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•  System: A group of entities distinguished from its 
surroundings 
–  Mass and energy transfer is allowed 
–  Change of volume is allowed 
–  Example: Human body 

•  Transfer quantities 
–  Heat (transfer to the system): 
–  Work (done by the system): 
–  Mass transfer: 

•  Definitions: 
–  Open System: Mass transfer allowed 
–  Closed System: Mass transfer not allowed 
–  Adiabatic System: Heat transfer is not allowed 
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Reference on Thermodynamics: I. Klotz and R. Rosenberg, “Chemical Thermodynamics” 
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Review of Thermodynamics-Definitions 
•  State of the system: Quantify the status of the system 

–  Extrinsic properties: E, H, G, M, N 
–  Intrinsic properties: T, P, z, K 
–  Extrinsic properties can be converted to intrinsic properties 

•  Example: e=E/M 

•  Change of State:  
–  Potential drives the system to change 
–  When the potential diminishes system reaches an equilibrium. 

•  Mission of Thermodynamics 
–  Governs the rules of change of state 
–  Move from state A to state B is feasible or not for specified heat 

and mass transfer and work done 
–  Thermodynamics does not answer the questions how fast or what 

is the exact form of the process.  
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•  Zeroth Law: 
–  If A is in equilibrium with C and B is in equilibrium with C, than A 

and B must be in equilibrium. 

•  First Law: 
–  Conservation of energy 
–  Change in the internal energy must be equal to the heat added to 

the system minus the work done by the system 

–  For simple materials only work is the pressure work. 

–  In terms of enthalpy 
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•  Second Law: 
–  Reversible/Irreversible processes 

•  Imagine a time dependent physical process governed by a set of 
equations 

•  If these equations are invariant with regard to the sign of the time 
variable the process is reversible, else irreversible 

–  There exists a system variable, entropy, with the following 
definition for a single component system 

•  Explicit property 
–  Second law of thermodynamics 
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•  Second Law: 
–  Or 

–  For an isolated system 

–  Entropy is a measure of “disorder” or lack of “information” on the 
possible microstates 

–  Boltzmann’s Equation:  
–  All real processes are irreversible 

•  Third Law: 
–  Planck’s Formulation: Value of entropy of a pure liquid or solid 

approaches zero at 0 K 

 

Review of Thermodynamics-Laws 
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•  Heat machines convert thermal energy into mechanical energy according to the 
laws of thermodynamics. 

•  Many machines work in cycles. Working fluid returns to the original state that it 
started. 

•  Carnot Cycle:  
–  Two constant temperature heat transfer processes and two isentropic 

compression expansion processes 
–  Carnot cycle efficiency: 

•  Bryton Cycle: 
–  Two constant pressure heat transfer processes and two isentropic 

compression expansion processes 
–  Bryton cycle efficiency: 

•  Cycle efficiency increases with increasing temperature ratio 
•  Carnot cycle is always the best efficiency heat machine operating 

between two specified temperature extremes (T1 and T3). 

 

Review of Thermodynamics-Cycles 
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•  Carnot Cycle Efficiency 

•  Isothermal/Isentropic Branches: 

•  Combine: 
 

 

Review of Thermodynamics-Carnot Cycle 
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•  Bryton Cycle Efficiency 

•  Perfect Gas: 

•  From Isentropic and Isobaric Branches: 
 

 

Review of Thermodynamics - Bryton Cycle 
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•  Work done by the fluid 

•  For the same extreme 
temperatures the Carnot cycle is 
more efficient than the Bryton cycle 

•  This conclusion is valid for all other 
cycles.  

•  Thus Carnot cycle sets the upper 
limit for the efficiency of a heat 
engine operating at two set 
temperatures 

•  Nonideal behavior is due to 
–  Non-isothermal heat transfer  
–  Non-isentropic expansion and 

compression 
 

 

Review of Thermodynamics – Cycle Comparison 
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•  State equation relates the state variables of a substance to 
each other 

•  Gibb’s Phase Rule: 
Number of Phases + Independent Intensive Properties  

= 
2 + Number of Components 

  
( P + V = C +2 ) 

–  Examples 
•  If P=1 and C=1, V=2 (One phase one component) 
•  If P=2 and C=1, V=1 (Two phase one component) 
•  If P=1 and C=2, V=3 (One phase two component) 

State Equation 
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•  State Equation for a one component system: 

•  Examples 
–  Ideal Gas Equation: 

–  Ideal Liquid Equation: 

 

State Equation 
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•  Ideal gas approximation fails at high pressures/low temperatures 
–  Volume of the gas molecules become non trivial 
–  Attraction/repulsion forces between molecules become significant 

•  Real gas. Compressibility factor (read z from charts) 

•  Equation of State (EOS) for real gases (Cubic equations) 
–  Van der Waals 

–  Redlich-Kwong EOS 

–  Peng-Robinson EOS 
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P-V-T Diagram of a Single Component Substance 
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P-h Diagram Molecular Oxygen 
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Saturation Pressure and Density Plots for N2O 
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Saturation Pressure vs Saturation Density for Popular Oxidizers 
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•  Specific heats are defined as 

•  For an ideal gas 

•  For a calorically perfect gas both specific heats are constant 

•  N is the internal degrees of freedom (fully excited) 

Specific Heats 
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•  Monotonic gas: N=3 (3 translational DoF) 
•  Diatomic gas 

–  Vibrational modes NOT excited: N=5 (+2 rotational DoF) 
–  Vibrational modes fully excited: N=7 (+2 vibrational DoF) 

–  For intermediate temperatures 

–  Data for diatomic molecules 

Specific Heats 
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Characteristic Temperature N2, K O2, K 

Rotational 2.9 2.1 

Vibrational 3,390 2,270 

Dissociation 113,000 59,500 

Ionization 181,000 142,000 

Cons. sPlanck':h
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•  In a thermal rocket the propellant molecules are thermalized by addition of heat 
in a chamber. 

•  This thermal energy (random motion of the molecules) is converted to the useful 
directional velocity needed for thrust in the nozzle.  

•  The heat source varies 
–  Nuclear energy: Thermonuclear rockets 
–  Chemical bond energy: Chemical rockets 
–  Electric energy: Resistojets and Arcjets 
–  Thermal energy of the stored propellant: Cold gas thrusters 

 

Thermal Rocket – General Concept 
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•  Note that this is not really a cycle 
since the propellant never returns to 
its original state 

•  The velocity at the nozzle exit, ue, 
can be estimated using the 
conservation of energy along a 
streamline 

•  The maximum possible exit velocity 
(or Isp) is obtained for infinite 
expansion (he=0) 

•  For calorically perfect gas 

 

Thermal Rocket – Thermodynamic Process 

RTcc vp =−

2
2
1

eetc uhh =−

Karabeyoglu 
 

21 
 

( )etce hhu −= 2

tce hu 2=

Mw
TRu tcu

e 1
2
−

=
γ
γ

•  For monatomic gas: 

 

Mw
TRu tcu

e 21.2=



Advanced Rocket Propulsion 

Stanford University 

•  Lets compare this maximum velocity to the other fundamental velocities that 
can be defined in a monatomic gas 

 

Thermal Rocket – Velocities in Monatomic Gas 
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Review of Chemistry 
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•  Atomic Model: Negatively charged electrons are orbiting around the positively 
charged nucleus 

•  Schrodinger’s wave equation governs the size, number and shape of the orbitals 

•  Square norm of the wave function is a probability density function for the position 
or momentum of the electron 

•  Eigenvalue problem – Only discrete levels of energy is possible 
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Atomic Structure (Quantum Mechanics) 
•  Principal quantum number: n=1, 2, 3 … 

–  General energy level of the shell 
–  n=1 (K), n=2 (L), n=3 (M),… 

•  Angular momentum quantum number: l=0, 1, 
…(n-1) [Orbital angular momentum] 

–  Determines the shape of the orbitals 
–  l=0 (s), l=1 (p), l=2, (d), … 

•  Magnetic quantum number: ml: +l, +l-1,…0,
…-(l-1), l 

–  Determines the number of orbitals 
•  Electron Spin quantum number, ms 

–  Each electron has: s=½ or -½ [Intrinsic 
angular momentum the electron] 

 

Pauli Exclusion Principle: 
“No two electrons in an atom may posses 

identical sets of values of the four 
quantum numbers n, l, ml,, ms “ 

 

Review of Chemistry – Energy Level Diagrams 
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•  Quantum Mechanics Predicts: 
–  Shells, subshells, orbitals 

•  n=1: K shell  (2 electrons) 
–  1s subshell (1 orbital): electrons 

•  n=2: L shell (8 electrons) 
–  2s subshell (1 orbital): 2 electrons  
–  2p subshell (3 orbitals): 6 electrons 

•  n=3: M shell  
–  3s subshell (1 orbital): 2 electrons  
–  3p subshell (3 orbitals): 6 electrons 
–  3d subshell: (5 orbitals): 10 electrons 

•  Argononic structures: Completely full shells (Noble elements: He, 
Ne, Ar …), Octets 

•  Valance electrons: Electrons in the shell that is not completely 
filled 

 
 

Review of Chemistry 
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Periodic Table of Elements 
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•  Elements in the same group have closely related physical and chemical 
properties (same number of valance electrons) 

•  Elements in the periods have their valance electrons in the same shell  
•  Left side of the periodic table : Metals (Fuels) 

–  High electric and thermal conductivity, metallic luster, malleable, 
ductile 

•  Right side of the periodic table : Nonmetals (Oxidizers) 
•  Metalloids in the middle: B, Si, Ge, As 
•  Chemical Bonds: 

–  Octet rule: Filled shell rule 
•  Share or gain electrons to fill their shells to the Argononic structures 

–  Covalent Bonds: Share pairs of electrons (H-C) 
–  Ionic Bonds: Take or give electrons (Li+Cl-) 

•  Electronegativity: Affinity of an atom to an electron 
–  The difference in electronegativity determines the covalent/ionic nature of the 

bond (Upper right highly electronegative, lower left poorly electronegative) 
•  Strained bonds (C3H6, C2H2) and Resonance Structures (N2O) 

Review of Chemistry 
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Electronegativity of the Elements (Pauling Scale) 

RadiusCovelent:covr

Review of Chemistry – Electronegativity of the Elements 
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Influence of Electronegativity on Chemical Bonding 

Review of Chemistry – Electronegativity and Bonding 
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