Lecture 8 Hybrid Rocket Propulsion Fundamentals

Prepared by Arif Karabeyoglu

Department of Aeronautics and Astronautics Stanford University and Mechanical Engineering KOC University

Fall 2019

KOÇ UNIVERSITY

Hybrid Rocket Configuration

Fuel and oxidizer are physically separated One of the two is in solid phase

Hybrid Rocket Configuration-AMROC Booster

• AMROC H-1800 (Test motor DM-01): 250 klb thrust

Hybrid Rocket System Solid Fuel Liquid Oxidizer Polymers: Thermoplastics, Cryogenic: LO₂ (Polyethylene, Plexiglas), Storable: H_2O_2 , N_2O , N_2O_4 , Rubbers (HTPB) **IRFNA** Wood, Trash, Wax • Turbulent Turbulent Fuel Diffusion Boundary Grain Flame Layer Oxidizer Post-Combustion Injector Spray Chamber Stanford University KOC UNIVERSI

- Diffusion limited combustion
 - Burning Rate Law: independent of pressure (flux dependent)
- Flame zone away from surface and blocking effect
 - Low regression rate

 $\dot{r} = a G_{ox}^{n}$

KOC UNIVERSITY

Comparison of Hybrid and Solid Rocket Combustion Schemes

Solid

- Active grain
- Premixed flame (globally).
- Heteregeneous rxns.
- Pressure dependent burning rate.
- High burning rates (high thrust density).

Hybrid

- Inert grain
- Diffusion flame in a TBL.
- No heteregeneous rxns.
- Mass flux dependent burning rate.
- Low burning rates (low thrust density).

Advantages of Hybrids

Compared to	Solids	Liquids
Simplicity	Chemically simplerTolerant to processing errors	 Mechanically simpler Tolerant to fabrication errors
Safety	 Reduced chemical explosion hazard Thrust termination and abort possibility 	 Reduced fire hazard Less prone to hard starts
Performance Related	 Better Isp performance Throttling/restart capability 	 Higher fuel density Easy inclusion of solid performance additives (Al, Be)
Other	- Reduced environmental impact	- Reduced number and mass of liquids
Cost	 Reduced development costs are expected Reduced recurring costs are expected 	

Karabeyoglu

Hybrid Rocket History

Early History (1932-1960)

- 1932-1933: GIRD-9 (Soviet)
 - LO₂/Gellified gasoline 60 lbf thrust motor
 - Firsts
 - Hybrid rocket
 - Soviet rocket using a liquid propellant
 - First fast burning liquefying fuel
 - Tikhonravov and Korolev are designers
 - Maximum altitude: 1,500 m
- 1937: Coal/Gaseous N₂O hybrid motor 2,500 lbf thrust (Germany)
- 1938-1939: LOX/Graphite by H. Oberth (Germany)
- 1938-1941: Coal/GOX by California Rocket Society (US).
- 1947: Douglas Fir/LOX by Pacific Rocket Society (US)

8

 1951-1956: GE initiated the investigations in hybrids. H₂O₂/Polyethylene. (US)

Karabeyoglu

Hybrid Rocket History

Era of Enlightenment (1960-1980)

- 1960's: Extensive research at various companies.
 - Chemical Systems Division of UTC
 - Modeling (Altman, Marxman, Ordahl, Wooldridge, Muzzy etc...)
 - Motor testing (up to 40,000 lb thrust level)
 - LPC: Lockheed Propulsion Company, SRI: Stanford Research Institute, ONERA (France)
- 1964-1984: Flight System Development
 - Target drone programs by Chemical Systems Division of UTC
 - Sandpiper, HAST, Firebolt
 - LEX Sounding Rocket (ONERA, France)
 - FLGMOTOR Sounding Rocket (Sweeden)

Firebolt Target Drone

KOC UNIVERSITY

Hybrid History Recent History (1981-Present)

- 1981-1985: Starstruck company developed and sea launched the Dolphin sounding rocket (35 klb thrust)
- 1985-1995: AMROC continuation of Starstruck
 - Tested 10, 33, 75 klb thrust subscale motors.
 - Developed and tested the H-1800, a 250 klb LO₂/HTPB motor.
- 1990's: Hybrid Propulsion Development Program (HPDP)
 - Successfully launched a small sounding rocket.
 - Developed and tested 250 klb thrust LO₂/HTPB motors.
- 2002: Lockheed developed and flight tested a 24 inch LO₂/HTPB hybrid sounding rocket (HYSR). (60 klb thrust)
- 2003: Scaled Composites and SpaceDev have developed a N₂O/HTPB hybrid for the sub-orbital vehicle SpaceShipOne. (20 klb thrust)

OC UNIVERSITY

Hybrid Combustion Theory (Diffusion Limited Model)

- Developed by G. Marxman in early 1960's.
- The purpose is to predict the regression rate.
- Assumptions:
 - Steady-state operation.
 - Simple grain configuration (flat plate).
 - No exothermic reactions in the solid grain (No oxidizer in solid phase).
 - Oxidizer enters the port as a uniform gas.

– Le=Pr=1 (
$$Le = \kappa/D$$
)

- No heat transfer to the ambient air through the walls of the rocket.
- All kinetic effects are neglected (Characteristic times for all chemical rxns << characteristic times for diffusion processes).
- Flame zone is infinitely thin. (Flame sheet). No oxidizer beneath the flame.
- Boundary layer is turbulent.

Hybrid Combustion Theory (Diffusion Limited Model)-Cont.

• Energy balance at the fuel surface: (Steady-state)

$$\dot{Q}_w = \dot{m}_f h_v = \rho_f \dot{r} h_v = (\rho v)_w h_v$$

 \dot{Q}_{w} = Total heat flux to the wall

 h_v = Effective heat of gasification (Heating of the solid fuel grain + Heat of evaporation and melting + Heat of reaction for degradation of the polymer)

• Conductive Heat Transfer Only (No radiation)

$$\dot{Q}_{w} = \dot{Q}_{c} = -\left(\frac{k}{c_{p}}\frac{\partial h}{\partial y}\right)_{w}$$

• Define a Stanton number as

$$C_{H} \equiv \frac{\dot{Q}_{c}}{\rho_{b} u_{b} \Delta h} \qquad \Delta h = h_{b} - h_{w}$$

Hybrid Combustion Theory (Diffusion Limited Model)-Cont.

• Combine to find mass flux from the wall

$$\rho_f \dot{r} = G_f = \frac{\dot{Q}_c}{h_v} = C_H \rho_b u_b \frac{\Delta h}{h_v}$$

- Why did we introduce C_H ?
 - Because we can relate C_H to C_f
 - There is a extensive amount of data on C_f for boundary layer literature
- Reynolds analogy between the flame and the wall.

$$\frac{\dot{Q}_c}{\Delta h} = \frac{\tau_w}{u_b}$$

- Assumption: No chemical rxns beneath the flame
- Skin friction is related to the friction coefficient

$$\tau_w = 0.5 C_f \rho_e u_e^2$$

Hybrid Combustion Theory (Diffusion Limited Model)-Cont.

• Combine to find mass flux from the wall

$$C_H = 0.5C_f \frac{\rho_e u_e^2}{\rho_b u_b^2} \qquad \dot{r} = \frac{C_f \rho_e u_e B}{2\rho_f}$$

• Here the blowing parameter is defined as

Aerodynamic
$$Aerodynamic = \frac{2(\rho v)_w}{\rho_e u_e C_f} = \frac{u_e}{u_b} \frac{\Delta h}{h_v}$$
 Thermochemical

• Skin Friction coefficient over a flat plate for TBL with no blowing

$$C_{f0} = 0.06 \,\mathrm{Re}_x^{-0.2}$$
 $\mathrm{Re}_x = \frac{\rho_e u_e x}{\mu_e}$

• Substitute to obtain:

$$\dot{r} = 0.03 \frac{\rho_e}{\rho_f} u_e \operatorname{Re}_x^{-0.2} \left(\frac{C_f}{C_{fo}} \right) B$$

Hybrid Combustion Theory (Diffusion Limited Model)-Cont.

- Correction for blowing C_f/C_{fo} :
 - Lee's film theory (valid for B<5)

$$C_f \middle/ C_{f0} = \ln \left[\frac{(1+B)}{B} \right]$$

Marxman's formula based on mixing length arguments (valid for 5<B<100)

$$C_f/C_{f0} = 1.2B^{-0.77}$$

- Introduce the mass flux $G \equiv \rho_e u_e$ and rearrange to obtain the hybrid regression rate expression

$$\dot{r}(x) = \frac{0.036}{\rho_f \mu_e^{-0.2}} G^{0.8} x^{-0.2} B^{0.23}$$

- The only parameter that is hard to estimate is B

Hybrid Combustion Theory (Diffusion Limited Model)-Cont.

- Correction for blowing C_f/C_{fo} (Blocking effect: $C_H/C_{Ho} < 1$):
 - Lee's film theory (valid for B<5)

$$C_f \middle/ C_{f0} = \ln \left[\frac{(1+B)}{B} \right]$$

Marxman's formula based on mixing length arguments (valid for 5<B<100)

$$C_f/C_{f0} = 1.2B^{-0.77}$$

- Introduce the mass flux $G \equiv \rho_e u_e$ and rearrange to obtain the hybrid regression rate expression

$$\dot{r}(x) = \frac{0.036}{\rho_f \mu_e^{-0.2}} G^{0.8} x^{-0.2} B^{0.23}$$

- The only parameter that is hard to estimate is B

Hybrid Combustion Theory (Diffusion Limited Model)-Cont.

- Calculation of *B*:
 - Combustion model is required.
 - General solution is obtained by solving the gas-phase field equations with regression rate equation as one of the boundary conditions. (Difficult problem)
 - Marxman obtained an approximate solution using the mixing length concept.
 - For L/D < 25 B does not change significantly with *x*.
 - (L: Length of the grain, D: Hydraulic diameter) Thus threat B as a constant for a given oxidizer/fuel selection.
 - B is a dual parameter:
 - Thermochemical property of the selected propellant
 - Aerodynamic property (Similarity parameter of the TBL profile)
- Regression rate law in the nondimensional form:

$$\dot{r}_{nd} = \frac{G_f}{G} \frac{2}{C_{fo}} = 1.2 B^{0.23} = cons.$$

Hybrid Combustion Theory (Diffusion Limited Model)-Cont.

• Regression rate is not a strong function of *B*. Mass flux has the most significant effect on the burning rate.

$$\dot{r}(x) = AG^{0.8}x^{-0.2}$$
 $A = \frac{0.036}{\rho_f \mu_e^{-0.2}}B^{0.23}$

- A can be assumed to be constant as a first order approximation
- For purely convective systems, regression rate is not a function of pressure.

where

Hybrid Combustion Theory (Diffusion Limited Model)-Cont.

- Effect of Radiative Heat Transfer:
 - Simple model: Grain as gray body, flame zone as the radiative continuum.
 - The radiative heat transfer can be written as

$$\dot{Q}_r = \sigma \varepsilon_w \left(\varepsilon_g T_r^4 - T_w^4 \right) \qquad \qquad \varepsilon_g = 1 - e^{-\alpha N z} = F(P_c)$$

- Here \mathcal{E}_w and T_r (Effective radiation temperature) depend on the propellant combination.
- Combined Heat Transfer:
 - Superposition is not possible since radiative and convective heat transfers are coupled through the blocking effect.
 - In the coupled case the following formula can be derived

$$\dot{r} = \frac{Q_c}{\rho_f h_v} \left[e^{-\dot{Q}_r / \dot{Q}_c} + \frac{Q_r}{\dot{Q}_c} \right]$$

For $\dot{Q}_r << \dot{Q}_c$
 $\dot{r}(x) = AG^{0.8}x^{-0.2} + \frac{\dot{Q}_r}{\rho_f h_v}$

 For most fuels without metal additives, the radiative contribution can be ignored.

Hybrid Combustion Theory (Diffusion Limited Model)-Cont.

- Hybrid Burning Rate Law:
 - If we take an average of the regression rate expression over the grain length and firing period, we obtain the space-time averaged regression rate expression, namely, the burning rate law for hybrids.

$$\overline{\dot{r}} = a \, G_o^n \qquad n \approx 0.5 - 0.8$$

 \dot{m}_{ox} : Oxidizer Flow Rate A_p : Average Fuel Port Area

- Here oxidizer mass flux is defined as $G_o = \dot{m}_{ox} / A_p$
- This is the most commonly used form in the design of hybrid rocket systems
- Note that the burning rate law for solid rockets has the form

$$\bar{\dot{r}} = c P_c^n$$

• Typical conditions:

$$B \approx 7 - 15$$
 $\frac{O/F}{(O/F)_{stoic}} < 1$ $T_w = 600 - 800 K$ $T_b = 1500 K$

Flame height: 0.15- 0.2 BL thickness

Flame thickness: 0.1 BL thickness

Hybrid Combustion Theory (Diffusion Limited Model)-Cont.

- Limitations of the Theory:
 - Each propellant combination has an upper and lower limit for the mass flux beyond which the model is not applicable.
 - High mass fluxes → Kinetic effects (Pressure dependency via the gas phase rxn rates)
 - Low mass fluxes → Radiation effects (Pressure dependency via the radiation effects)
 - Transition to laminar boundary layer
 - Cooking of the propellant (at very low regression rates)
 - Dilution of the oxidizer

Effect of Pressure on the Regression Rate

Thermal Layer Thickness in the Fuel

• The heat conduction equation in the solid in reference of frame fixed to the regressing surface

$$\frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial x^2} + \dot{r}(t) \frac{\partial T}{\partial x}$$

- Here the heat diffusivity is defined as $\kappa \equiv \lambda_f / \rho_f C_{pf}$
- During Steady state operating this expression can be integrated to yield $T(x) = (T_s T_a)e^{-x/\delta_T} + T_a$
- Here the characteristic thermal thickness can be given as $\delta_{T} = \kappa/\dot{r}$
- Similarly the characteristics time is

$$au_T = \kappa / \dot{r}^2$$

• During typical operation of a polymeric hybrid fuel

$$\delta_T = 10^{-6} / 10^{-3} = 10^{-3} m$$
 $\tau_T = 10^{-6} / 10^{-6} = 1 \sec^{-6}$

Hybrid Rocket Design

- Regression rate: $\overline{\dot{r}} = aG_o^n$
- Oxygen mass flow rate: $\dot{m}_o = A_p \underline{G}_o$
- Fuel mass flow rate: $\dot{m}_f = A_b \rho_f \dot{r}$
- (*A_b* :Burning surface area)
- Global O/F ratio: $O/F = \dot{m}_o / \dot{m}_f$
- Combustion products properties: T_c , M_c , $c^* = f(O/F)$ (Initially ignore the effect of pressure)
- Total mass flow rate: $\dot{m} = \dot{m}_o + \dot{m}_f$
- Chamber pressure: (Mass flow relation) $P_c = \frac{mc*\eta}{r}$
- Thrust: $F = C_F P_c A_n$
- Specific impulse: $Isp = \frac{F}{\dot{mg}_o}$

Disadvantage of Classical Hybrids

Low Burning Rates --> Multi-port design

Issues with multi-port design

- Excessive unburned mass fraction (i.e. typically in the 5% to 10% range).
- Complex design/fabrication, requirement for a web support structure.
 - Compromised grain structural integrity, especially towards the end of the burn.
 - Uneven burning of individual ports.
 - Requirement for a substantial precombustion chamber or individual injectors for each port.

Disadvantage of Multiport Designs

CSD (1967) 13 ports

26

Approaches for High Regression Rate

Technique	Fundamental Principle	Shortcoming
Add oxidizing agents self- decomposing materials	Increase heat transfer by introducing surface reactions	Reduced safetyPressure dependency
Add metal particles (micron-sized)	Increased radiative heat transfer	 Limited improvement Pressure dependency
Add metal particles (nano-sized)	Increased radiative heat transfer	High costTricky processing
Use Swirl Injection	Increased local mass flux	Increased complexityScaling?

All based on increasing heat transfer to fuel surface

Karabeyoglu

Entrainment Mass Transfer Mechanism

