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•  Chemical systems are capable of delivering very high thrust forces, but the 
energy storage capability in the chemical bonds limits the maximum exhaust 
velocity, thus the Isp. 

•  Concept has been discovered by pioneers: Tsiolkovski, Goddard, Oberth. 
•  First demonstrated by Vladimir Glusko, USSR 
•  Electric propulsion systems require large power source which limits their use. 
•  Commonly used in applications requiring very high Isp’s, but low thrust 

densities. 
–  Satellite propulsion 
–  Interplanetary missions 

•  Very low thrust, heavy power supply leads to very low acceleration (10-4-10-6 
g’s): influences flight strategy- spiral trajectory 

•  Three general kinds: 
–  Electrothermal: Use electric energy to thermalize the propellant (Isp limited by order 

of speed of sound) 
–  Electrostatic: Use electric fields to accelerate ionized propellant (speed of light) 
–  Electromagnetic: Use electromagnetic fields to accelerate plasma propellant (speed 

of light) 
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 	 Common 
Propellants	

Isp,  
sec	

Power Range, W	 Thrust Range, 
mN	

Typical 
Efficiency, %	

Electrothermal	
Resistojet	 N2H2, NH3	 ~300	 500-1500	 100-500	 80	
Arcjet	 N2H2, H2	 500-2,000	 300-100,000	 200-2,000	 35	

Electrostatic	
Ion 	 Xe	 3,000	 50-2500	 10-200	 70	
Hall Effect	 Xe	 1,500-2000	 1500-5000	 80-200	 50	

Electromagnetic	
Pulsed Plasma	 Teflon	 1,000	 1-200	 1-100	 5	
MPD	 NH3, H2	 2,000-5,000	 1,000-4 106	 1,000-2 106	 25	
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•  Electric Propulsion System Efficiency: 
–  Conversion of electric energy to kinetic energy 

•  Note that the effect of the exit pressure on the thrust force has been neglected. 
This is accurate for most systems, but not all types including MPD, resistojets 

•  Basic Analysis: Required burn time - mission duration 

 
–  Combine 

–  Specific power, Pe/M, is critical to limit mission time 
–  This analysis is only valid if the propellant mass is a small fraction of the initial mass 
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•  Power Supply – Specific Power: 

•  Mpwr includes the mass of the power system, propellant feed system and the 
engine itself 

 
•  With the use of rocket eqn. 

•  Note that for a given initial mass to payload ratio there is an optimum  
•  There is an optimum Isp for a given system/mission for electric propulsion 

systems 
– This is because increasing Isp increases power plant mass, but reduces propellant mass 
– A balance which does not exist in a chemical rocket   
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•  Resistojet: 
–  Resistively heat the propellant using a heat  
exchanger 
–  Simple, but low performance system 
–  Performance limited by the melting temperature of  
of the heat exchanger. 
–  Isp better than monoprops and cold gas thrusters 
–  Mature technology 

•  Arcjet: 
–  Arc discharge heats the propellant 
–  Arc is generated by 

•  Low DC voltage high current 
•  High frequency high voltage 

–  Local heating and thermal losses limit efficiency 
–  Electron life limits life to about 1,500 hours 
–  Mature technology 
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•  Ion Engine: 
–  Propellant is ionized 

•  Electron bombardment 
•  Radiofrequency excitation 

–  Accelerated using high electrostatic potential  
(~1,000V) 
–  Low density ion field (not a plasma) 
–  Plume is neutralized to prevent charge built up 
–  High power requirement limits usage 
–  Mature technology 

•  Hall Effect Thruster 
–  Gridless electrostatic propulsion system 
–  External hallow cathode ring shaped anode: ~300 V 
–  Magnetic field spirals electrons ionizing the gas 
–  Ions are accelerated by the electric potential 
–  First developed and extensively used by Russians 
–  Currently being used extensively in the Western world 
–  Optimum Isp  in1,500 s, low voltage and moderate power consumption makes this a very 

attractive option. 
–  New Application: Orbit raising for GeoSats 

BveEeF e

!!!!
×+= Coulomb force 



AA 284a Advanced Rocket Propulsion 

Stanford University 

Electrostatic Systems – General Scaling 

Karabeyoglu 8 

•  Ion velocity and Isp: 

•  Current mass flow rate relationship: 

•  Thrust relationship 

•  Propellant selection 

•  In order to maximize thrust, one must use large MW and low ionic charge 

•  The mission duration can be estimated to be 
•  Note that Pe=V J+ power for ionization 
•  Reducing mission duration requires: 

–  Low values for voltage and ion charge to mass ratio 
–  High efficiency and specific power 
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•  Pulse Plasma Thruster: 
–  Very simple system 
–  Solid propellant is formed into a plasma by 
      electric discharge 
–  Plasma is accelerated using electromagnetic 
      field 
–  Very low efficiency 
–  Pulsed mode operation 

•  Magnetoplasmadynamic (MPD): 
–  Large current discharge applied between the two 
      electrodes ionizes the gas 
–  Self Induced MPD: Magnetic field is self induced  
      by the current 
–  Applied field MPD: Magnetic field externally applied 
–  The plasma is accelerated by the Lorentz force 
–  Large thrust force possible – requires very large 
      power levels, high Isp feasible 
–  Cathode erosion is an issue 
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Ref: “Sutton, “Rocket Propulsion Elements” 


