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Abstract. This paper is concerned with the geometry of flow patterns in the classical problem of an impulsely-
started, incompressible, axisymmetric, laminar jet generated by a point force. The second and third invariants of
the velocity gradient tensor, evaluated at critical points in the jet, describe the fundamental dependence of the
flow on the jet Reynolds number. As the Reynolds number is increased from zero to infinity, the critical points
follow elliptic curves in the space of invariants and rational roots occur at bifurcation points in this space. The
corresponding invariants of the acceleration gradient tensor trace out a trajectory with infinitely many, densely
spaced rational roots. The results provide new insight into the viscous and pressure forces which act in the jet and
the balance between strain and rotation which leads to the onset of a starting vortex.
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1. Introduction

Direct numerical simulations of turbulent flow provide an opportunity to study the physics of
fluid flow at unprecedented levels of detail. Instantaneous vector fields of velocity, pressure
gradient, temperature gradient and concentration gradient can be readily accessed. However
the complexity of these fields is such that efficient, reference frame independent, means are
required in order to identify significant features without having to visualize the entire data
set. This has led to the development of a hybrid physical-statistical method [1–4] based on
an approach where the flow is studied in the space of invariants of the gradient tensor of the
flow variable in question (velocity gradient, pressure gradient-gradient, temperature gradient-
gradient and concentration gradient-gradient). In a three-dimensional flow the eigenvalues of
the gradient tensor satisfy a cubic equation

λ3+ Pλ2+Qλ+ R = 0, (1)

whereP ,Q andR are the invariants. The eigenvalues change from real to complex across the
surface where the cubic discriminant,
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changes sign. The invariants determine the local structure of the flow in the neighborhood of
the point where the gradient tensor is evaluated. When the invariants are determined over the
whole flow, as in a typical computational field, the entire topological structure of the vector
field is defined.
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The prototypical example of this method is the unsteady laminar round jet discussed in
[5]. The round jet is self-similar in time allowing the global flow structure to be determined
just from a consideration of isolated critical points in the vector field of particle paths in
similarity coordinates [6–10]. The present paper expands on the discussion of the algebraic
characteristics of the velocity gradient tensor evaluated at the critical points of the jet and
depicted in figures 1–3 of [5]. In particular, I would like to describe the relationship between
the invariants of the velocity gradient tensor and elliptic curves.

2. Flow Patterns in the Round Jet Depicted in Reference [5]

Figures 1–3 in [5] (see also [7–9] and figures 4–6 in [7]) depict a computation of the flow
produced by an impulsively started laminar round jet at three Reynolds numbers. Each figure
shows contours of the stream function and the vorticity. Figures 1c–3c show particle paths
in similarity coordinates. Figure 3c shows fluid being stretched at an on-axis saddle and then
entrained into a stable focus of particle paths. Intuition would suggest that such a roll-up of
fluid should occur together with a concentration of the vorticity. In fact, the stable focus occurs
in a region where the vorticity decays smoothly and monotonically as can be seen in figure 3b.
There is no local concentration of vorticity anywhere in the flow but at the source of the jet.
So how does the roll-up depicted in figures 2 and 3 of [5] occur?

3. The Space of Invariants

The answer has to do with the balance between rotation and strain implicit in the invariants
Q andR. In Figures 1a and 1b of the present paper the Reynolds number dependence of
the flow is shown in the space of invariants of the velocity gradient tensor evaluated at the
critical points of the jet. The correspondence between local patterns in the vector field and
the invariants is discussed at length in [2] and especially [11]. Actually two vector fields need
to be considered; the velocity field and the vector field of particle paths. The problem of the
unsteady round jet is invariant under the one-parameter dilation group,

xi = eaxi; t = e2at

ui = e−aui; p

ρ
= e−2a p

ρ

 . (3)

Invariants of this group form the similarity variables of the solution,

ui = ν1/2t−1/2Ui(ξ)

p

ρ
= νt−1P(ξ)

ξ j = xj / (νt)1/2


. (4)

The Reynolds number is

Re =
√
J/ρ

ν
, (5)
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whereJ is the force which creates the jet. TheUi and P are self-similar velocities and
kinematic pressure. The similarity form of the velocity gradient tensor is

aij =
∂ui

∂xj
= 1

t

∂U i

∂ξ j
= 1

t
Aij (ξ). (6)

Note that the value of the dimensioned velocity gradient tensor does not depend onJ/ρ or ν.
Therefore an observer moving at a fixedξ can use the current value of the velocity gradient as
a clock to determine the age of the flow regardless of the flow Reynolds number. The particle
path equations,

dxi

dt
= ui(x, t), (7)

when transformed to similarity variables become

dξ i

dτ
= Ui(ξ ;Re)− 1

2
ξ i, (8)

whereτ = ln t . The vector field depicted in figures 1c–3c of [5] is the right-hand side of
(8). Note that these patterns, like the gradient tensor itself, do not depend on the observer as
discussed in [5].

Critical points occur where the right-hand side of (8) is equal to zero,

Ui(ξc;Re)− 1

2
ξ ic = 0. (9)

The solution for the jet is expanded in a Taylor series near the critical points and the gradient
tensor of particle paths is determined. When the invariants of

Mi
j = Aij −

1

2
δij , (10)

are evaluated at various Reynolds numbers the result is the trajectories of the critical points
shown in Figures 1a and 1b. The arrows in these figures indicate the direction of increasing
Reynolds number. The first invariants ofA andM are

PM = 3

2
; PA = 0. (11)

The second and third invariants(Q,R) are expressed in terms of matrix elements,
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Figure 1. Critical point trajectories in the round jet. (a) The trajectory inQARA at variousRe. (b) The same
trajectory inQMRM .

It is worth noting that quite often the values of the invariants can be determined without a
complete knowledge of the solution [9]. The invariants ofM andA are related to one another
as follows

QM = QA + 3

4

RM = RA + 1

2
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8

 . (14)

The discriminant ofA is
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4
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and the discriminant ofM is
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The latter relationship is Equation (2) withP = 3/2 . If D > 0 the eigenvalues are complex
and vorticity dominates strain. IfD < 0 the eigenvalues are real and strain dominates vorticity.
A complete road map to(P,Q,R) space is given in [11].

As the Reynolds number is increased from zero to infinity the on-axis critical point moves
from ξc → 0 to ξc → ∞. At these limits the invariants of the on-axis critical point are as
indicated in Figure 1. See Section 5 for the coordinates ofa, b, c andd. At a first bifurcation
Reynolds number of 5.5,(RM,QM) = (0,0), the on-axis critical point changes from a stable
node [5, figure 1c and 7, figure 4a] to a saddle and an off-axis stable node [5, figure 2c and
7, figure 4b]. At a second bifurcation Reynolds number of 7.545,(RM,QM) = (0,9/16), the
off-axis node becomes a stable focus [5, figure 3c and 7, figure 5]. The axisymmetry of the
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Figure 2. Construction used to find rational roots on a contour of constantD.

flow can be used to show that the on-axis critical point must remain on the curveDA = 0;
DM = 0 while the off-axis critical point follows the straight line

RA + 1

2
QA + 1

8
= 0; RM = 0. (17)

Note that the vector field of particle paths near the off-axis critical point is intrinsically two-
dimensional whereas the velocity vector field is not.

4. Elliptic Curves

It is interesting to note the prevalence of rational fractions at the various intersections of the
invariant trajectories shown in Figure 1. Note also the mixture of quadratic and cubic terms in
the expressions for the discriminant, (15) and (16). For constant discriminant, these equations
belong to a class of functions called elliptic curves. The complete classification of cubics, of
which elliptic curves is a subset, was described by Isaac Newton in 1695. Elliptic curves have
the property that there is a unique tangent everywhere on the curve, henceD = 0 is excluded,
and they are parameterized by elliptic functions (see, for example, [15]). The curveD = 0,
which has a cusp at the origin, is parameterized by a rational function as shown in [15]. The
most familiar example of an elliptic function comes up in the integral for the arc length of an
ellipse although the ellipse itself is not an elliptic curve, it too being parameterized by rational
functions.

Elliptic curves come up, for example, in the study of the motions which can be executed
by mechanical linkages. Some examples can be found in the classic text by Hunt [12]. They
are also of intrinsic mathematical interest and an introductory discussion can be found in the
article by Ribet and Hayes [13]. One of the interesting properties of these functions is that
a straight line tangent to a rational root intersects the function at another rational root (this
works forD = 0 too, cf. the intersections of (14), (15) and (16) in Figures 1a and 1b).

This fact can be exploited to create a geometrical construction (Figure 2) by which all
rational roots lying on a curve of constant discriminant can be determined once a single root
is known.The discriminant has the same value at both points of intersection in Figure 2,
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and the straight line is

R + aQ+ b = 0. (19)
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At (R0,Q0) the straight line and line of constantD have the same slope as well as the same
coordinates. This is used to evaluatea andb and the equation of the straight line is

R +
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9

Q2
0

R0

)
Q+
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9

Q3
0

R0
− R0

)
= 0. (20)

Now evaluate (20) at(R1,Q1) and use it to replaceR1 in (18). The result is a cubic equation
for Q1 which can be factored as

(Q1−Q0)
2
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3

Q4
0

R2
0

+ 2Q0

)
= 0. (21)

Two of the roots coincide with the tangent point. The third root combined with (20) leads to
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 . (22)

It is clear that ifQ0 andR0 are rational numbers then so areQ1 andR1. Repeating the chord-
tangent construction at the new root leads to a third rational root and so on.

5. Topology of the Acceleration Vector Field

Let us use this approach to explore the nature of flow forces at the critical points of the jet.
Take the gradient of the incompressible Navier–Stokes equations

∂
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)
= ∂

∂xj

(
−1
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)
. (23)

The trace of (23) gives the Poisson equation for the pressure. This is then subtracted from (23)
to produce the transport equation for the velocity gradient tensor

Daij

Dt
+ aikakj −

1
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)
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where
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The tensorhij is the divergence free,(Ph = 0), part of the gradient of the acceleration vector
field. When (24) is transformed to similarity variables for the round jet the result is
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)
∂Aij
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whereH is given by (25) but is expressed in terms of(Aij , P, ξ
i ). At a critical point
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)
δij = Hi

j . (27)
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Squaring (27) and taking the trace produces

QH = −1

3
Q2
A +QA − 3RA. (28)

Cubing (27) and taking the trace produces

RH = −R2
A − RA +QARA − 2

3
Q2
A −

2

27
Q3
A. (29)

Now switch over and square (29) and cube (28) to form the discriminant of the acceleration
gradient tensorH
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4
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4
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A

)
(1+QA − RA)2 . (30)

A remarkably simple result! A generalization of this procedure is described in [14]. We can
also express the invariants ofH in terms of the invariants ofM. The result is

QH = 3QM − 3RM − 1
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. (31)

At the off-axis critical point whereRM = 0,
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. (32)

The trajectory of the critical points in the(RH ,QH) plane, with that of the off-axis point
parameterized byQM as in (32), is depicted in Figure 3. Four significant points are labelled
in these plots.

Point a
This corresponds to the zero Reynolds number (Stokes flow) limit of the jet where there is a
single stable node on the jet axis. The invariants of this critical points are:

(RA,QA) =
(

1

32
,− 3

16

)

(RM,QM) =
(

1

16
,

9
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)

(RH ,QH) =
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
. (33)
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Figure 3. Trajectory of the critical points of the round jet in the(QH ,RH ) plane at three levels of magnification.
Dots indicate several rational roots on theDH = 0 boundary (on-axis critical point) and on the trajectory of the
off-axis critical point.

Point b
Let the Reynolds number increase. At a critical Reynolds number of 5.5 the jet undergoes
a bifurcation to a saddle on the jet axis and a stable node off the axis. The invariants at the
bifurcation point are:

(RA,QA) =
(

1

4
,−3

4

)
(RM,QM) = (0,0)

(RH ,QH) =
(
−27
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,−27

16

)


. (34)
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Point c
As the jet Reynolds number increases to infinity the on-axis critical point moves toξ → ∞
and the invariants asymptote to the values given atc.

(RA,QA) =
(

27
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,−27

16

)
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(

1

8
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16

)
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
. (35)

Point d
Above the first bifurcation Reynolds number, the invariants of the off-axis critical point move
upward along a straight lineRM = 0 until, at a second critical Reynolds number 7.545, the
off-axis critical point turns into a saddle node. Thus a starting vortex from the jet is born! The
invariants of the off-axis point at this Reynolds number are:

(RA,QA) =
(
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16

)

(RM,QM) =
(
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9
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)

(RH ,QH) =
(
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)


. (36)

6. Concluding Remarks

This preliminary paper is the first to explicitly demonstrate a direct connection between elliptic
curves and three-dimensional fluid flow patterns thus opening up a new area of investigation
in both fields.

We learn quite a bit from the analysis. Virtually every interesting intersection (bifurcation)
in this problem coincides with a rational root in the plane of invariants. Note that the rational
roots on the trajectory of the off-axis critical point in(QH,RH) generated by (32) and depicted
in Figure 3 are densely spaced just as they are on the real line. Moreover they coincide with
rational values of the discriminant. This can be exploited to identify at least one rational root
on any curve of constant discriminant derived from a rational value ofQM and intersected by
(32).

The terms of 6th order inQA or QM which would be expected when the discriminant
of H is formed in (30) and (31) have cancelled producing a quintic polynomial inQ for
the discriminant in (30) and (31). This has interesting implications for the limiting behavior
of the off-axis critical point which, in relative terms, becomes more and more isotropic as
Re → ∞. The signs of the discriminant of all three tensors are the same. Thus ifM has
complex eigenvalues, so haveH andA. Finally, the invariants of the on-axis critical point
have finite, rational values as the limitRe →∞ is taken. Few such infinite Reynolds number
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limits are known in fluid mechanics. A detailed example of the relationship between elliptic
curves, elliptic functions and fluid mechanics can be found in [15].
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