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Entrainment Mass Transfer Mechanism 
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•  A new transfer mechanism: 
–  Certain fuels form a liquid 

layer 
–  If the conditions are right, 

mechanical entrainment of 
liquid droplets occur 

•  Enhanced mass transfer 
due to the new mechanism 

•  Effective use of energy since 
vaporization is not required 
for entrained mass 

•  Liquid Layer Hybrid 
Combustion Theory 
(Stanford - 1997) 
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Liquid Layer Hybrid Combustion Theory Outline 

•  Steps of the Theory Development 
– Estimate film thickness 

– Stability of the liquid film 

– Scaling for the entrainment mass transfer 

– Modify “Diffusion Limited Model” for the 
existence of entrainment. 
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Film Thickness Model-Pentane 

r
ah t
!

=

Karabeyoglu 4 

Rategressionr
ParametericalThermochema

ThicknessLayerMelth

t

Re:
:
:

!



AA284a Advanced Rocket Propulsion 

Stanford University 

Film Stability Model 
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Orr-Sommerfeld Equation 
•  Stream function 
 
•  Form of Solution - (Surface disturbance) 

 
•  Stability equation (Nondimensional) 

ı u = ϕ y ı v = −ϕ x
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Perturbation Solution 
•  Follow Craik (b=0, JFM 1966) 
•  Consider power series solution (N=6) 
 
•  Rapid convergence for 
 
•  Solution for eigenvalue problem 

φ y( ) = An
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Exact Solution 
•  Solution for Orr-Sommerfeld equation 

 
where 

φ1 y( )= eαy

φ2 y( )= e−αy
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Film Stability-Pentane Film 

Re =Ulhρl µl
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Entrainment Mass Transfer 
•  Scaling for entrainment mass transfer 

 
 
•  Gater & L’Ecuyer (1970)- RP1, methanol 
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Operational Parameters:  
(Pressure, Oxidizer Flux) 
Material Properties:  
(Viscosity, Surface Tension) 
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Liquid Layer Hybrid Combustion Theory 
•  Modification on the classical Hybrid 

Combustion Theory 
– Reduced heating requirement for the 

entrained mass. 
– Reduced “Blocking Effect” due to two phase 

flow. 
–  Increased heat transfer due to the 

increased surface roughness. 
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Liquid Layer Hybrid Combustion Theory 

•  Mass balance 
 
 
 

•  Energy balance 
 

 

•  Entrainment regression rate 
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Theory-Pentane Predictions 
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Theory Effect of Melt Layer Properties 

Propellant Pentane
C5H12

Acetone
C3H6O

2,2,5
tmh

HFI Isopropanol
C3H8O

Melt Layer
Viscosity

1 1.1 0.9 5.4 10.8

Melt Layer
Surface Tension

1 1.3 0.8 1.1 1.1

Entrainment
Parameter, aent

1 0.7 1.3 0.17 0.09

Observed
Regression Rate

1 ~1 ~1 0.56 0.5
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Homologous Series of n-Alkanes (CnH2n+2) 

Methane (CH4): 
C       

Ethane (C2H6):         
C-C 
. . 
Pentane (C5H12):   
C-C-C-C-C 
. 
.       

“Wax” (C32H66): 
C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C   

A number of practical fuels (pure form or mixtures): 
Methane, Kerosene (n~10), Paraffin Waxes (n=16-45), 
PE waxes (n=45-90), HDPE Polymer (n in thousands) 

•  Normal Alkanes: Fully saturated, straight-chain hydrocarbons   
•  Examples: 
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Melt Layer Temperatures for CnH2n+2  Series 
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Entrainment for CnH2n+2  Series 

C:

Mw:

1 5 25 45 14,000

16 72 352 632 200,000

Cryogenic Non-cryogenic

Methane
(Tested) Paraff in Waxes

65 80

PE  Waxes
HDPE Polymer

(Tested)

912 1262
(g/mol)

Pentane
(Tested)

Gas Liquid Solid Polymer

Mw
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Boundary
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Theory Prediction and Motor Test Data for CnH2n+2 

    
Regression rate 

increase over the 
classical value is as 

high as 6.1 

Theory prediction is 
fairly accurate 

Paraffin waxes burn 
5-5.5 times faster 
than the HDPE 

polymer 
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Stanford Motor Tests 
•  Formulated paraffin-based fuel SP-1: 

–  Melting temperature: 70 C 
–  Structural and optical additives 

•  Stanford lab-scale tests confirmed the 
prediction  
–  Low oxidizer mass flux (< 15 g/cm2-sec) 
–  Low chamber pressure (~150 psi) 
–  Small physical scale (i.e. 2.38” OD) 
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NASA Ames Hybrid Combustion Facility (HCF) 

•  Oxidizer: Gaseous oxygen up 
to 16 kg/sec 

•  10” OD steel test section. 

•  Cartridge loaded 7.5” OD grains 
up to 45” in length. 

•  41 motor tests since September 
2001. 
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Test Motor Configuration 
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Regression Rate Law for Paraffin-Base Fuel, SP-1a   
 

62.0 488.0 oxGr =!

Three fold 
 improvement 
 is confirmed 
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Effect of Chamber Pressure on the Regression Rate  
 

No Pressure 
Effect 
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Effect of Fuel Grain Length on the Regression Rate  
 

No Length 
Effect 
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Motor Test Experience 
•  Small Scale(i.e. 50-100 lbf): >1000 tests 
•  Scale-up (i.e. 900-3500 lbf): >125 tests 
•  Oxidizers: GOX, LOX, N2O 

Karabeyoglu 25 
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Advanced Hybrid 
Rockets 
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Hybrid Propulsion –Technical Challenges 
Technical Challenges 

•  Low regression rates for classic hybrid fuels 
–  Results in complicated fuel grain design 

•  Low frequency instabilities 
–  Instabilities are common to all chemical rockets  
–  They need to be eliminated 
–  Expensive and long process 

Solution Strategy 
•  Solutions to these technical issues should be such that  
they do NOT compromise the simplicity, safety and cost 
advantages of hybrids. 
•  Comparable or better performance compared to liquids 

and solids. 
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Paraffin-Based Fuels Technology Progress 
Motor testing experience (SPG/Stanford/NASA Ames) 

–  Small Scale(i.e. 50-100 lbf): ~1,000 tests 
–  Scale-up (i.e. 900-15,000 lbf): ~125 tests  
–  Oxidizers: Liquid Oxygen, Gaseous Oxygen, Nitrous Oxide, Nytrox 

28 

SPG work on paraffin-based fuel technology 
–  Formulation (Keep cost ~ 1 $/lb)  
–  Processing (22 inch OD fuel grains – 700 kg) 
–  Structural testing and modeling 
–  Internal ballistic design of single circular port hybrids 
–  Scale up motor testing (in 2012 35,000 lbf class motors) 

Large single circular port hybrids are feasible 
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Low Frequency Instabilities 

•  Hybrids are prone to low frequency instabilities (2-100 Hz) 
•  High amplitude spiky combustion 
•  Especially common in liquid oxygen (LOX) based systems 
•  A number of mechanisms 

29 

P, 
psi 

Time, sec 

HPDP 250k lbf Motor 2 Test 2 
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Low Frequency Instabilities - Remedies 

•  We believe that a LOX motor can be 
made stable  
–  Without the use of heaters or TEA 

injection 
–  By advanced injector and combustion 

chamber design  
•  Demonstrated in 11 inch and 22 inch 

LOX/Paraffin-based motors 

•  Solutions used in the field 
–  Lockheed Martin –Michoud 

and HPDP used hybrid 
heaters to vaporize LO2 

–  AMROC injected TEA 
(triethylaluminum) to 
vaporize LOX 

•  Both solutions introduce 
complexity minimizing the 
simplicity advantage of hybrids 
–  Heaters- extra plumbing 
–  TEA – extra liquid, 

hazardous material 

30 
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Low Frequency Instabilities – 11 Inch LOX Motor 
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Low Frequency Instability 
Acoustic Instability 

•  All three tests have 
the same 

–  Oxidizer flow rate 
–  Fuel formulation 
–  Port diameter 
–  Nozzle diameter 

•  Solution requires NO 
–  Active heating  
–  Injection of a 

pyrophoric liquid (i.e. 
TEA) 

–  Active control 
–  Moving parts 
–  Complicated parts or 

exotic materials 

2006 2008 

2010 

Stable Motor (c* efficiency > 95%) 
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Advanced Hybrid Rockets 

32 

Advanced  
Ballistic  
Design 

Carbon 
 Composite  

Motor 

Fast Burning  
Fuels 

Advanced  
Hybrids 

•  Single circular port design 
–  Excellent fuel utilization 
–  Simple fabrication 

•  Low cost fuel 
•  Environmentally friendly 

 

•  Stable operation with NO 
–  External heating 
–  Pyrophoric liquid injection 

•  High combustion efficiency (>95%) 

 

•  Light weight 
construction 

•  Low cost 
•  All in house 

manufacturing 
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Technology 
Details 
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Composite Fabrication 

•  Winding Machine Specifications 
Filament Winder Specification Summary: 
–  Machine: 4 axes CNC Fil. Winding 

Machine 
–  Max Part Dimensions: 60in x 15.1ft 
–  Weight capacity: 6,600 lbs (3,000 kg)  
–  Machine Control: Siemens industrial 

computer  
–  Winding software purchased: CADFIL 

34 

Machine Use 
–  Winding of three 22 inch motors has 

been completed 
–  Winding of numerous 10 inch flight 

weight motors has been completed. 
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Fuel Formulation 

35 

Progress - Formulation 
•  Formulation and 

characterization of paraffin-
based fuels with a wide 
range of ballistic properties. 

•  Fuel cracking problem has 
been solved by formulation 
and advanced structural 
design of the fuel grain/
motor case system 

•  New fuel capable of 
operating from -80 C to 60 C 
has been formulated to be 
used in Mars applications 

Formulations with extreme 
elongation capability are 

feasible 
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Fuel Processing 

•  Progress - Fuel Processing Technologies 
•  SPG has now capability to cast grains up to 36 inches in diameter 

36 

•  Developed 3 alternative 
casting technologies 

•  High quality and 
consistency is achieved 

•  Successfully produced  
22 inch OD paraffin-
based fuel grains 
–  Each weigh 700kg 
–  Largest monolithic wax 

piece ever built 
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22 Inch Flight Weight Motor 
•  22 Inch Flight Weight System 

–  Development is ongoing 
–  Up to 35,000 lb of thrust 
–  Booster Mode:25 seconds of burn time 
–  Upper stage mode burns for 100 sec. 
–  Stable/efficient LOX/paraffin-based 

motor (upper stage version) 
–  Motor length/regression rate can be 

adjusted for a specific mission 
–  Carbon composite motor case 
–  Cost effective motor 

37 
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Summary and Potential Applications of the Technology 

38 

Key Virtues of the Technology 
–  High performance for the LOX/Paraffin-based system 

•  Delivered vacuum Isp value of ~340 sec for a nozzle expansion ratio of 70 
–  High combustion efficiency (97-98%) 
–  Motor operating at the optimal average O/F of 2.8  
–  Low O/F shift 

•  Low fuel sliver fraction: < 1% 
–  Simplicity and fault tolerance of hybrids is retained 

•  No external heating is required for stability 
–  Safe (Zero TNT equivalency and reduced fire hazard) 
–  Affordable (Both development and recurring) 

•  No exotic materials 
•  No parts with tight machining tolerance 
•  No active cooling 

–  Mission flexibility 
Applications 

–  Launch vehicle – Booster or upper stage 
–  Tactical or strategic missile propulsion, target drones 
–  In space, in orbit 
–  Sub-orbital space tourism 
–  Sounding rocket 
–  Aircraft thrust augmentation 
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Hybrid Combines the Worst of the Two Worlds? 

39 

Some claim that hybrids combine the low performance of a 
solid rocket and the complexity of a liquid engine 

 

•  This could certainly be true for a poorly designed hybrid 
•  However a well designed hybrid would 

–  Deliver Isp performance much better than a solid (up to 35 seconds 
of improvement) 

–  Be much simpler than a liquid 
•  Fault tolerance 
•  No active cooling 
•  Half the plumbing 
•  Simple injector design 

•  Inherent safety, easy throttling and environmental 
cleanliness are the added benefits. 


