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Abstract Research on the fine scale structure of turbulence has led to a greatly
improved understanding of the basic geometry of the local flow patterns associated
with kinetic energy dissipation. One model of the local flow that has been considered
previously is based on a simplification of the transport equation for the velocity gra-
dient tensor called the Restricted Euler Equation. This equation is exactly solvable
and, although the solution reproduces many of the geometrical features observed in
direct numerical simulations of turbulence, the solution also exhibits a finite time sin-
gularity. It is well known that the velocity and acceleration gradients in free turbulent
flows actually decrease continuously with time when measured by a Lagrangian ob-
server. The power law in time associated with this decay can generally be estimated
using dimensional analysis together with classical balances relating turbulent kinetic
energy production and dissipation. This paper will describe a procedure for removing
the singularity in the Restricted Euler model while maintaining the convenience of
an exact solution. The resulting system is useful for generating large ensembles for
statistical modeling. The new model is matched to decay rates derived from dimen-
sional analysis and accurately predicts many of the geometrical features of both the
velocity and acceleration gradient tensors. Probability density functions for both gra-
dient fields generated by the model are compared with results from direct numerical
simulation.

1. Introduction
Once the Reynolds number of a viscous flow is large enough to pro-

duce instability and once the amplitude of the instability is large enough
to produce turbulence then further amplification ceases and the overall
behavior of the flow tends to be independent of the viscosity. Define

u0 – Integral velocity scale characterizing the overall motion
δ – Integral length scale characterizing the overall motion

From a wide variety of experiments it is observed that the intensity of
turbulence scales with the characteristic integral velocity of the flow,
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u′ ≈ u0, independent of ν. If the viscosity is decreased keeping every-
thing else the same the rms turbulent velocity fluctuations would not be
expected to change. The spectrum of turbulent fluctuations broadens as
the Reynolds number is increased; the range of scales increases, but u′

stays about the same and the size of the largest scale eddies stays about
the same; the scale of the flow, δ tends to be independent of ν.

2. One-parameter flows
Consider the two-parameter dilation group of the Euler equations,

x̃i = eaxi; t̃ = ea/kt; ˜̄ui = ea(1−1/k)ūi;

τ̃ki = ea(2−2/k)τki; p̃ = ea(2−2/k)p, (1)

where a and k are arbitrary. Note that we have invoked Reynolds number
invariance in writing down the group (1) where τ̃ki is stretched by the
square of the factor used to stretch ũi. Furthermore all three coordinate
directions are stretched by the same factor. If we act on the Reynolds
equations using this group the result is

∂ ˜̄ui

∂t̃
+

∂

∂x̃j
˜̄uj ˜̄ui +

∂˜̄p
∂x̃i
− ∂τ̃ ji

∂x̃j
=

(
∂ūi

∂t
+

∂

∂xj
ūj ūi +

∂p̄

∂xi
− ∂τ ji

∂xj

)
ea(1−2/k) = 0. (2)

The point of this is that when we remove the viscous stress term from the
Reynolds equations and assume that fluctuating velocities scale with the
mean, the result is a system which is invariant under the two parameter
dilation group of the Euler equations rather than just the one-parameter
group of the full viscous equations obtained by setting k = 1/2 in (1).

One-parameter flows are (usually turbulent) shear flows in open do-
mains governed by a single global parameter with units

[M ] = LmT−n. (3)

Usually M is an integral invariant determined by the forces which create
the flow. Following Cantwell (1981) we can use invariance under the
group (1) to develop a general set of similarity rules for characterizing
the space-time evolution of one-parameter flows. This is accomplished
by solving the characteristic equations of (1). These are

dxi

xi
= k

dt

t
=
(

k

k − 1

)
dui

ui
=
(

k

2k − 2

)
dp

p
=
(

k

2k − 2

)
dτki

τki
, (4)
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with integrals

ξi =
xi

δ(t)
; P i =

ui

u0(t)
; P =

p

u0(t)2
; T ki =

τki

u0(t)2
, (5)

where the time-dependent length and velocity scales are

δ(t) ∼= M1/m(t+ t0)k; u0(t) ∼= M1/m(t+ t0)k−1. (6)

The group parameter, k, is determined by the units of the governing
parameter M .

k =
n

m
(7)

These rules can be used to determine the temporal or spatial evolution
of the flow Reynolds number

Rδ =
U0

ν
∼=
(
M

2
m

ν

)
(t+ t0)2k−1. (8)

From (8) we can see that if k > 1
2 the Reynolds number increases with

time and we would expect the range of scales in the flow to increase.
If k < 1

2 then the Reynolds number decreases with time and there is
a tendency for the flow to relaminarize. If k = 1

2 then the Reynolds
number is constant.

3. Fine scale motions
Now let’s turn our attention to the fine scales and see what we can

learn about the physics of energy dissipation. This means looking closely
at fluctuating strain rates and since, in a turbulent flow, the strain is
closely linked to the vorticity one is eventually led to a general study
of the behavior of the velocity gradient tensor. Considerations of the
balance between production of turbulent kinetic energy and dissipation
can be used to develop estimates for the microscale motions that are
responsible for most of the dissipation of turbulent kinetic energy. The
Taylor microscale, λ scales as

λ

δ
≈ 1

(Rδ)1/2
; λ ≈ (ν(t+ t0))1/2. (9)

According to (9) there is always some eddying motion in the flow with
a characteristic length that varies like

√
νt and is independent of the

governing parameter M . Note that the velocity gradients of the large
scale motion vary as

u0

δ
∼=

1
t+ t0

; (t0 > 0, t > 0) (10)
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which is independent of M and ν. In a sense the large scale gradi-
ents constitute a clock which can be used to date the evolution of the
flow. We can define the Kolmogorov velocity and length scales as those
motions that constitute the lower limit for instability; motions with a
characteristic Reynolds number of order one. This leads to the classical
estimates of the Kolmogorov velocity and length scales,

η

δ
=

1

(Rδ)
3
4

; η = ν
3
4M−

1
2m (t+ t0)(

3
4
− 1

2
k) (11)

and
v

u0
=

1

(Rδ)
1
4

; v = ν
1
4M

1
2m (t+ t0)(

1
2
k− 3

4) (12)

In a sense the Taylor and Kolmogorov microscales bracket the range
of scales that can contribute significantly to kinetic energy dissipation
in the flow. At scales larger than the Taylor microscale the turbulent
motion is considered to be essentially inviscid. At the smallest scale are
the Kolmogorov microscales with a local Reynolds number of order one.
The fine scale gradients over the whole range of dissipating motions vary
according to,

u0

λ
≈ v

η
≈ ν−

1
2M

1
m (t+ t0)(k−

3
2) (13)

4. The inertial subrange
We can derive one of Kolmogorov’s (1941) most famous results using

purely dimensional reasoning and the similarity rules worked out earlier.
Let’s accept Kolmogorov’s basic tenet and assume that a range of scales
exists where the turbulent motion is independent of both ν and M and
is governed only by the volumetric rate of kinetic energy dissipation. We
can think of the inertial subrange as a kind of universal one-parameter
flow governed by

M = ε ≈ u3
0/δ, (14)

where ε is the turbulent kinetic energy dissipation with units [U3
0 /δ] =

L2T−3 and exponent k = 3
2 . The temporal evolution of the chaacteristic

scales of the inertial subrange should follow the similarity rules in (6),

δ ≈ ε1/3(t+ T0)3/2; U0 ≈ ε1/3(t+ t0)1/2 (15a)

Rδ ≈ (t+ t0)2; λ ≈ (t+ t0)1/2; η ≈ (t+ t0)0 (15b)

The value k = 3
2 implies very strong local forcing of the flow, typically

much stronger than the forcing in most common situations. For example,
to produce k = 3/2 at the largest scale of a jet one would need to apply
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a force which increased in proportion to the fourth power of the time.
We can use (15) to establish scaling laws for the turbulent kinetic energy
spectrum. Assume a range of scales exists which is of order δ. Ask: how
is the kinetic energy distributed among various scales? Let κ be the
wave-number

κ ≈ 1/δ (16)
The kinetic energy per unit wave-number at a given wave-number can
be related to the time as follows.

E(κ) ≈ u2
0

1/δ
≈ ε3/2(t+ t0)5/2 (17)

Solving for the time in (15) and substituting the reuslt into (17) produces
the classical result first postulated by Kolmogorov.

E(κ) ≈ ε2/3κ−5/3 (18)

The κ−5/3 behavior has been more or less confirmed in a wide variety of
high Reynolds number experiments and so the arguments of Kolmogorov
and the postulated existence of the inertial subrange are generally ac-
cepted to be correct.

5. The geometry of dissipating fine scale motion
Now let’s turn our attention to a physical picture of these small scale

motions. We first develop the transport equation for the velocity gra-
dient tensor aij = ∂ui/∂xj by taking the gradient of the Navier-Stokes
equations. When the Poisson equation for the pressure is subtracted the
result is

Daij
Dt

+ aika
k
j − 1

3(amn a
n
m)δij = hij (19)

where

hij =
1
ρ

(
∂2p

∂xi∂xj
− 1

3
∂2p

∂xk∂xk
δij

)
+ ν

∂2aij
∂xk∂xk

(20)

is the trace-free part of the acceleration gradient tensor. In the remain-
ing sections aij and hij will be the main objects of interest. But before we
attempt to do anything with the system of equations (19) it is natural
to ask what aij and hij look like in a turbulent flow. For this we will
turn to direct numerical simulation data. The procedure begins with a
numerically-generated time-dependent flow simulation. At a given in-
stant, the velocity gradient tensor, aij is evaluated at every grid point
in the computational space. The first invariant, −aii = 0 due to incom-
pressibility. This leaves the second and third invariants

Q = −1
2a

i
ja
j
i ; R = −1

3a
i
ka
k
ja
j
i (21)
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as the two scalars that determine the local flow pattern at each point.
The character of the eigenvalues is determined by the cubic discriminant,

D = Q3 + 27
4 R

2. (22)

Also of interest are the nonzero invariants of the strain and rotation
tensors.

QS = −1
2s
ijsji; RS = −1

3s
ikskjsji; Qw = −1

2w
ijwji (23)

The pdfs of the invariants contain a great deal of information concerning
the geometry of the fine scales. Points near the origin correspond to low
gradient values associated with the large scale motions; points far away
characterize the high gradient fine scales. There is a general tendency
for the (Q,R) pdf to develop a roughly elliptical shape with major axis
of the ellipse aligned with the upper left and lower right quadrants. In
fact the shape is really more like an inclined teardrop with the point
of the teardrop lying along the R > 0, D = 0 branch. The strongest
energy dissipating motions in the flow have a saddle-saddle unstable node
geometry. This implies that the eigenvalues of the rate-of-strain tensor
are ordered according to α > β > 0 > γ. Points of high dissipation are
generally characterized by high levels of vorticity, QW ∼= −QS although
there is usually a fairly broad distribution about a 45◦ line in this space.
At any point one can construct a locally orthogonal system of coordinates
from the eigenvectors of the rate-of-strain tensor. When the vorticity
vector is located relative to this system one finds, in a region of high
dissipation a strong tendency for the vorticity to be aligned with the
direction of the smaller of the two rate-of-strain eigenvalues.

What about the acceleration gradient tensor, hij? Cheng (1996) car-
ried out a detailed study of this tensor using low-Reynolds number com-
putations of homogeneous and isotropic turbulence as well as the wake
computations of Sondergaard et al. (1996). Figure 1 shows the invari-
ants of h computed in (Sondergaard et al. 1996). It appears that hij
looks a lot like aij but with a change in sign, hij ∼ −aij . When the data
is conditioned on higher and higher rates of dissipation, the invariants of
h tend to gather closer and closer to the Rh < 0, Dh = 0 branch and for
points within 75% of the maximum kinetic energy dissipation the data
literally hugs the line. It appears that in regions of high dissipation,
Rh ∼= − 4

27 |Q|
3/2 is a good approximation. In the higher Reynolds num-

ber wake simulations of Sondergaard shown below in Figure 2 the strain
invariants of hij are seen to lie closer and closer to the origin as the data
is conditioned on higher and higher rates of kinetic energy dissipation.
In contrast the strain invariants of aij always lie far from the origin in
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Figure 1. Logarithmic contour plots of the joint pdf of Q versus R for hij from a
simulation of homogeneous and isotropic turbulence by Cheng (1996). Data condi-
tioned at various levels of maximum local kinetic energy dissipation. (a) 0% (all data
points), (b) 25%, (c) 50%, (d) 75%.

regions of high dissipation. Although the observations described above
are for two specific flows, a variety of flow cases have been studied, and
the basic geometry of both tensors in a region of high dissipation tends
to be the same for all flows; they are universal.

Now we will attempt to develop a universal model of the small scales
that reproduces the geometry of aij and hij . We begin with (19) and
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Figure 2. Logarithmic contour plots of the joint pdf of the strain invariants QS
versus RS for hij from a simulation of a time-developing wake by Sondergaard (1966)
at a Reynolds number of 2768. Data conditioned at various levels of maximum local
kinetic energy dissipation. (a) 0% (all data points), (b) 25%, (c) 50%, (d) 75%.

(20). The tensor hij describes the effect of viscous diffusion and anisotropic
pressure forces on the evolution of the velocity gradient tensor. It is in-
structive to look at the solution of the homogeneous case hij = 0. In
this cae (19) becomes a set of quadratically coupled, nonlinear ordinary
differential equations for the nine components of the velocity gradient
tensor called the restricted Euler equation. The cubic discriminant,

D = Q3 + 27
4 R

2 (24)
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is conserved for all particles under this approximation. With this inte-
gral of the motion known, the time evolution of the two invariants can
be determined in terms of elliptic functions. Once Q(t) is known the
complete system can be solved exactly for aij(t). The discriminant de-
fines an appropriate time scale for normalizing all the variables in the
problem, tnorm = (abs(D))1/6. Let

Aij = tnorma
i
j ; q = t2normQ; r = t3normR; τ =

t

tnorm
(25)

For any initial condition, the solution evolves to,

Aij =
21/3

τsingular − τ
Ki
j ; (τ ≤ τsingular) (26)

where Ki
j satisfies the following matrix relationship

Ki
kK

k
j + 1

21/3K
i
j − 21/3δij = 0. (27)

The restricted Euler system has the property that solutions become sin-
gular in finite time. To remedy this let’s return to (19). Let

aij = f(t)bij (28)

Equation (19) becomes,

f
dbij
dt

+
df

dt
bij + f2bikb

k
j − f2 1

3(bmn b
n
m)δij = hij . (29)

Here is the crucial step; assume that,

hij =
df

dt
bij (30)

and divide (29) through by f2. This transforms the full equation (51)
to the restricted Euler but with the flexibility to define a new time. The
equation becomes,

1
f(t)

dbij
dt

+ bikb
k
j − 1

3(bmn b
n
m)δij = 0. (31)

Now we define the new time,

dtb = f(t)dt. (32)

This enables us to remove the singularity and continue to exploit the
exact solution of the restricted Euler equation. The discriminant is used
again to define a normalizing time,

tb norm = (abs(Q3
b initial + 27

4 R
2
b initial))

1/6, (33)
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and let

Bi
j = tb normb

i
j ; qb = t2b normQb; rb = t3b normRb; τb =

tb
tb norm

. (34)

The asymptotic behavior of the solution is

Bi
j =

21/3

τb singular − τb
Ki
j . (35)

According to our previous discussion of fine scales the physical velocity
gradient tensor should behave according to (13),

Let’s require that the asymptotic behavior of the physical velocity
gradient tensor is,

aij = ν−1/2M1/m(t+ t0)k−
3
2H i

j . (36)

Now using,
aij = f(t)bij (37)

ν−1/2M1/m(t+ t0)k−
3
2Ki

j =
21/3

tb norm(τb singular − τb)
Ki
jf(t)

we can write,

f(t) =
ν−1/2M1/m(t+ t0)k−

3
2

21/3
tb norm(τb singular − τb), (38)

or using (32),

d tb
(tb normτb singular − tb)

=
ν−1/2M1/m(t+ t0)k−

3
2

21/3
dt. (39)

Integrating (39) enables one to express tb in terms of physical time t.
For k 6= 1

2

tb normτb singular − tb
tb normτb singular − tb initial

= exp

ν
−1/2M1/m

[
(t+ t0)k−

1
2 − tk−

1
2

0

]
(k − 1

2)21/2

 .
(40)

For k = 1
2

tb normτb singular − tb
tb normτb singular − tb initila

=
(
t+ t0
t0

)−2−1/3ν−1/2M1/m

. (41)
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Figure 3. Time development of logarithmic contour plots of the joint pdf of Q versus
R for aij (left figures) and of QS versus RS (right figures) from an initially random
ensemble using the Restricted Euler solution. The case shown is for k = 3/2.
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Figure 4. Logarithmic contour plots of the joint pdf of QS versus RS for aij (left
figures) and of QhS versus RhS for hij (right figures) from an initially random en-
semble using the Restricted Euler solution and the model expressed in (47). Data
conditioned at various levels of maximum local kinetic energy dissipation. (top) 0%
(all data points), (middle) 50%, (bottom) 75%. The case shown is for k = 3/2.
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Now the sought after function f(t) is for k 6= 1
2

f(t) = (tb normτb singular − tb initial)×

ν−
1
2M

1
m (t+ t0)k−

3
2

21/2
exp

−ν
− 1

2M
1
m

[
(t+ t0)k−

1
2 − tk−

1
2

0

]
(k − 1

2)21/3

 (42)

and for k = 1
2

f(t) = (tb normτb singular − tb initial)
ν−

1
2M

1
m

21/3t0

(
t+ t0
t0

)−2−1/3ν−1/2M1/m−1

.

(43)
For any value of k

df

dt
=

(
k − 2

3

t+ t0
− ν−

1
2M

1
m (t+ t0)k−

3
2

21/3

)
f(t) . (44)

The physical gradient tensors are related by

hij =
df

dt
bij =

1
f(t)

df

dt
aij =

(
k − 2

3

t+ t0
− ν−

1
2M

1
m (t+ t0)k−

3
2

21/3

)
aij . (45)

The quantity

R0 =
M

2
m t2k−1

0

ν
(46)

plays the role of an initial Reynolds number. In terms of this parameter
the model becomes

hij =

 k − 3
2

1 + t/t0
− R

1
2
0

21/3 (1 + t/t0)
3
2
−k

 aij
t0

. (47)

This completes the model. To develop an ensemble one specifies k, R0

and an ensemble of random initial values of bij subject to the continuity
equation.

6. Concluding remarks

Note that for all k ≤ 3
2 , df

dt ∼ −f(t) and for large t+ t0,
∣∣∣dfdt ∣∣∣� |f(t)|.

This leads to the properties of hij observed in the simulations described
above. Figure 3 shows the development of aij from an initially random
ensemble. Figure 4 illustrates the tendency for hij to lie along the Rh < 0,
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Dh = 0 branch and to have relatively small values of the invariants in
regions of high dissipation. In summary the model embodied in (30),
(42) and (43) culminating in (47) reproduces many of the geometrical
features of the velocity gradient tensor and the trace free part of the
acceleration gradient tensor observed in direct numerical simulations.
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