hq. 

The case Hg = 0 was first studied by Vielliefosse1’2 who 
showed that solutions become singular in a finite time and 
that as time reaches its maximum value there is a tendency 
for the velocity gradient field to approach a state where two 

of the principal rates of strain are positive and one is negative 
and the vorticity vector is aligned with the intermediate prin- 
cipal strain direction. In the earlier study these results were 
deduced by neglecting the nonlinear convective terms in the 
substantial derivative of the velocity gradient tensor. In the 
later study this was corrected and the results were interpret- 
ed to apply in a frame of reference moving with a fluid parti- 
cle. The previous results were reproduced using an asympto- 
tic analysis based in nonorthogonal coordinates aligned with 
the eigenvectors of the velocity gradient tensor. Interest in 
this problem was heightened when it was found by Ashurst 
et ~1.~ that the geometry of fine-scale motions in isotropic 
turbulence forced at low wave number exhibited a number of 
trends in common with the results of Vielliefosse. Since then 
these trends have been observed in several recent studies of 
isotropic turbulence including the work of Vincent and 
Menguzzi” and Ruetsch and Maxey.’ While emphasizing 
the limitations imposed by the assumption Hv = 0, Pumir 
and Siggia’ note similar trends in a numerical study of the 
Euler equations designed to search for the onset of singulari- 
ties. Reference is also made here to the work of Girimaji and 
Pope7 who use the results of direct numerical simulation to 
develop a stochastic model of Hq which is intended to pro- 
vide a realistic treatment of the behavior of the velocity gra- 
dient tensor in isotropic turbulence. 

Recently the same trends have been observed in direct 
simulations of inhomogeneous flows. Chen et al.* and Son- 
dergaard, et al9 studied direct numerical simulations of 
shear flows including incompressible and weakly compress- 
ible time developing mixing layers and wakes and found a 
strong tendency for the.velocity gradient field to approach a 
state where two of the principal rates of strain are positive 
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and one is negative and the vorticity vector is aligned with 
the intermediate principal strain direction. In addition the 
vorticity and strain were found to have comparable magni- 
tude. This tendency was found to be more pronounced as the 
Reynolds number was increased and the alignment of the 
vorticity vector with the intermediate positive strain direc- 
tion was found to be more exact as the sample was condition- 
ed on higher and higher dissipation rates. Thus in spite of the 
severe limitations imposed by the assumption Hii = 0, the 
solutions of the restricted Euler system have some features in 
common with numerical simulations using the full equations 
of motion. In this regard the exact solution of the problem is 
of some interest. The convenience of an exact solution pre- 
cludes the need to work in nonorthogonal coordinates and 
leads to a detailed description of the relationship between 
initial conditions and the evolution of the velocity gradient 
tensor and associated strain and rotation tensors. 

II. PROBLEM FORMULATION 

The Navier-Stokes equations 

au, ~ftlk--= a ki 
-g+v- 

ax, , ax, ax, (1) 

are differentiated with respect to xr leading to 

$(A,) +u,& CA(j) + L4ikA& 
h 

E- i, j = 1,2,3, (2) 

where A, is the velocity gradient tensor, A, = aui/axi. Us- 
ing the incompressibility condition A, = 0, the pressure is 
given by 

Subtracting (3) from (2) with the condition that the trace of 
the pressure term be zero produces 

dA 
-A!- -j- Uk 

dA 
at 2 + AikA, - (AkmAmk) + = Hg, (4) 

k 

where S, is the Kronecker delta and 

+ y a2A, . 
axk axk (5) 

Setting Hv = 0 removes source terms involving spatial de- 
rivatives and the natural setting for the homogeneous prob- 
lem is in terms of a Lagrangian system of coordinates mov- 
ing with a fluid particle. The local gradient field evolves 
according to the following ninth-order system of ordinary 
differential equations: 

d4j 
7 -I- A,Akj - (AkmAmk) ff = 0, 

subject to the incompressibility condition. Equation (6) is a 
matrix Ricatti equation that can be transformed to a linear 
second-order system. Linear gradients in the pressure field 
which might arise due to acceleration of the frame of refer- 
ence will not appear in (5) and so the reduction to (6) re- 

tams the invariance under nonuniform translation of the 
original system ( 1) . Nevertheless, removal of Ho, particu- 
larly the pressure term, is a drastic simplification that effec- 
tively takes away the possibility for the motion of adjacent 
particles to affect one another through the pressure-viscous- 
stress field. In this model all particles in the field evolve inde- 
pendently. 

Evolution equations for the invariants of the velocity 
gradient tensor are derived by forming appropriate products 
with (4) and taking the trace. Retaining Hi/ for the moment, 
transport equations for the double products and triple prod- 
ucts of A, are 

$ (A,A,) + U,A,,A, - + (A,,A,, )A, 

= AinHnj + HinAn/ 
and 

(7) 

$ (AiqAqnA, > + 3AiqAqnA,kAkj - (AnmAmn )A&, 

= AinAnkffkq + AinffnJkj + HitzAtzkAkj* (8) 
The eigenvalues of A, satisfy the characteristic equation 

;13+Pi12+Q;l+R=0 (9) 
and, by the Cayley-Hamilton theorem, the matrix A, satis- 
fies 

AimA,kA, + PA,A, + QAV + RS, = 0. (10) 
For the case of incompressible flow, the invariants of the 
velocity gradient tensor are 

P= -A, =0, Q= -&4tmA,i, 
(11) 

R = - iAi,,,AmkAki. 

Taking the trace of (7) leads to 

$f+3R= -AikHki. 

The Cayley-Hamilton relation (10) is used to reduce 
fourth-order products in (8) to second-order products mul- 
tiplying Q. Taking the trace of the result leads to 

$fQ2= -Ai,,A,,H,,,,. 

The solutions of ( 12) and ( 13) for Hq = 0, which will be 
presented in the next section, are expressed in terms of Jaco- 
bian elliptic functions of the first kind. First we complete the 
simplification of the system (4). 

Differentiating (4) with respect to time leads to 

d’A.. 
L+A,- - dAkj + dAik A 

dt2 dt dt k’ 
I 2dQS =dH,l 

3dt’ dt’ 
(14) 

Substituting (4) back into ( 14) gives 

d 2A.. 
i+A, 

dt2 -AknAnj - f Qakj f Hkj 
> 

- f Qatk + Hik)AQ 

dH.. 
+f(-3R-AA,,,II,,)+-. 

dt 
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Now ( 10) is used to replace triple products leading to the 
following second-order system for A,: 

d2A, dH-- 
-++)A,: =(I 

dt’ 
-AikHkj - Hid/+ dt 

+ -f (-4,,H,,,, 16,. (16) 

With the assumption Hu = 0 for all time, the system ( 16) 
completely decouples and all nine components of the veloc- 
ity gradient tensor satisfy the same linear, second-order Hill 
equation with function Q(t), singular at the two ends of a 
finite interval in time. Equations ( 12) and ( 13) are solved 
for Q and R and then the result for Q is used in ( 16) to solve 
for the various A,. 

III. SOLUTION OF Q VS R 
Elimination of dt between Eqs. ( 12 ) and ( 13 ) and inte- 

gration of the result leads to the family 

yR2+Q3=Ql:,=o (17) 
shown in Fig. 1 (a). The direction arrows in this figure de- 
note increasing time. 

The solution curves (17) have been parametrized in 
terms of the value of Q when R = 0 which will hereafter be 
called QO. Note that Q,, = 0 corresponds to 

R= & ( -&Q3)1’2, Q= - (2JRz)1’3, (18) 
which happens to be the boundary across which the eigen- 
values of the velocity gradient tensor dellned by ( 9 ) change 
from real to complex. It is not obvious that this should be so 
and another choice of the model equation (6) would gener- 
ate a different result. For example the factor (l/3) which 
appears in the fourth term in Eq. (4) is chosen to make the 

trace of Hi, equal to zero and could have been chosen to have 
a different value in which case the functions Q(t) and R (t) 
would not conform to the asymptotes ( 18). For Q,, > 0 the 
eigenvalues of (9) are complex. For Q, < 0 the eigenvalues 
are real and for Q, = 0 the eigenvalues are real and two are 
equal. Solving ( 17) for the third invariant R, 

R=+ --$ (Q,: - Q’)“‘. (19) 

Note that the expression in parentheses is always positive. 
It is important to distinguish between solutions corre- 

sponding to positive, negative, and zero values of Q,. First, 
all variables are nondimensionalized. Let 

q= Qti, r= Rti, ai =A&, T= t/to, (20) 
where to is a characteristic time of the system defined by 

to = l/&Z%&?. (21) 
In the special case where Q, = 0, the nondimensionalization 
is carried out using Qi, the initial value of Q. In this case 

to = l/J-- Qi. (22) 
In dimensionless form the evolution equations ( 12), ( 13), 
and (16) are 

& -= 
dr 

- 3r, 

dr 2 -=- 
dr 3 4?; 

and 

(241 

i, j = 1,2,3, (25) 

and the family ( 17) becomes 

r 

FIG. 1. Trajectories of the invariants of the velocity gradient tensor: (a) dimensioned Q vs R, (b) dimensionless q vs r with schematic diagrams of local 
streamlines. 
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yr”+$==sgn(Qo), 
where 

(26) 

pi- 1; Qo>O 
sgn(Qe) = - 1; 

( ) 

Qo<O . (27) 
0; Qo -0 

The three branches of (26) are shown in Fig. 1 (b) . In addi- 
tion, Fig. 1 (b) schematically depicts solution trajectories 
corresponding to various possible values of q and r. These are 
local streamline patterns as they would be seen by a moving 
observer with the origin of coordinates attached to a fluid 
particle. The patterns are generated by integrating the linear 
system of equations in x, y, and z produced by truncating, at 
the lowest order, a Taylor series expansion of the velocity 
field about the point in question. The coefficients of this ex- 
pansion are the components of the velocity gradient tensor 
evaluated at the point. It is noted that, while given values of q 
and r imply the local flow patterns depicted in Fig. 1 (b), 
there are no implications in these patterns for the tensor Hii 
which requires information about the spatial derivatives of 
A,. 

IV. THE FUNCTIONS Q(T) AND r(~) 
Using (26), Eq. (23) becomes 

s= +-$ [sgn(Q,) -q3]1’2 (r<O), 

& -= --$= [sgn(Q,) -q3]“’ (r>O), 
dr 

(28) 

which is solved in terms of elliptic integrals (Gradshteyn 
and Ryzhik, lo item 3.139 p. 229) : 

Qo >O; - 03 <q< 1, 
-1 

(3)1’4 dq .==F(y,sin$-)=*r; 
(-$-- 1)“2 

Qo<O; - co<q<--1. 
(29) 

The function F is the elliptic integral of the first kind, 
4 

F(q4k) = 
s, 

ds 
0 1 -k2sin2S ’ 

(30) 

and 

- co<q<l; O<a<rr; Qo>O 
cosy= [l +v3+q(7)l/C - 1 +V’5-q(r)l; (31) 

- co <q< - 1; O<y<v; Qo <O. 
The solution (29) accommodates the sign change indicated 
in (28) by the fact that the function q(r) varies smoothly 
near r = 0 for Q. > 0 or *Q. -=z 0. The elliptic integral, F(4,k), 
is continued beyond 4 = VT/~ ‘using the relation 
F(&k) = K + F(qS - v/2,k). Later, when we consider the 

case Q. = 0, which has a discontinuous first derivative near 
r = 0, we will see that the sign change is retained and it is 
necessary to explicitly distinguish between r > 0 and r -C 0 
cases. For the remainder of the paper the following super- 
script notation will be used to distinguish various cases of 
interest: 

(i) A quantity valid for Q, > 0 will be denoted by a 
superscript + . 

(ii) A quantity valid for Q, < 0 will be denoted by a 
superscript - . 

(iii) A quantity valid for Q, = 0 and .r > 0 will be de- 
noted by a superscript 0, > . 

(iv) A quantity valid for Q, = 0 and r < 0 will be de- 
noted by a superscript 0, < . 

(v)AquantityvalidforQ, =Oandr<Oandr>Owill 
be denoted by a superscript 0, < > . 

The relationship between Q! or y and q(r) in (3 1) is inverted 
through the use of Jacobian elliptic functions. We use the 
cosine amplitude function, cn, defined by cos(4) =cn(l;) 
= cn[ (2/3”4)r]. Thus for Q. >O, 

q+ (r) = (1 - v3) - (I+ fi) cn{[2/(3)1’41r] 

* 1 - cn{[2/(3)1’4]r] ,..^. 

The range of variables in (32) is 

- 00 <q+ < 1; O<r< [ (3)1’4/2]4K= 7.285 89. 
(33) 

The quantity K refers to the complete elliptic integral which 
for Q. > 0 is K = F[7~/2, sin(h-/12) ] = 2.768 04. The re- 
sult (32) is plotted in Fig. 2(a). Similarly for Q, < 0, 

q-(r) = - 
(1 + ~3) + (1 - V’J) cn-C[2/(3)“41r1 

1 - cn{[2/(3)1’41r] ’ 
(34) 

where 

- CO <q- < - 1; O<r< [ (3)“4/2]4K= 4.206 54, 
(35) 

and for the case Q,<O, K=F[7r/2,sin(~/l2)] 
= 1.598 14. The result (34) is plotted in Fig. 2(b). 

The functions r + (r) and r - (r) are generated by sub- 
stituting (32) and (34) into (26) and are also shown in Figs. 
2(a) and 2(b). 

V. THE CASE Q. =O 

In this case (23 ) becomes 

?$ = + + ( - 43) 1’2; x0, 
(36) 

r>O. 

Equation (36) is easily integrated to give, on the left branch, 
Q. =O, r<O, 

2 
q’*‘(r) E - 

( 
1 

1 + (l/VP7 > 
; O<r<co, (37) 

and on the right branch, a = 0, r > 0, 
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z 
150. * 

(4 
100.. I 

so. - 

-5 

FIG. 2. Temporal behavior ofqand r: (a) Q,, >O, (b) Q,, ~0, Cc) B = W-CO, and Cd) QO =OJ>O. 

( 
1 

> 

2 c?““(.r) = - * _ (l,d)r ; o<r<a (38) 

where it is again noted that variables in (37) and (38) are 
normalized by to = l/( - Qi)“‘. The solutions (37) and 
(38) are shown in Figs. 2(c) and 2(d) . Notice that in the 
case r > 0 the relation becomes singular when r = ( 3 ) 1’2. In 
all cases, except along the branch Q, = 0, r < 0, the invar- 
iants q(7) and r(~) become singular in a finite time. The 
corresponding solutions for r( 7) are 

r-(r) = -2 
( 

1 
> 

3 

3v3 1+ (l/I& 
; o<r<ca (39) 

and 

r--(r) = 2 ( 
1 

> 

3 

3Ei 1 - (l/V3)7 
; o<r<vg, (40) 

and are also shown in Figs. 2 (c) and 2 (d) . 

VI. DETERMINATION OF a,, 

We now proceed to the solution of Eq. (25) repeated 
here for convenience: 

d”a.. 
--‘+$q(r)a, =O; 

dr2 
i,j = 1,2,3. (41) 

It is convenient to work in terms of the velocity gradient 
tensor, however, any component of a tensor formed from 
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linear combinations of a, such as the strain or rotation ten- 
sor will also satisfy Eq. (41). 

Although (41) appears to be simple, q( 7) is expressed 
in terms of elliptic functions and this complicates the deter- 
mination of exact expressions for au (r) . This problem can be 
circumvented by noting that r(r) is a monotonic function of 
r as can be seen in Fig. 2. Rewriting (41) with r as the inde- 
pendent variable leads to 

-$- sgn(Q,) --$Y’ 
> 

d 2a, da.. ---.---4r” 
dr2 dr 

+$-av -0, 

(42) 
where the dependence of aii on r is subsumed in the variable 
r(r). The results in the remainder of this paper will be pre- 
sented with r as the timelike independent variable. The con- 
version to actual time can always be accomplished using 
(32), (34), and (26). The change of variables = (3ti/2)r 
puts Eq. (42) into the standard form 

[sgn(Q,) --.?I 2 -$S!$ +$a, =0, (43) 

which can be solved in terms of hypergeometric functions. 
The procedure is to convert (43 ) to a hypergeometric equa- 
tion using the change of variables x = 1 - s2 for the case 
Q, > 0 and x = 1 -i- ?Jor the case Q, < 0. The hypergeome- 
tric functions of interest are 2 Fl (a,&,c;z) where 2 Fl is a sin- 
gle valued function in the complex z plane with a cut along 
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the real axis from 1 to + 00. Actually the solution expressed 
in the form of a hypergeometric series is not particularly 
useful and to make progress it is essential to relate the series 
to well-known functions. The functions of interest are as 
follows: 

*FI (+, +;$) =cos[+s+-&)] 

and 

for Q, > 0 and 

zF1 f ,+,f ;z 

> 
=21’3[1 + (f -.)1’2] -“3 

and 

2FI +-+9 =2-1’3[1 + (1 -.z)~‘*]~‘~ 

for Q, < 0 (see Abramowitz and Stegun,” p. 558, items 
151.1, 15.1.13, 15.1.15,and 15.1.17).Allthreecasesofin- 
terest are expressed in terms of simple functions. Solutions of 
(42) are of the form 

a,(r)=Gifi(r>+4Ji(r>, (4) 
where fi is an even function of r and f2 is odd and Cij and D, 
are matrix constants of integration determined by initial 
conditions. It is customary to normalizef, and f, such that 

=o, h(O) =o, 
r=~ =*’ 

(45) 
and this normalization will be used here although it will or- 
dinarily not be the case that the problem is initiated at r = 0. 

The result for Q > 0 is 

f,+(r)=~[(l+$r)“3+(l-~r)1’3] (46) 

and 

f$(r)=-jj-[(1+~r)“3-(1-~r)“3]. (47) 

The solutions (46) and (47) are plotted in Figs. 3 (a) and 
3 (b) . A number of expressions in this paper would be simpli- 
fied by working entirely in terms of s going all the way back 
to Eq. ( 17). Unfortunately, this would deviate from a widely 
accepted form of the third invariant defined essentially by 
Eq. (9). For this reason the factor 3&/2 in front of r will be 
carried along in spite of the inconvenience. At least it can 
serve as a reminder that the properties of a cubic equation 
provide the underlying framework of the problem. For 
a<0 
f~(r)==(1+~r2)1’6cosCftan-‘[(3~/2)r]} 

and 
(48) 

f;(r) ~(2/~)(l+~r2)1’6sin{jtan-‘[(3vV2)r]}. 
(49) 

See Figs. 3 (c) and 3 (d). Finally for Q, = 0, 

fl< >(r) = 2l”[ (3VW2)r] -2’3 (50) 

and 
fl’ ‘(r) = (22’3/3v’3)[(3~/2)r]“3. (51) 

The results (50) and (5 1) are valid for both positive and 
negative values of r as long as the appropriate function of 
time [either (39) or (40) ] is used. The solutions (50) and 
(5 1) are plotted in Figs. 3 (e) and 3 (f). It turns out that the 
normalization (45) generates the Wronskian 

fi (r) ($) - ($)A (f-1 = & 
for all three cases. 

VII. RATE OF STRAIN AND RATE OF ROTATION 
TENSORS 

The discussion cannot be completed without some con- 
sideration of the behavior of the straining and rotational 
parts of the motion. In dimensionless form Eq. (6) is 

The velocity gradient tensor is decomposed into a symmetric 
and antisymmetric part 

ag = i(a, + aji) + $(a, - aji) =sii + wii, (53) 
where sg and wg are the strain-rate and rotation-rate tensors, 
respectively. The invariants of the velocity gradient tensor 
can be written in terms of the invariants of the strain-rate 
and rotation-rate tensors as 

4= -$4mami =q, +4,, 
r = rs - wim wmkski, 

where 

(54) 

4s = - $jmsmi, 
qw = - JWim w,i = wiwi, 

r, = - fsims,,,kskie 
(55) 

The quantity wi is a component of the vorticity vector and 
the relation wij = eiikWk has been used where eiik is the Levi- 
Civita tensor. The quantity qm is usually called the en- 
strophy. Equation (52) can be used to generate transport 
equations for the rate-of-strain tensor sij, and rate-of-rota- 
tion tensor wii. These are 

6 (Su ) + sikskj + wik wkj + f qs, = 0, (56) 

or in terms of the vorticity vector, 

and 

or 

+& (a,) - OkSki = 0. 

Equation (59) is used to generate an evolution equation for 
the enstrophy 

787 Phys. Fluids A, Vol. 4, No. 4, April 1992 Brian J. Cantwell 787 

Downloaded 23 Aug 2011 to 171.64.160.102. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



r 

FIG. 3. Solution functions with independent variable y: (a) Q > 0 even, (b) Q, > 0 odd, (c) Qo ~0 even, (d) a ~0 odd, (e) Q0 = 0 even, (f) Q, = 0 odd. 

dqw ~ = 2wiokskl = 2(r, - r). (60) VIII. INITIAL CONDITIONS 
dr The exact solution determined in Sec. VI permits a di- 

Once q(r), r(r) qw (r), and d qJdr are known, the evolu- rect connection to be made between the initial conditions of 
tion of the strain invariants q, and r, is determined using the velocity gradient field and the asymptotic behavior of the 
(54) and (60). solution. Equation (43) defines a simple, linear initial value 
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problem and normally the constants C, and D, would be 
determined by independently specifying the function au and 
its derivative with respect to r (or 7) at some initial time. Our 
case differs from the usual situation in that a specification of 
the initial value of a!, also specifies the initial time derivative 
through Eq. (52). The constants of integration are given by 

c _ &(dWdr), - (Aav/dr)f, (8 
’ -f, (3 (df,/dr)i - (dfl/dr)& (8 

-4jW )l 2(gi + (-+ (aikiikj) +  q(p)6, )a?), 
(61) 

D, = (b/dr)f, (3 - ii, (df, /dr)> 
’ h VI (df,/W, - (df, /dr)&. (?) 

- ‘( (62) 

where ? is the initial value of r, ci, refers to chosen initial *) 
values of the components of aii, and da,/dr is the corre- 
sponding initial derivative computed from 

aaia,/ -= -- 
dr 

Ciiikiikj) + q(F)s(j (63) 

Using (63) and the given initial values b,, the constants Ci/ 
and D, are exactly defined. 

Not only is the initial time derivative set by the choice of 
fiir but so too is t>e initial time! This comes about as follows. 
First, values of A, are specified. This determines initial val- 
ues of Q and R and the characteristic time parameter Q, 
through Eq. ( 17). This in turn fixes the initial value $, and, 
through ( 29 > , the initial dimensionless time ?, which will lie 
in one of the ranges (33) or (35). The system then evolves 
from this state according to (32), (34), (37) or (38) and 
(44)-(51) depending on QO. The fact that F is predeter- 
mined is not inconsistent with, say, a numerical solution of 
(6) which begins at t = 0 since the functions q and r can 
always be shifted by a constant phase. 

IX. UNIVERSAL STRUCTURE OF C, AND D,, 
The problem being considered is somewhat unusual in 

that the solution (44) of the linear second-order problem 
(41) must also satisfy the original, nonlinear, first-order sys- 
tem (52). The nonlinearity of (52) places certain restric- 
tions on C, and D, which we shall now explore. First rewrite 
(52) with time replaced by r, 

27 
w(a) -4r 

2 20 da, 
> - + aikakj dr 

+f sgn(Q,) -$-r2 
> 

l/3 6, = 0. 

Substituting (44), 

(64) 

2 
-i- 

sgn(Q,) -fr2 

f lciA (r) +Dilf,(r)] [CkJ, (r) + Dkjf(r)] 

-I$- sgn(Q,) -yr2 
> 

l/3 

6, = 0. (65) 

The various solutions for fr (r) and f, (r), (46)-( 51), are 
substituted in turn into (65). When this is done the resulting 
expression for each case can be sorted into three groups cor- 
responding to three independent functions. The coefficients 
of these functions involve various combinations of C, and 
D, that must equal zero. The case Q, = 0 is the simplest and 
can be used to illustrate the procedure. Substitute (50) and 
(51) into (65) to give 
4.r -4/3(C. C ) + 2-“3r2’3 lk kj 

X [2D,D, + 3(2)‘“Dg.-- 9(2)2/36v] 

+ 24’3r -1’3[DikCk, + cikDk, - 3(2)‘“c,] = 0. 
(66) d 

In order for Eq. (66) to be satisfied for all r, the coefficients 
of each of the independent functions of r must be zero. A 
similar equation can be generated for each of the other two 
cases leading to similar conditions on the initial condition 
matrices CV and D,. These have been determined as follows. 
Case l--Q > 0: 

3C$C,f -4DLD; +4$,=0, (67) 
2Di3;D,: + D$- -6, =0, (68) 
D,;tC; +CgD,$ -C; =0, (69) 

with invariants (PC+,QC+,RC+ I= (O,l,O) and 
(&,+,Q,+,R,+) = (0, - $+) [cf. the definitions of P, Q, 
and R in (ll)]. 
Case 2-Q,, < 0: 

3C,C,y +4D,D& -48, =0, (70) 
2D,Dc - 0; -6, =O, (71) 
Di;C~ +C,D, +Cij =0, (72) 

with invariants (P,-,Q,-,R,-) = (0, - 1,0) and 
(P, - ,QD - 3, - 1 = (0, - $&I. 
Case 3-Qe = 0: 

cykcg = 0, (73) 
2@,D;, + 3(2)‘“D; - 9(2)2’36, = 0, (74) 
DvkCzj + Co,D& - 3(2)“3C; = 0, (75) 

with invariants (PCO,QCO,RCcj) = (O,O,O) and (P,,,, 
Qp,R,u) = [0, - 27/(2)4’3,y]. 

The values of the invariants are generated by making use 
of the Cayley-Hamilton theorem and taking the appropriate 
traces in the above relationships. It can be easily shown that, 
in all cases, the matrices C, and D, commute. 

It is important to recognize that the relations (67)-( 75) 
are not imposed on the problem but are automatically satis- 
fied by any set of C, and D, generated by (61) and (62). 
Thus, even though the choice of initial values of A, is com- 
pletely arbitrary subject to the incompressibility condition, 
the associated matrices C, and D, generated from ( 6 1) and 
(62) are not arbitrary. This is a consequence of the basic 

789 Phys. Fluids A, Vol. 4, No. 4, April 1992 Brian J. Cantwell 789 

Downloaded 23 Aug 2011 to 171.64.160.102. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



nonlinearity of the system and the fact that an initial choice 
ofA, has associated with it a particular initial value 9 that in 
turn dictates the action of the solution functions fr and f2 
which appear in ( 6 1) and ( 62). In contrast to a simple linear 
system, the coefficients and function values in (6 1) and (62) 
are coupled and this coupling generates solution matrices C, 
and D, which have a universal structure. 

X. ASYMPTOTIC BEHAVIOR OF THE VORTICITY AND 
RATE OF STRAIN 

The results of the previous section can be used to pro- 
vide a detailed description of the asymptotic behavior of the 
velocity gradient tensor. Here it is necessary to distinguish 
four cases: Q,, > 0; Q, < 0; Q, = O,r-> 0; and Q,, = 0,r < 0. 
The first three behave as 

lim a$ (r) = (2*‘3D$ )r 1’3, 
r-ca 

lim a;(r) = [ (3/24’3)“C; + ( 1/21’3)Df ]r 1’3, (76) r-m 

lim a:>(r) = [ (21’3/3)D$z]r1’3. 
r-m 
All three cases become singular as the system evolves toward 
the maximum time. At first sight it would appear from (76) 
that the geometry of the limiting solution could be quite dif- 
ferent depending on whether Q0 is positive, negative, or zero 
and depending on the detailed structure of the matrices C, 
and Dii. However, it was seen in the previous section that 
certain properties of these matrices are universal. That is the 
issue we want to now explore. What aspects of the asympto- 
tic behavior are universal and what information from the 
initial specification of A, penetrates to the asymptotic state? 

The asymptotic limit for the left branch Q,, = O,r<O 
which evolves for infinite time is 

ljy G<(r) = ($C$<)r -2’3. (77) 

Even though Q and R go to zero for this case, the individual 
components of the velocity gradient tensor still become sin- 
gular. The evolution of the invariants of the strain and rota- 
tion tensors can be easily determined from (54) and (55) 
and nothing further will be said about this case. 

The algebraic equations governing C, and D, may be 
used to explore (76) more fully. Equation (74) is an uncou- 
pled equation for the components of ( 21’3/3)D >‘. Equa- 
tions (70)-( 72) can be rearranged to construct an equation 
for the sum ( 3/24’3) C; + ( 1/21’3) D i/ , which is identical 
to (74). Similarly, (68) can be rearranged to form the same 
equation for 22’3D $ . So the asymptotic behavior of all three 
cases in (76) is completely described by solutions of the gen- 
eric equation 

KikKkj + ( 1/21’3)KU - 2r”& = 0, (78) 
where KU = 22f3D z if Q, >O, KU = (3/24’3)C< 
+ (1/21’3)Di/ if Qc, ~0, and Kg = (2”3/3)D:z if 

Q0 =O. The invariants of KU are (PK,QK,RR) 
= (0, - 3/22’3, 1) which lies on the boundary ( 18). Thus 

the eigenvalues of KG are real with two equal. The result 
(78) can also be easily obtained by substituting 

lim a,/(r) = Ktir In 
r-em 

into (64). In the limit r-t CO 

- r4/3 da, 3 
21/S - + aikakj - 2’/3r 2n6V 

dr 

=r 2’3 

(79) 

The matrix Ki/ can be decomposed into a symmetric and an 
antisymmetric part 

K,=$$ Wi,. (81) 
The matrices S, and W, will be referred to as the asymptotic 
rate of strain and rate of rotation although they differ from 
the true asymptotic rates by a factor of r 1’3. Substituting 
(8 1) into (78) and transforming to coordinates aligned with 
the principal axes of Sii so that 

[ 

4, fi3 --2 

Kg= --3 s,, fil , (82) 
fz2 -fb --&I -s22 1 

leads to the following independent algebraic relations for the 
components of K,: 
c&n, =n,n, =i-12iL3 =o, (83) 

l - - +s22 
21/3 &? 

= ( 
1 F++ ++2, 

> 
at, =a 

(84) 
- 2”3 + (1/2*‘3)s,, + Sf, - cn: + n: 1 

= - 21’3 + (1/2l’3)S,, + s:, - (a: + a:) = 0, 

(85) 
- 2”3 - (l/21/3) (S,, + S,) 

+ (S,, +S,)‘- (a: +a:) =o, (86) 

where fir , a,, and a3 are the components of W, referred to 
principal axes of strain and S,, and S,, are the principal 
strains. From (83) we see that we need only consider two 
possible cases, either all components of the vorticity are zero 
or any two are zero. In the case where all three components 
are zero the principal rates of strain determined from (85) 
and (86) are uniquely determined 

6 ,s22,s33 ) = & ,&, - 6) * 
In the case where one vorticity component is nonzero, say 
ar, then S,, = 1/21’3 and 

nf = S& + ( 1/21’3)s2, - 21’3. (87) 
The positivity of a: requires that SZ2 > 1/2”3. Prus the 
asymptotic configuration in principalaxes ofstrain isone with 
two positive strain rates and the vorticity exactly aligned with 
the intermediate positive strain. Moreover, for S,, somewhat 
larger than l/2 “3 Eq. (87) is approximately @ zS:, . 
Equation (87) is equivalent to the result 

QwK = - jW, Wki = fiifii - Qs, - (3/22’3), (88) 
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which can be generated directly from (78) [cf. the invariant 
definitions in ( 11) 1. All of these features just discussed are 
observed in the studies of Chen et aL8 and Sondergaard et 
aL9 when the observations are conditioned on regions of 
high dissipation. Similar relations for the other invariants of 
S, and W, can be generated as 

R, = W21’3)&,K + 1 (89) 

and 

Wik Wk,, Wpli = R, - R, = ( 1/2”3)Q,* (90) 
The geometry of the asymptotic state is completely deter- 
mined by QWK a single scalar function of initial conditions. 

XI. EXPLICIT CONNECTION BETWEEN THE 
ASYMPTOTIC STATE AND INITIAL CONDITIONS 

It was noted by Chen et aZ.’ that, in direct simulations of 
a time developing mixing layer in the neighborhood of re- 
gions of high dissipation, that the second and third invar- 
iants of the rate-of-strain tensor were related by 

qs/(yr:Y3 = -k, (91) 

where k is a constant that appears to be independent of initial 
conditions equal to approximately 1.4. This corresponds 
closely to the 3, 1, - 4 ratio of principal strains observed in 
homogeneous turbulence by Ashurst et al3 The asymptotic 
behavior of the present model gives 

g + = 22/3 f;‘, g- =-$(f; -+f;), 

(95) 

Substituting (95) into (94) and using (46)-(51) leads to 
the following expressions for the asymptotic vorticity: 

ai+ = t3P$,+ (T,+& + G,3,i), (96) 
Cl?’ = (1/22’3)~*‘[3(2)“3@& +i&B,,], (97) 

and 

(98) 
Using (96)-(98) Q, can be written in terms of the initial 
components of the vorticity vector and rate of strain as 

Q& = (9/22’3)(~:.)2[(~2f)2~ici + (2~,+)i!&$& 

+ G$JnJki], (99) 

Q x = (1/24’3)(~z)2{9(2)2’3(~>)2~i~i 

+ [6(2)“3j-$>]&&&i + i$&,$&3, (100) 
and 

[ (22’3/3)QwK + 11 
~~1,2’,3~Q,+ 1]2,3 . 

In this case the ratio is connected to the initial conditions 
through the quantity QWzK. Equation (92) is shown plotted 
in Fig. 4 which indicates that relatively large values of Q,; 
on the order of ten or so are required to reproduce the ob- 
served value of k. To explore this further we return to (6 1) 
and (62) and write an equation for K,: 

e. 
Kc = - b,@$ - 

( 
$ @,a,) + gs, 

> 
8, (93) 

with the antisymmetric part (not necessarily resolved in 
principal axes of strain) given by 

(94) 

where the “ n ” denotes an initial value and 

Q, 

FIG. 4. Dependence of asymptotic strain invariants on asymptotic vorti- 
city. 

3 -- -- f >I 2$,i;,+1 K 3- +Ij- 
z2 ‘I 4 ’ z2 > 
3 3 *) - -- - 2 r.k ( f -y 2 >I( 3, 33; 

2 
> @jkgki 

+ 3, -+A 
( > 

2A h Wp,,3n~~ki . 
I 

(101) 

The magnitude of fiL, determines the enstrophy of the final 
state and, through relations (88) and (89), the complete 
topological state of the asymptotic solution. The asymptotic 
state for any given set of initial conditions is now easily deter- 
mined. 

Figure 5 shows four representative cases for increasing 
values of QWK. The dashed lines in these figures represent the 
three branches of the solution shown in Fig. 1 (b) and the 
boxed quantities are the dimensioned initial values of the 
velocity gradient tensor referred to initial principal axes of 
strain. The value of the asymptotic vorticity divided by r 2’3, 
Q WK, computed from (99)-( lOl), is also shown boxed. The 
evolution of the flow is depicted in the left-hand plot as a 
function of r and in the right-hand plot qs is shown as a 
function of r,. For each curve the initial condition is indicat- 
ed in the form of a solid dot. 

In Fig. 5(a) the flow is initially in a state of pure rota- 
tion. This leads to initial values P = 0, f ;’ (7) = 0 and from 
(99) it can be seen that the asymptotic vorticity must decay 
to zero. As the vorticity decays the strain rate grows and the 
flow eventually evolves to a state of axisymmetric strain. In 
Fig. 5 (b) the flow is initiated as a state of plain strain with 
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-3 I 

4: 

4s 
i 

Qw, = 10.5 

2. (d) 

FIG. 5. Evolution of tensor invariants for several selected initial conditions. 

two nonzero components of vorticity. In this case the vorti- 
city first grows, then decays, and then grows asymptotically 
with Qw, = 0.56. The strain invariants execute a small loop 
and then approach the boundary ( 18). The value of Q, is 
relatively small and from Eq. (92) and Fig. 4 one can con- 
clude that the asymptotic strain invariants will fall just 
slightly below the dashed boundary in the right-hand plot in 
Fig. 5(b). Indeed the difference is indistinguishable in this 

figure. In Fig. 5 (c) the flow is initiated in a state of axisv’m- 
metric compression with all three vorticity components non- 
zero. The asymptotic vorticity grows rapidly and the strain 
invariants asymptote to a nonaxisymmetric state with two 
positive strains and one negative strain. 

Figure 5(d) shows a case where the initial conditions 
are chosen to generate an asymptotic state which approxi- 
mates that observed in simulations ( Qw, = 10.5). The flow 
begins in a state with two negative and one positive principal 
strains and all three components of the vorticity nonzero. In 
all the cases depicted in Fig. 5, the asymptotic state is ap- 
proached rather quickly with the qualitative behavior of the 
asymptotic solution apparent by the time r has reached one. 

XII. CONCLUSIONS 
To a large degree the exact theory presented here con- 

firms the results of the asymptotic analysis of Vieillefosse. 
The main new results are the solutions (32), (34), and 
(46)-(51) and the treatment of the initial conditions in 
Sets. IX and X culminating in the matrix equation (78) 
which defines the universal features of the asymptotic state. 
It is seen that for any initial condition other than R ~0, 
Q0 = 0 the velocity gradient tensor evolves to a geometry 
with two positive principal rates of strain and the vorticity 
aligned with the intermediate positive strain rate. This result 
is interesting in that it suggests that, in spite of all the objec- 
tions which can be raised against the assumption Hu = 0, 
this case may in fact provide a useful model of some aspects 
of the mechanism by which the geometry of fine-scale mo- 
tions in turbulence can evolve to a universal state. The close 
correspondence between the geometry predicted by the the- 
ory and the geometry observed in direct numerical simula- 
tions adds support to this conclusion. What is still entirely 
open is the question of how the balance of terms implied by 
(6) can have any relevance at all to real flows and at what 
scale of motion it might apply. It cannot apply at large scales 
where pressure-driven eddy interactions are important and 
it would not be expected to apply at the smallest scales where 
viscosity is important and where the velocity gradients are 
limited by viscous diffusion. Indeed for all typical free shear 
flows the gradients associated with turbulent microscales de- 
crease with time when referred to a Lagrangian observer. 
The only option left where (6) might apply is the inertial 
subrange. Somehow the relatively inviscid motions of the 
inertial subrange must be matched to the strongly viscous 
motions at the Kolmogorov microscale in a way that leaves 
the basic geometry of the flow invariant. To establish how 
this might occur, much more information is required in a 
variety of flows of the source term Hg and associated prod- 
ucts withA, which arise in (12), (13), and (16). 
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