
COMBUSTION AND FLAME 82: 231-234 (1990) 231 

BRIEF COMMUNICATIONS 

Self-Similar Diffusion Flame 

S. MAHALINGAM,* J. H. FERZIGER, and B. J. CANTWELL 

Thermosciences Division, Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 

In this communication, we develop a self-similar suits are valid in a momentum-dominated regime 
solution for a limiting case of a coaxial jet dif- where flow instabilities are assumed to be absent. 
fusion flame considered by Burke and Schumann The thin flame approximation is made so that no 
[1]. Simple closed form expressions for both the penetration of fuel or oxidizer across the infinites- 
flame height and shape are obtained and compared imally thin flame surface occurs. In general, re- 
with the classical solution. The notation and ter- action zone broadening occurs due to effects of 
minology used closely follows Williams [2]. In the equilibrium dissociation and finite rate chemistry. 
Burke-Schumann problem, fuel is fed through an When all diffusivities are equal, the former situa- 
inner tube while oxidizer flows through an outer tion can be handled relatively easily as discussed 
coaxial tube. A steady flame is established at the by Williams [2]. With simple finite rate kinetics, 
mouth of the inner tube. With excess oxidizer, the perturbation methods such as that due to Lififin 
flame ends on the axis and is called overventilated, may be used. 
while with excess fuel, it ends on the wall and is Single-step, irreversible, fast chemistry between 
said to be underventilated. In this note, only the fuel (F) and oxidizer (O) reacting to yield a prod- 
former case is considered and a self-similar solu- uct (P) is assumed: 
tion is developed for the case in which the radius 
of the outer tube becomes infinite while that of the pFF + poO ~ ppP, 
inner tube approaches zero. Like all self-similar where the ~i are the stoichiometric coefficients. 
solutions, the present one is useful in the far field, Let YF,0 and Yo,o represent the fuel and oxidizer 
where initial/upstream conditions, no matter how mass fractions at the upstream boundary. The fol- 
complicated, become less important. Cylindrical lowing quantities are defined: 
(r,  Z) coordinates, are adopted, r being the ra- 
dial coordinate and z the vertical or streamwise YF Yo 
coordinate; the flame is assumed to remain ax- ~F =-- WF~F' t~O ---- WO~O' 
isymmetric. 

As in Williams [2], radiation, diffusion due to ~ = cto - a p ,  (1) 
pressure gradients, and the Soret and Dufour ef- 
fects are all assumed negligible. The diffusivities where Yp and Yo are the fuel and oxidizer mass 
of all species and temperature are assumed equal, fractions, respectively, and WF and Wo are their 
Bulk viscosity is neglected. The Mach number is respective molecular weights. The quantity fl is the 
low and axial diffusion is neglected. Effects of coupling function in the Schvab-Zeldovich formu- 
buoyancy are neglected and thus the present re- lation. Under the stated assumptions, /3 is gov- 

erned by the conserved scalar equation 
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where p is the density, Or and vz are the radial and 2. It is also assumed that pD --- const. 

streamwise velocity components, respectively, and Williams [2] presents an excellent discussion of 
D is the diffusion coefficient. Note that B ranges the validity of these additional assumptions. Note 

from - Y o , o / W o v o  to YF,O/WFPF. that the integral constraint in Eq. 6 is valid re- 
Consider the limiting case in which the radius 

of the outer tube becomes infinite while that of the gardless of these assumptions. It allows definition 
of a length scale, by which r and z may be made 

inner tube approaches zero. This means that there 
dimensionless: 

is an infinitesimally thin jet of fuel, with finite 
mass flux, issuing into an infinite stream of oxi- / B  r z 
dizer. For such a case one can expect a self-similar L = Vp--~0 , ~ =-- ~ ,  2 = L" (8) 
solution to Eq. 2. Since/3 .decays asymptotically 
to - Yo, o/Wovo, rather than to zero in the far The scalar 4, is normalized by 80: 
field, it is convenient to define 4, 

--- fl0" (9) 
4, -- t~ +/30, (3) 

A Peclet number is defined as follows: 
where (po)L 

FOl - • (lO) 
13o =- Yo,o (4) (pD) 

Wovo'  With the stated assumptions and dropping the 
so that 4, goes to zero in the far field. In the thin overbars henceforth, Eq. 5 is written in dimen- 
flame approximation, the surface B = 0 or 4, =/30 sionless form as 
identifies the flame surface. Clearly 4, also satisfies 
Eq. 2. Thus, Pey 04, 1 0 04, 

Oz r ~-~r ~-~ = O. (11) 

1 0 0 1 0 ~ 0 4 ,  
r -~ r pvr4, + c,z-~s--Pvz4, = r-ff~rPU~r. (5) Note that 0 _< 4, _< 1 +YF,o/WF~'FBO and 4, = 1 

at the flame. The integral constraint, Equation 6 

Multiplying Eq. 5 by r dr dO and integrating over becomes 
0 < r < c~ and 0 < 0 < 21r and noting that Or f ~  
vanishes at the boundaries gives the integral con- 2~r]o 4,r dr = 1. (12) 
straint 

The following similarity variable is introduced: 

27r OVz4,r dr = const - B, (6) Pef r 2 
- , (13)  

z 
which implies that the flux of  4, is a constant, in- 

and a solution to 4, of the form dependent of z. The boundary conditions are 

04, 04, --, 0 as r --* c~. 4,(r, Z) = Az'~fQi) (14) 

0-~ < <x~ as r --, 0; r~--~ is assumed. Substituting Eq. 14 into Eq. 11 yields 
(7) the ordinary differential equation for f :  

The following additional assumptions are made: 4y f "  + (4 + ~?)f~ - x f  = 0. (15) 

1. The flow is one dimensional in the sense that Substitution of F_xl. 14 into Eq. 12 allows determi- 
pv : const everywhere. Here v is the velocity nation of K and A. Thus, 
magnitude in the z direction (Or = 0). This 

lrAz'C+l f ~  d is a severe restriction and is justified only by ~ ]o fO1) ~ = 1. (16) 
the resulting simplification of the problem. 
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Fig. 1. Self similar diffusion flame shapes for Per -- 12, 24. Length scale used is the flame 
height at each Peclet number. 

Since the above integral is independent of z, flame height on the Peclet number is explicitly 
demonstrated by Eq. 21. As expected, the dimen- 

K : -1 ,  A = Pef (17) sional flame height decreases with increasing mass 
~0 ~ fraction of the oxidizer in the far field. From Eq. 

~r f(rl)d~7 20, the coordinates ( rw ,  Zw),  corresponding to 
the maximum half-width of the flame are 

The solution of Eq. 15 subject to the boundary 
conditions is 1 ZH 

rw = x / ~ '  zw = - - ,  (22) 

( 4 )  e 
f(~/) = exp - . (18) where e is the base of the natural logarithm. 
Thus, In order to plot flame shapes, it is convenient 

to normalize on the flame height: 

Pef ( Pef r 2 
q~(r, z) = ~-~ exp \ 4z } " (19) r* z* 

rp ==_ , Zp =- • (23) 
ZH ZH 

In the flame sheet approximation, ~ --- 1 corre- 
sponds to the flame surface. Eq. 19 then gives In terms of (rp, zp),  Eq. 20 is written as 
a simple expression for the locus of the flame 
(r*, z*): 4 / 

rp : ~fef ffTr In Zp-Z~ (24) 

Z~p_~_f ( Per "~ 
r* = 2 In \41rz*}" (20) In Fig. 1, flame shapes are plotted for two dif- 

ferent values of Per. As Pe/ increases, the flame 
From Eq. 20, the flame height zt-t is obtained; it becomes thinner in these coordinates. 
is the location at which the stoichiometric surface In Fig. 2, the self-similar flame shape is corn- 
intersects the axis: pared with the classical Burke-Schumann solution 

Pef [2] for two different Peclet numbers. Using the 
ZH = 4~r " (21) definition of the flux B (the integration being from 

r -- 0 to the outer tube radius) and the length scale 
The linear dependence of the nondimensional L, an effective P e f  for the classical solution is ob- 
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Fig. 2. Burke-Schumann [2] and self similar flame. Only the downstream portion of the 
Burke-Schumann flame is drawn for emphasis. For specified Pete/ for the classical solution, 
equivalent Peg is given. 

tained: The expression for the flame shape developed 
in this note is simpler than the series solution 

a s  

Pef = -~riV ~r 1 + WFV~oYF' 0 , (25) the solution for ro ~ o~ given by Williams [2] in 
terms of integrals of Bessel functions. It is a good 

where ri is the inner tube radius. The follow- approximation to the classical solution in the far 
ing values were assumed for the classical solution: field. The solution given here has fewer parame- 
YF, 0/WF VF/$0 ---- 2, the inner-to-outer tube radius ters and gives closed form analytical values for all 
ratio ri/ro = 1 and the Peclet number based on the key flame shape quantities. 
the outer tube radius, Peref = oro/D = 100 and 
200. As expected, the agreement improves fur- 
ther downstream. Both the flame shapes compare REFERENCES 
very well for higher Peclet numbers, for which the 
flame becomes thinner. For small Peclet numbers, 1. Burke, S. P., and Schumann, T. E. W., Indust. Eng. 

Chem. 20:998-1004 (1928). 
the agreement improves as ri/ro is decreased. 2. Williams, F. A., Combustion Theory, 2nd ed., Benjamin 
Both flames exhibit linear dependence of flame Cummings, Menlo Park, CA, 1985. 
height on Peclet number. 3. Lift,in, A., Acta Astronaut. 1:1007-1039 (1974). 


