Lecture 17 Electric Propulsion

Prepared by Arif Karabeyoglu

Department of Aeronautics and Astronautics
Stanford University
and
Mechanical Engineering
KOC University

Fall 2019

Electric Propulsion Fundamentals

- Chemical systems are capable of delivering very high thrust forces, but the energy storage capability in the chemical bonds limits the maximum exhaust velocity, thus the lsp.
- Concept has been discovered by pioneers: Tsiolkovski, Goddard, Oberth.
- First demonstrated by Vladimir Glusko, USSR
- Electric propulsion systems require large power source which limits their use.
- Commonly used in applications requiring very high lsp's, but low thrust densities.
 - Satellite propulsion
 - Interplanetary missions
- Very low thrust, heavy power supply leads to very low acceleration (10⁻⁴-10⁻⁶ g's): influences flight strategy- spiral trajectory
- Three general kinds:
 - Electrothermal: Use electric energy to thermalize the propellant (Isp limited by order of speed of sound)
 - Electrostatic: Use electric fields to accelerate ionized propellant (speed of light)
 - Electromagnetic: Use electromagnetic fields to accelerate plasma propellant (speed of light)

Stanford University

Electric Propulsion – Common Types

	Common	lsp,	Power Range, W	Thrust Range,	Typical
	Propellants	sec		mN	Efficiency, %
Electrothermal Control of the Contro					
Resistojet	N2H2, NH3	~300	500-1500	100-500	80
Arcjet	N2H2, H2	500-2,000	300-100,000	200-2,000	35
Electrostatic Electrostatic					
lon	Xe	3,000	50-2500	10-200	70
Hall Effect	Xe	1,500-2000	1500-5000	80-200	50
Electromagnetic Electromagnetic Electromagnetic Electromagnetic Electromagnetic Electromagnetic Electromagnetic					
Pulsed Plasma	Teflon	1,000	1-200	1-100	5
MPD	NH3, H2	2,000-5,000	1,000-4 10 ⁶	1,000-2 10 ⁶	25

Electric Propulsion – Important Equations

- Electric Propulsion System Efficiency:
 - Conversion of electric energy to kinetic energy

$$\eta = \frac{\dot{E}_k}{P_e} = \frac{\dot{m} v_e^2}{2P_e} = \frac{T v_e}{2P_e} = \frac{T \operatorname{Isp} g_o}{2P_e} = \frac{T^2}{2 \dot{m} P_e}$$

$$T: Thrust$$

$$\dot{m}: \operatorname{Propellant} Flow Rate$$

 η : Efficiency

 $P_{e} = Elecric Power$

T: Thrust

 v_{\circ} : Exit Velocity

- Note that the effect of the exit pressure on the thrust force has been neglected. This is accurate for most systems, but not all types including MPD, resistojets
- Basic Analysis: Required burn time mission duration

$$\Delta V = \frac{T}{\overline{M}} t_b \qquad T = \frac{2 P_e \eta}{v_e}$$

Combine

$$t_b = \frac{v_e \Delta V}{2\eta \left(P_e/\overline{M}\right)}$$

 \overline{M} : Averege Mass – Spacecraft

 t_h : Mission Time

 Δv : DeltaV of Mission

- Specific power, P_{a}/M , is critical to limit mission time
- This analysis is only valid if the propellant mass is a small fraction of the initial mass

Electric Propulsion – Important Equations

Power Supply – Specific Power:

$$\alpha = \frac{P_e}{M_{pwr}}$$

 α : Specific Power $M_{pwr} = Mass Power Plant$

 M_{pwr} includes the mass of the power system, propellant feed system and the engine itself

$$M_{pwr} = \frac{P_e}{\alpha} = \frac{\dot{m} v_e^2}{2 \eta \alpha} = \frac{M_{prop} v_e^2}{2 \eta t_b \alpha}$$

With the use of rocket eqn.

$$\frac{M_i}{M_p} = \frac{e^{\Delta V/v_e}}{1 + \left(1 - e^{\Delta V/v_e}\right)\left(v_e^2/2\eta t_b \alpha\right)}$$

 M_p : Payload Mass

 M_{prop} : Propellant Mass

 $M_i: M_p + M_{prop} + M_{pwr}$

- Note that for a given initial mass to payload ratio there is an optimum ΔV / $v_{_e}$
- There is an optimum lsp for a given system/mission for electric propulsion systems
 - -This is because increasing Isp increases power plant mass, but reduces propellant mass
 - -A balance which does not exist in a chemical rocket

Electrothermal Systems

Resistojet:

- Resistively heat the propellant using a heat exchanger
- Simple, but low performance system
- Performance limited by the melting temperature of of the heat exchanger.
- Isp better than monoprops and cold gas thrusters
- Mature technology

Arcjet:

- Arc discharge heats the propellant
- Arc is generated by
 - Low DC voltage high current
 - · High frequency high voltage
- Local heating and thermal losses limit efficiency
- Electron life limits life to about 1,500 hours
- Mature technology

Electrostatic Systems

$\vec{F} = e\vec{E} + e\vec{v}_e \times \vec{B}$

Coulomb force

- Ion Engine:
 - Propellant is ionized
 - Electron bombardment
 - Radiofrequency excitation
 - Accelerated using high electrostatic potential (~1,000V)
 - Low density ion field (not a plasma)
 - Plume is neutralized to prevent charge built up
 - High power requirement limits usage
 - Mature technology
- Hall Effect Thruster
 - Gridless electrostatic propulsion system
 - External hallow cathode ring shaped anode: ~300 V
 - Magnetic field spirals electrons ionizing the gas
 - lons are accelerated by the electric potential
 - First developed and extensively used by Russians
 - Currently being used extensively in the Western world
 - Optimum Isp in1,500 s, low voltage and moderate power consumption makes this a very attractive option.

New Application: Orbit raising for GeoSats Stanford University

Electrons

lonized

Electrostatic Systems - General Scaling

- Ion velocity and Isp: $v_e = \left(\frac{2qV}{m_{ion}}\right)^{1/2}$ $Isp = \frac{1}{g_o} \left(\frac{2qV}{m_{ion}}\right)^{1/2}$
- Current mass flow rate relationship: $\dot{m} = J \frac{m_{ion}}{q}$

- m_{ion} : Ion Mass
- $q: Ion Ch \arg e$
- J: Current

- Thrust relationship $T = \dot{m} v_e = J \left(\frac{2 m_{ion} V}{q} \right)^{1/2}$
- Propellant selection $T \propto \sqrt{m_{ion}/q}$ $Isp \propto \sqrt{q/m_{ion}}$
- In order to maximize thrust, one must use large MW and low ionic charge
- The mission duration can be estimated to be $t_b = \frac{\Delta V}{(P_e/M)\eta} \left(\frac{V}{2} \frac{q}{m_{ion}}\right)^{1/2}$ • Note that P_e =V J+ power for ionization
- Reducing mission duration requires:
 - Low values for voltage and ion charge to mass ratio
 - High efficiency and specific power

Electromagnetic Systems $\vec{F} = e\vec{E} + e\vec{v}_e \times \vec{B}$ • Pulse Plasma Thruster:

- Very simple system
- Solid propellant is formed into a plasma by electric discharge
- Plasma is accelerated using electromagnetic field
- Very low efficiency
- Pulsed mode operation

Magnetoplasmadynamic (MPD):

- Large current discharge applied between the two electrodes ionizes the gas
- Self Induced MPD: Magnetic field is self induced by the current
- Applied field MPD: Magnetic field externally applied
- The plasma is accelerated by the Lorentz force
- Large thrust force possible requires very large power levels, high lsp feasible
 Cathode erosion is an issue

Lorentz force

ACCELERATOR

NEUTRALIZER

Electric Propulsion Systems – Overall Performance

Ref: "Sutton, "Rocket Propulsion Elements"

