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Hybrid Rocket Configuration 

Most Hybrids: 
Oxidizer: Liquid 

Fuel: Solid 
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Fuel and oxidizer are physically separated 
One of the two is in solid phase 

Reverse Hybrids: 
Oxidizer: Solid 

Fuel: Liquid 
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Hybrid Rocket Configuration-AMROC Booster 

●  AMROC H-1800 (Test motor DM-01): 250 klb thrust 
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Hybrid Rocket System 
Solid Fuel 

•  Polymers: Thermoplastics, 
(Polyethylene, Plexiglas), 
Rubbers (HTPB) 

•  Wood, Trash, Wax 

Liquid Oxidizer 
•  Cryogenic: LO2 
•  Storable: H2O2, N2O, N2O4, 

IRFNA 
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Hybrid Combustion Scheme 

•  Diffusion limited combustion 
–  Burning Rate Law: independent of pressure (flux dependent) 

•  Flame zone away from surface and blocking effect 
–  Low regression rate 
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Comparison of Hybrid and Solid Rocket Combustion Schemes  

Solid 
•  Active grain 
•  Premixed flame 

(globally). 
•  Heteregeneous rxns. 
•  Pressure dependent 

burning rate. 
•  High burning rates (high 

thrust density). 

Hybrid 
•  Inert grain 
•  Diffusion flame in a TBL. 
•  No heteregeneous rxns. 
•  Mass flux dependent 

burning rate. 
•  Low burning rates (low 

thrust density). 

Karabeyoglu 6 



AA284a Advanced Rocket Propulsion 

Stanford University 

Advantages of Hybrids 
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Compared to Solids Liquids 
Simplicity - Chemically simpler 

- Tolerant to processing 
errors 

- Mechanically simpler 
- Tolerant to fabrication 
errors 

Safety - Reduced chemical 
explosion hazard 
- Thrust termination and 
abort possibility 

- Reduced fire hazard 
- Less prone to hard starts 

Performance Related - Better Isp performance 
- Throttling/restart 
capability 

- Higher fuel density 
- Easy inclusion of solid 
performance additives (Al, 
Be) 

Other - Reduced environmental 
impact 

- Reduced number and 
mass of liquids 

Cost - Reduced development costs are expected 
- Reduced recurring costs are expected 
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Hybrid Rocket History 
Early History (1932-1960) 

•  1932-1933: GIRD-9 (Soviet) 
–  LO2/Gellified gasoline 60 lbf thrust motor 
–  Firsts 

•  Hybrid rocket 
•  Soviet rocket using a liquid propellant 
•  First fast burning liquefying fuel 

–  Tikhonravov and Korolev are designers 
–  Maximum altitude: 1,500 m 

•  1937: Coal/Gaseous N2O hybrid motor 2,500 lbf thrust 
(Germany) 

•  1938-1939: LOX/Graphite by H. Oberth (Germany) 
•  1938-1941: Coal/GOX by California  Rocket  Society 

(US). 
•  1947:  Douglas Fir/LOX by Pacific  Rocket  Society (US) 
•  1951-1956:   GE  initiated  the  investigations  in  

hybrids. H2O2/Polyethylene. (US) 
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GIRD-9 
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Hybrid Rocket History 

Era of Enlightenment (1960-1980) 
•  1960's:  Extensive  research  at  various  

companies.  
–  Chemical Systems Division of UTC 

•  Modeling (Altman, Marxman, Ordahl, 
Wooldridge, Muzzy etc…) 

•  Motor testing (up to 40,000 lb thrust 
level) 

–  LPC: Lockheed  Propulsion  Company, 
SRI: Stanford  Research  Institute, 
ONERA (France) 

•  1964-1984: Flight System Development 
–  Target drone programs by Chemical 

Systems Division of UTC  
•  Sandpiper, HAST, Firebolt 

–  LEX Sounding Rocket (ONERA, France) 
–  FLGMOTOR Sounding Rocket 

(Sweeden) 
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CSD’s Li/LiH/PBAN-F2/O2 
Hybrid  

Measured Isp=400 sec 

Firebolt Target Drone 
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Hybrid History Recent History (1981-Present) 
•  1981-1985: Starstruck company developed and sea launched the Dolphin 

sounding rocket (35 klb thrust) 
•  1985-1995: AMROC continuation of Starstruck 

–  Tested 10, 33, 75 klb thrust subscale motors. 
–  Developed and tested the H-1800, a 250 klb LO2/HTPB motor. 

•  1990’s: Hybrid Propulsion Development Program (HPDP) 
–  Successfully launched a small sounding rocket. 
–  Developed and tested 250 klb thrust LO2/HTPB motors. 

•  2002: Lockheed developed and flight tested a 24 inch LO2/HTPB hybrid 
sounding rocket (HYSR). (60 klb thrust) 

•  2003: Scaled Composites and SpaceDev have developed a N2O/HTPB 
hybrid for the sub-orbital vehicle SpaceShipOne. (20 klb thrust) 
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SpaceShipOne 

Dolphin 

AMROC Motor Test 
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Hybrid Combustion Theory (Diffusion Limited Model) 
•  Developed by G. Marxman in early 1960’s. 
•  The purpose is to predict the regression rate. 
•  Assumptions: 

–  Steady-state  operation. 
–  Simple grain  configuration (flat  plate). 
–  No  exothermic  reactions  in  the  solid  grain (No  oxidizer  in  solid  

phase). 
–  Oxidizer  enters  the  port  as  a  uniform  gas. 
–  Le=Pr=1      (                  ) 
–  No  heat  transfer  to  the  ambient  air  through  the  walls  of  the  

rocket. 
–  All  kinetic  effects  are  neglected (Characteristic  times  for  all  

chemical  rxns  <<   characteristic  times  for  diffusion  processes). 
–  Flame  zone  is  infinitely  thin.  (Flame  sheet). No oxidizer  beneath  

the  flame. 
–  Boundary layer is turbulent. 

DLe κ=
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Hybrid Combustion Theory (Diffusion Limited Model)-Cont. 
•  Energy  balance  at  the  fuel  surface: (Steady-state) 

 
        = Total  heat  flux to  the  wall 
        = Effective  heat  of gasification  (Heating  of  the  solid fuel  grain + 
Heat  of evaporation  and  melting  + Heat  of  reaction  for  degradation  of  
the  polymer) 
•  Conductive Heat Transfer Only (No radiation) 

•  Define a Stanton number as 

hv
wQ!

( ) vwvfvfw hvhrhmQ ρρ === !!!
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Hybrid Combustion Theory (Diffusion Limited Model)-Cont. 
•  Combine to find mass flux from the wall 

•  Why did we introduce CH? 
–  Because we can relate CH to Cf 

–  There is a extensive amount of data on Cf for boundary layer literature 
•  Reynolds analogy between the flame and the wall. 

  

–  Assumption: No chemical rxns beneath the flame 

•  Skin friction is related to the friction coefficient 
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Hybrid Combustion Theory (Diffusion Limited Model)-Cont. 
•  Combine to find mass flux from the wall 

•  Here the blowing parameter is defined as 

•  Skin Friction coefficient over a flat plate for TBL with no blowing 

•  Substitute to obtain: 
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Hybrid Combustion Theory (Diffusion Limited Model)-Cont. 
•  Correction for blowing Cf/Cfo : 

–  Lee’s film theory (valid for B<5) 

–  Marxman’s formula based on mixing length arguments (valid for 5<B<100) 
  

–  Introduce the mass flux                and rearrange  to  obtain  the  hybrid  
regression  rate  expression 

–  The only parameter that is hard to estimate is B 

Karabeyoglu 15 

Cf Cf 0 = ln 1+ B( )
B

⎡ 
⎣ 

⎤ 
⎦ 

Cf Cf0 =1.2B−0.77

G ≡ ρeue

( ) 23.02.08.0
2.0

036.0 BxGxr
ef

−
−=

µρ
!



AA284a Advanced Rocket Propulsion 

Stanford University 

Hybrid Combustion Theory (Diffusion Limited Model)-Cont. 
•  Correction for blowing Cf/Cfo  (Blocking effect: CH/CHo  < 1): 

–  Lee’s film theory (valid for B<5) 

–  Marxman’s formula based on mixing length arguments (valid for 5<B<100) 
–    

–  Introduce the mass flux                and rearrange  to  obtain  the  hybrid  
regression  rate  expression 

–  The only parameter that is hard to estimate is B 

Karabeyoglu 16 

Cf Cf 0 = ln 1+ B( )
B

⎡ 
⎣ 

⎤ 
⎦ 

Cf Cf0 =1.2B−0.77

G ≡ ρeue

( ) 23.02.08.0
2.0

036.0 BxGxr
ef

−
−=

µρ
!



AA284a Advanced Rocket Propulsion 

Stanford University 

Hybrid Combustion Theory (Diffusion Limited Model)-Cont. 

•  Calculation of B: 
–  Combustion model is required. 
–  General solution is obtained  by  solving  the  gas-phase  field  equations  with  

regression  rate  equation  as  one  of  the  boundary  conditions. (Difficult 
problem) 

–  Marxman obtained an approximate solution using the mixing  length  concept.  
–  For L/D < 25 B does not change significantly with x. 
–  (L: Length of the grain, D: Hydraulic diameter) Thus threat B as a constant for 

a given oxidizer/fuel selection. 
–  B is a  dual  parameter:  

•  Thermochemical  property  of  the  selected  propellant  
•  Aerodynamic  property (Similarity  parameter  of  the  TBL  profile) 

•  Regression rate law in the nondimensional form: 
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Hybrid Combustion Theory (Diffusion Limited Model)-Cont. 
•  Regression  rate  is  not  a  strong  function  of  B. Mass  flux  has  

the  most  significant  effect  on  the  burning  rate. 

•  A can be assumed to be constant as a first order approximation 
•  For purely  convective  systems,  regression  rate  is  not  a  

function  of  pressure.   

 
                                       where 
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Hybrid Combustion Theory (Diffusion Limited Model)-Cont. 
•  Effect of Radiative Heat Transfer: 

–  Simple model: Grain as gray body, flame zone as the radiative continuum. 
–  The radiative heat transfer can be written as 

–  Here      and     (Effective  radiation  temperature) depend on the  propellant  
combination. 

•  Combined Heat Transfer: 
–  Superposition  is  not  possible  since radiative and convective  heat transfers 

are coupled  through  the blocking  effect. 
–  In the coupled case the following formula can be derived 

–  For 

–  For most fuels without metal additives, the radiative  contribution  can  be  
ignored.  

–    
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Hybrid Combustion Theory (Diffusion Limited Model)-Cont. 
•  Hybrid Burning Rate Law: 

–  If  we  take an average of  the  regression  rate  expression  over  the  grain  
length  and  firing  period, we  obtain  the  space-time  averaged  regression  
rate  expression, namely,  the  burning  rate  law  for  hybrids. 

–  Here oxidizer mass flux is defined as 
–  This is the most commonly used form in the design of hybrid rocket systems 
–  Note that the burning rate law for solid rockets has the form 

•  Typical conditions: 

 
 

Flame height: 0.15- 0.2 BL thickness 
Flame thickness: 0.1 BL thickness 
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Hybrid Combustion Theory (Diffusion Limited Model)-Cont. 

•  Limitations of the Theory: 
–  Each  propellant  combination  has  an  upper  and  

lower  limit  for  the  mass  flux  beyond  which  the  
model  is  not  applicable. 

•  High  mass  fluxes  à  Kinetic  effects  (Pressure  
dependency  via  the  gas  phase  rxn  rates) 

•  Low  mass  fluxes à Radiation  effects (Pressure  
dependency  via  the  radiation  effects) 

–  Transition  to  laminar  boundary layer 
–  Cooking  of  the  propellant (at very low regression 

rates) 
–  Dilution  of  the  oxidizer 
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Effect of Pressure on the Regression Rate 

P

P

Diffusion
Limited
Region

Slow
Chemical
Kinetics

Significant
Radiative
Heat Transfer

log(r)

log(G o)

n
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Thermal Layer Thickness in the Fuel 
•  The heat conduction equation in the solid in reference of frame fixed 

to the regressing surface 

•  Here the heat diffusivity is defined as 
•  During Steady state operating this expression can be integrated to 

yield 

•  Here the characteristic thermal thickness can be given as 

•  Similarly the characteristics time is 

•  During typical operation of a polymeric hybrid fuel 
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Hybrid Rocket Design 

•  Regression  rate:    
•  Oxygen  mass  flow  rate:   
•  Fuel  mass  flow  rate:   
•  (Ab :Burning surface area) 
•  Global  O/F  ratio:   
•  Combustion  products  properties:      ,      ,     = 
(Initially  ignore  the  effect  of  pressure) 
•  Total  mass  flow  rate:   
•  Chamber  pressure:  (Mass  flow  relation)  
•  Thrust:   
•  Specific  impulse:   
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Disadvantage of Classical Hybrids 
•  Low Burning Rates --> Multi-port design 

Issues with multi-port design 
·  Excessive unburned mass fraction 

(i.e. typically in the 5% to 10% range). 

·  Complex design/fabrication, 
requirement for a web support 
structure. 

·  Compromised grain structural 
integrity, especially towards the end 
of the burn. 

·  Uneven burning of individual ports. 

·  Requirement for a substantial pre-
combustion chamber or individual 
injectors for each port. 
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Disadvantage of Multiport Designs 
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CSD (1967) 
13 ports 

AMROC (1994) 
15 ports 

Lockheed 
Martin 
(2006) 

43 ports 
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Approaches for High Regression Rate 

All based on increasing heat transfer to fuel surface 

Technique Fundamental 
Principle 

Shortcoming 

Add oxidizing 
agents self-
decomposing 
materials 

Increase heat 
transfer by 
introducing surface 
reactions 

• Reduced safety 
• Pressure 

dependency 

Add metal particles 
(micron-sized) 

Increased radiative 
heat transfer 

• Limited 
improvement 

• Pressure 
dependency 

Add metal particles 
(nano-sized) 

Increased radiative 
heat transfer 

• High cost 
• Tricky 

processing 
Use Swirl Injection Increased local 

mass flux 
• Increased 

complexity 
• Scaling? 
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Entrainment Mass Transfer Mechanism 

Regression Rate = Entrainment + Vaporization 

Roll
Waves

ρeue

Diffusion 
Flame

Fuel Grain

Reacting
Droplets

Liquid Layer
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