Lecture 9 Hybrid Rocket Propulsion Liquefying Fuels

Prepared by Arif Karabeyoglu

Department of Aeronautics and Astronautics Stanford University and Mechanical Engineering KOC University

Stanford University

Fall 2019

KOC UNIVERS

Entrainment Mass Transfer Mechanism

- A new transfer mechanism:
 - Certain fuels form a liquid layer
 - If the conditions are right, mechanical entrainment of liquid droplets occur
- Enhanced mass transfer due to the new mechanism
- Effective use of energy since vaporization is not required for entrained mass
- Liquid Layer Hybrid Combustion Theory (Stanford - 1997)

Liquid Layer Hybrid Combustion Theory Outline

- Steps of the Theory Development
 - Estimate film thickness
 - Stability of the liquid film
 - Scaling for the entrainment mass transfer
 - Modify "Diffusion Limited Model" for the existence of entrainment.

Film Thickness Model-Pentane

Film Stability Model

Orr-Sommerfeld Equation

Stream function

$$\boldsymbol{u} = \boldsymbol{\varphi}_{y} \qquad \boldsymbol{v} = -\boldsymbol{\varphi}_{x}$$

- \tilde{u} : Axial Velocity Disturb. \overline{v} : Transverse Velocity Disturb. φ : Stream Function c: Amplification α : Wave No
- Form of Solution (Surface disturbance)

$$\varphi(x, y, t) = \phi(y)e^{i\alpha(x-ct)}$$
 $(\eta = \varepsilon e^{i\alpha(x-ct)})$

• Stability equation (Nondimensional) $\phi^{IV} - 2\alpha^2 \phi'' + \alpha^4 \phi - b(\phi''' - \alpha^2 \phi') = i\alpha \operatorname{Re}(y - c)(\phi'' - \alpha^2 \phi)$

Re: Film Re ynolds No. b: Blowing Parameter

Stanford University

Perturbation Solution

- Follow Craik (b=0, *JFM* 1966)
- Rapid convergence for

 $\alpha^2 \ll 1 \quad \text{Re} < O(1) \quad b < O(1)$

 \widetilde{P}_{g} / η : Pr essure Disturbance $\widetilde{\tau}_{g} / \eta$: Shear Disturbance T: Surface Tension Parameter G: Acceleation Parameter

• Solution for eigenvalue problem

$$T\alpha^{2} + G - \widetilde{P}_{g}/\eta + \frac{3i\,\widetilde{\tau}_{g}/\eta}{2\alpha} = (1-c)\left[\frac{3}{2}(1-c) - 1 + \frac{(3+3b+6\alpha^{2})}{i\alpha\,\mathrm{Re}}\right]$$

Exact Solution

Solution for Orr-Sommerfeld equation

$$\phi_{1}(y) = e^{\alpha y}$$

$$\phi_{2}(y) = e^{-\alpha y}$$

$$\phi_{3}(y) = \frac{1}{\alpha} \int_{y_{0}}^{y} \sinh[\alpha(y - \hat{y})] e^{-(B/2)z(\hat{y})} Ai[z(\hat{y}) + B^{2}/4] d\hat{y}$$

$$\phi_{4}(y) = \frac{1}{\alpha} \int_{y_{0}}^{y} \sinh[\alpha(y - \hat{y})] e^{-(B/2)z(\hat{y})} Bi[z(\hat{y}) + B^{2}/4] d\hat{y}$$
where $B = -ib/(\alpha \operatorname{Re})^{1/3}$

Film Stability-Pentane Film

Entrainment Mass Transfer

Scaling for entrainment mass transfer

Operational Parameters: (Pressure, Oxidizer Flux)

Material Properties: (Viscosity, Surface Tension)

• Gater & L'Ecuyer (1970)- RP1, methanol

$$\overline{\alpha} = 1.5 \qquad \beta = 2$$

 P_d : Dynamic Pr essure σ : Surface Tension μ_l : Liquid Vis $\cos ity$ $\overline{\alpha}, \beta, \pi, \gamma$: Exponents

Liquid Layer Hybrid Combustion Theory

- Modification on the classical Hybrid Combustion Theory
 - Reduced heating requirement for the entrained mass.
 - Reduced "Blocking Effect" due to two phase flow.
 - Increased heat transfer due to the increased surface roughness.

Liquid Layer Hybrid Combustion Theory

Mass balance

$$\dot{r} = \dot{r}_v + \dot{r}_{ent}$$

Energy balance

 \dot{r}_v : Vaporization Re gression Rate \dot{r}_{ent} : Entrainment Re gression Rate \dot{r} : Total Re gression Rate a_{ent} : Entrainment Parameter F_r : Surface Rougness Coefficient R_{he}, R_{hy} : Energy Parameters

$$\dot{r}_{v} + [R_{he} + R_{hv}(\dot{r}_{v}/\dot{r})] \dot{r}_{ent} = F_{r} \frac{0.03\mu_{g}^{0.2}}{\rho_{f}} (1 + \dot{Q}_{r}/\dot{Q}_{c}) B \frac{C_{H}}{C_{Ho}} G^{0.8} z^{-0.2}$$

Entrainment regression rate

$$\dot{r}_{ent} = a_{ent} \frac{G^{2\alpha}}{\dot{r}^{\beta}}$$

Stanford University

Theory-Pentane Predictions

Karabeyoglu

Theory Effect of Melt Layer Properties

Propellant	Pentane C ₅ H ₁₂	Acetone C_3H_6O	2,2,5 tmh	HFI	Isopropanol C ₃ H ₈ O
Melt Layer Viscosity	1	1.1	0.9	5.4	10.8
Melt Layer Surface Tension	1	1.3	0.8	1.1	1.1
Entrainment Parameter, a _{ent}	1	0.7	1.3	0.17	0.09
Observed Regression Rate	1	~1	~1	0.56	0.5


```
Homologous Series of n-Alkanes (C_nH_{2n+2})
```

• Normal Alkanes: Fully saturated, straight-chain hydrocarbons

```
• Examples:
```

```
Methane (CH_4):
```

```
С
```

```
Ethane (C_2H_6):
C-C
```

```
Pentane (C_5H_{12}):
C-C-C-C-C
```

```
"Wax" (C<sub>32</sub>H<sub>66</sub>):
```

A number of practical fuels (pure form or mixtures): Methane, Kerosene ($n \sim 10$), Paraffin Waxes (n = 16-45), PE waxes (n=45-90), HDPE Polymer (n in thousands)

Melt Layer Temperatures for C_nH_{2n+2} Series

Karabeyoglu

Entrainment for C_nH_{2n+2} Series

Theory Prediction and Motor Test Data for C_nH_{2n+2}

Stanford Motor Tests

- Formulated paraffin-based fuel SP-1:
 - Melting temperature: 70 C
 - Structural and optical additives
- Stanford lab-scale tests confirmed the prediction
 - Low oxidizer mass flux (< 15 g/cm²-sec)
 - Low chamber pressure (~150 psi)
 - Small physical scale (i.e. 2.38" OD)

NASA Ames Hybrid Combustion Facility (HCF)

- Oxidizer: Gaseous oxygen up to 16 kg/sec
- 10" OD steel test section.

- Cartridge loaded 7.5" OD grains up to 45" in length.
- 41 motor tests since September 2001.

KOÇ UNIVERSITY Karabeyoqlu

Test Motor Configuration

Regression Rate Law for Paraffin-Base Fuel, SP-1a

Effect of Chamber Pressure on the Regression Rate

Effect of Fuel Grain Length on the Regression Rate

Motor Test Experience

- Small Scale(i.e. 50-100 lbf): >1000 tests
- Scale-up (i.e. 900-3500 lbf): >125 tests
- Oxidizers: GOX, LOX, N2O

Stanford University

Advanced Hybrid Rockets

Hybrid Propulsion – Technical Challenges

Technical Challenges

- Low regression rates for classic hybrid fuels
 - Results in complicated fuel grain design
- Low frequency instabilities
 - Instabilities are common to all chemical rockets
 - They need to be eliminated
 - Expensive and long process

Solution Strategy

- Solutions to these technical issues should be such that they do **NOT** compromise the simplicity, safety and cost advantages of hybrids.
- Comparable or better performance compared to liquids and solids.

KOC UNIVERS

Paraffin-Based Fuels Technology Progress Motor testing experience (SPG/Stanford/NASA Ames)

- Small Scale(i.e. 50-100 lbf): ~1,000 tests
- Scale-up (i.e. 900-15,000 lbf): ~125 tests
- Oxidizers: Liquid Oxygen, Gaseous Oxygen, Nitrous Oxide, Nytrox

SPG work on paraffin-based fuel technology

- Formulation (Keep cost ~ 1 \$/lb)
- Processing (22 inch OD fuel grains 700 kg)
- Structural testing and modeling
- Internal ballistic design of single circular port hybrids
- Scale up motor testing (in 2012 35,000 lbf class motors)

28

Large single circular port hybrids are feasible

Stanford University

Low Frequency Instabilities

- Hybrids are prone to low frequency instabilities (2-100 Hz)
- High amplitude spiky combustion
- Especially common in liquid oxygen (LOX) based systems
- A number of mechanisms

Low Frequency Instabilities - Remedies

- We believe that a LOX motor can be made stable
 - Without the use of heaters or TEA injection
 - By advanced injector and combustion chamber design
- Demonstrated in 11 inch and 22 inch LOX/Paraffin-based motors
- \$

Stanford University

- Solutions used in the field
 - Lockheed Martin –Michoud and HPDP used hybrid heaters to vaporize LO₂
 - AMROC injected TEA (triethylaluminum) to vaporize LOX
 - Both solutions introduce complexity minimizing the simplicity advantage of hybrids
 - Heaters- extra plumbing
 - TEA extra liquid, hazardous material

KOC UNIVERS

Low Frequency Instabilities – 11 Inch LOX Motor

- All three tests have the same
 - Oxidizer flow rate
 - Fuel formulation
 - Port diameter
 - Nozzle diameter

Stable Motor (c* efficiency > 95%)

- Solution requires NO
 - Active heating
 - Injection of a pyrophoric liquid (i.e. TEA)
 - Active control
 - Moving parts
 - Complicated parts or exotic materials

Stanford Univers

Advanced Hybrid Rockets

Technology Details

Composite Fabrication

- *Winding Machine Specifications Filament Winder Specification Summary:*
- Machine: 4 axes CNC Fil. Winding Machine
- Max Part Dimensions: 60in x 15.1ft
- Weight capacity: 6,600 lbs (3,000 kg)
- Machine Control: Siemens industrial computer
- Winding software purchased: CADFIL

Machine Use

- Winding of three 22 inch motors has been completed
- Winding of numerous 10 inch flight weight motors has been completed.

34

Fuel Formulation

Formulations with extreme elongation capability are feasible

Progress - Formulation

- Formulation and characterization of paraffinbased fuels with a wide range of ballistic properties.
- Fuel cracking problem has been solved by formulation and advanced structural design of the fuel grain/ motor case system
- New fuel capable of operating from -80 C to 60 C has been formulated to be used in Mars applications

Fuel Processing

- Progress Fuel Processing Technologies
- SPG has now capability to cast grains up to 36 inches in diameter

- Developed 3 alternative casting technologies
- High quality and consistency is achieved
- Successfully produced 22 inch OD paraffinbased fuel grains
 - Each weigh 700kg
 - Largest monolithic wax piece ever built

22 Inch Flight Weight Motor

- 22 Inch Flight Weight System
- Development is ongoing
- Up to 35,000 lb of thrust
- Booster Mode:25 seconds of burn time
- Upper stage mode burns for 100 sec.
- Stable/efficient LOX/paraffin-based motor (upper stage version)
- Motor length/regression rate can be adjusted for a specific mission
- Carbon composite motor case
- Cost effective motor

Summary and Potential Applications of the Technology

Key Virtues of the Technology

- High performance for the LOX/Paraffin-based system
 - Delivered vacuum Isp value of ~340 sec for a nozzle expansion ratio of 70
 - High combustion efficiency (97-98%)
 - Motor operating at the optimal average O/F of 2.8
 - Low O/F shift
 - Low fuel sliver fraction: < 1%
- Simplicity and fault tolerance of hybrids is retained
 - No external heating is required for stability
- Safe (Zero TNT equivalency and reduced fire hazard)
- Affordable (Both development and recurring)
 - No exotic materials
 - No parts with tight machining tolerance
 - No active cooling
- Mission flexibility

Applications

- Launch vehicle Booster or upper stage
- Tactical or strategic missile propulsion, target drones
- In space, in orbit
- Sub-orbital space tourism
- Sounding rocket
- Aircraft thrust augmentation

Hybrid Combines the Worst of the Two Worlds?

Some claim that hybrids combine the low performance of a solid rocket and the complexity of a liquid engine

- This could certainly be true for a poorly designed hybrid
- However a well designed hybrid would
 - Deliver Isp performance much better than a solid (up to 35 seconds of improvement)
 - Be much simpler than a liquid
 - Fault tolerance
 - No active cooling
 - Half the plumbing
 - Simple injector design
- Inherent safety, easy throttling and environmental cleanliness are the added benefits.

KOC UNIV