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Mass Model  
•  Propulsion System 

–  Tanks (estimate) 
–  Feed system  

•  Turbo pump (assign a value) 
•  Pressurization system (estimate) 
•  Shut off and throttling valves (assign a value) 
•  Other components (assign a value) 

–  Combustion chamber (estimate) 
–  Nozzle (estimate) 
–  Ignition system (assign a value) 

•  Rocket structures (assign percentage) 
•  Attitude control system (assign a value or estimate) 
•  Avionics (assign a value) 
•  Other systems (assign a value) 
•  Payload interface (Percent of payload mass) 
•  Mass margin (Percent of the estimated structural mass) 
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Tank Design  
•  Storage of liquid oxidizer and fuel in hybrid and liquid 

rockets 
•  Large component of the structural mass fraction 

especially for pressure fed systems 
•  Factors that influence the design 

–  Liquid mass-overall volume 
–  Geometrical constraints –tank shape and configuration 
–  Tank weight – tank material selection 
–  Pump fed vs. pressure fed – internal pressure (MEOP) 
–  Cryogenic vs storable – insulation 
–  Corrosiveness of the liquid – tank material selection 
–  Chemical stability of the liquid – tank material selection 
–  Gravitational environment - diaphragms for zero g 
–  Anti-Slosh - Baffles 

Karabeyoglu 3 



AA 284a Advanced Rocket Propulsion 

Stanford University 

Tank Design  
•  Structural design of the tanks 
•  Loads 

–  Internal pressure 
–  Acceleration 
–  Point loads 

•  Primary failure modes 
–  Yield/Rupture under internal pressure 
–  Buckling (especially for thin walled tanks of pump fed systems)  

•  Structural materials 
–  Metals: aluminum, steel, titanium 
–  Composite: Carbon/Epoxy 

•  For cryogenic oxidizers such as LOX, composite 
technology is still in the R&D Phase 
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Tank Design  
•  Failure envelope for metals 
•  Yield stress: Significant plastic deformation starts 
•  Ultimate stress: Material breaks 
•  Failure criteria based on yield for isotropic ductile 

materials (i.e. metals) 
–  Tresca (maximum shear stress) 

–  Von Mises (maximum strain energy) 

•  Tresca is more conservative compared to von Mises 
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Tank Design  
•  Important material properties 

–  Strength/density 
–  Ductility 
–  Cost 
–  Ease of manufacturing (welding, machining, forming) 
–  Low temperature characteristics 
–  Liquid compatibility 

•  Note that welding with no post heat treatment reduces yield strength 
•  Aluminum 2219 is widely used in cryogenic tank fabrication 
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Structural Material Tensile Yield Strength, ksi Specific Density 

Aluminum 2219 60.0 (31.0 welded) 2.7 

Graphite/Epoxy 130.0 1.55 

Steel 4130  125.0 7.83 

Aluminum Lithium ~80 2.5 
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•  Tanks used in propulsion applications are thin walled shells. Use 
shell theory for structural design 

•  For preliminary design, the bending moments can be ignored and the 
shell equations can be reduced to membrane equations 

•  For axisymmetric geometries the membrane stresses are 
–  Meridional stress: 

–  Circumferential stress (Hoop stress): 

Tank Design  
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Tank Design  
•  Tanks can be fabricated from combination of the  

following special geometries: 
–  Cylinder:  

–  Sphere: 

–  Ellipsoid: (semi-major axis: a, semi-minor axis: b) 
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Tank Design  
•  Spherical tank: (with radius r ) 

–  Stress field: 

–  From Tresca criterion: 

–  Tank wall thickness: 

–  Tank mass: 

–  Liquid mass: 

–  Define the tank efficiency: 
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Tank Design  
•  Cylindrical tank:  
•  Different designs are possible based on various head geometries 

–  Hemisphere: 
•  Ideal end closure to minimize stress concentration 
•  Expensive to manufacture, Ends are too long 

–  Ellipsoidal: 
•  Typical a/b is 2 
•   Hoop stress is compressive for the outside 20% of the end closure 
•  Bending moments are introduced around the ellipsoid cylinder juncture 
•  The stress concentration factor and yield criterion is 

–  Torisphere: 
•  Spherical central portion with radius R and a toroidal knuckle of radius r  

•  Higher stress concentration, but less expensive to manufacture 
–  Flat Plate: 

•  No membrane stresses, large stresses due to bending moments 
•  Simple fabrication 

•  Typically 2:1 ellipsoidal design or hemispherical design is adapted for propulsion system 
tanks and combustion chambers 
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Tank Design  
•  Cylindrical tank design with hemispherical ends 
•  Assume uniform wall thickness  
•  Tank radius: r,    Length of the cylindrical portion: Lc 
•  Maximum shear stress: 

–  Sphere:  

–  Cylinder: 

•  Minimum thickness:  

•  Tank mass: 

•  Liquid mass: 

•  Tank efficiency: 

•  Tank length: cLrL += 2
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Tank Design  
•  Toroidal Tank: 
•  Assume uniform thickness based on most critical stress  
•  Tank inside radius: a, Tank outside radius: b, Length of the cylindrical portion: Lc, 

Radius of toroidal head: r 
•  Maximum shear stress: 

–  Inside cylinder: 

•  Minimum thickness:  

•  Tank mass: 

•  Liquid mass: 

•  Tank efficiency: 

•  Tank length: cLrL += 2
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Tank Design-Effect of Lc/r for Cylindrical Tanks 
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Tank Design-Effect of Number of Cylindrical Tanks 

Karabeyoglu 14 



AA 284a Advanced Rocket Propulsion 

Stanford University 

Tank Design-Effect of Combustion Chamber Radius 
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•  Combustion chamber 
inside the tank 

•  No common wall for the 
combustion chamber and 
tank 

•  Combustion chamber 
volume is estimated 
using 

•  Length can be estimated 
from the volume and 
assumed radius 

•  As the combustion 
chamber radius increases 
toroidal tank becomes 
very inefficient 
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Other Tank Design Issues 
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•  Include the mass of the other tank components into the mass budget 
–  Baffles 
–  Diaphragms 
–  Mounting supports 
–  Insulation (for cryogenic liquids) 

•  The first three items are difficult to estimate in the preliminary design phase. 
Account for them by increasing the safety factor. 

•  Insulation can be estimated based on the total surface area of the tank 
•  For certain cases the stiffness of the tank may become critical 
•  For pump fed systems, the tanks are designed for a small but finite pressure 

(50-75 psi) 
–  For pump fed systems check that the calculated wall thickness is more than the 

minimum acceptable material thickness (minimum gauge) 
•  Note that the yield stress for metals increases with decreasing temperature. 

Useful feature for cryogenic liquids  
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Combustion Chamber Design 
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•  For hybrids and solids fuel/propellant storage volume also serves as the combustion 
chamber 

•  Pressure vessel design equations derived for tanks are valid 
•  Design to Maximum Expected Operating Pressure (MEOP) 
•  In most cases combustion chambers are cylindrical vessels with 2:1 ellipsoid end caps 

or hemispherical end caps 
•  Common combustion chamber case materials are 

–  Carbon fiber composite, Kevlar 
–  Alloy steel 
–  Aluminum  
–  Titanium 

•  Must include the following items in the mass budget for the combustion chamber 
–  Fuel sliver mass/web support material 
–  Insulation material 
–  Injector for hybrids 
–  Igniter system 

•  For liquid systems combustion chambers are small and typically made out of metals 



AA 284a Advanced Rocket Propulsion 

Stanford University 

•  Feed system components 
–  Oxidizer (and fuel) pumps or pressurization system 
–  Main shut off valves for oxidizer (and fuel) 
–  Other components (i.e. pipes etc) 

•  Turbo pump weight and cost are difficult to estimate 
–  Typically pump fed systems are lighter but more complex and expensive 
–  Pump weight and cost increases with increasing chamber pressure and 

liquid mass flow rate 
–  Another system is needed to derive the turbine (H2O2 or solid/hybrid gas 

generators) 
–  Assume a reasonable weight value for the preliminary design. Base the 

guess on the existing pump systems with similar operational 
characteristics  

•  The weight of the pressure fed systems can easily be estimated 

Feed System Components 
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•  The mass of pressurant gas in the oxidizer tank at burn out 

•  The mass change in the pressurization tank 

Feed System Components 
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•  From mass balance 

•  Tank weight and geometry can be calculated from the volume requirement 
•  Pressurization gas mass in the tank (assume ideal gas) 

•  In order to minimize the total pressurant gas mass use light gases (i.e. He) 
•  Total mass of the pressurization system 

Pressurization System 
ptg MM Δ=
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•  Mass of regulators valves and other small components must be included in 
•  The initial and final pressurization tank temperatures are related according to the 

polytropic relation 

•  For cold gas pressurization systems, exponent n is in the range of 0.1-0.28 for most 
cases (n=0 corresponds to isothermal process) 

•  The oxidizer temperature in the tank at burn out can be calculated as 

Where 
 
 
 
 
•  Note that the pressurization system mass has the following general variation with the 

pressurization system pressure 

Pressurization System 
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Pressurization System 
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Pressurization System 
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Pressurization System 
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•  Large pressures are 
desirable to minimize 
the system size 

•  Practical 
considerations such 
as tank availability 
determine the design 
pressure 

•  For typical systems 
pressure is 4-10 ksi 

•  Heating the 
pressurant gas 
reduces the mass and 
volume requirements 
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•  Ideal nozzle has zero 3D flow losses 
•  Ideal nozzle length, fit to Rao’s curve for 

•  Use the following correction on CF for the non-ideal nozzle 

•  Average cone angle for the non-ideal nozzle 

Nozzle Design – Rao’s Method 

FiFDn CC=3η

( ) 556.08055.1231.2 −= AR
D
L
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Ln/Lni 1 0.9 0.7 0.6 0.5 0.45 0.40 

CF/CFi 1 1 0.9975 0.9950 0.990 0.985 0.970 
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•  Estimate the throat area from the c* equation 

•  Select a nozzle area ratio. Estimate the nozzle exit area from 

•  If the nozzle exit diameter is matched to the chamber or tank diameter, increasing 
chamber pressure allows for higher area ratio (better Isp) 

•  Estimate the ideal nozzle length from Rao’s expression 
•  Select a 3D nozzle efficiency. Estimate the nozzle length for the selected 3D nozzle 

loss.  

•  Estimate the total nozzle loss (kinetic losses + 2 phase flow losses + 3D flow losses) 

•  Estimate the nozzle mass 
•  Iterate on area ratio and nozzle 3D loss selection for optimum condition 
•  A good value for the 3D nozzle efficiency is 0.985 

Nozzle Design 
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Nozzle Design – Parabolic Nozzles 
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•  The length and 3D flow efficiency for a parabolic nozzle can be written as 
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Ablative Nozzle Design 
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•  Simple, effective, generally light 
•  All solids/hybrids and some liquids 
•  Ablative inner shell (Thickness based on ablation rate x burn time) 
•  Structural outer shell (Thickness based on internal pressure + other loads) 
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•  Ablative nozzle surface slowly recesses. The effective heat of gasification protects the 
structure of the nozzle from heat  

•  The heat transfer is typically diffusion limited (as in a hybrid rocket system) 
•  The nozzle regression rate can be written in terms of the local flux 

•  Note that 

•  Using the c* equation one can write 

•  Combine to yield 

Nozzle Erosion 
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•  Nozzle erosion dynamics 

•  Or 

•  This ODE can be integrated to find the change in the nozzle area ratio at any point in 
the nozzle at any instant 

•  For a linearly throttled rocket, the relation between the initial and final area ratios is 
(exit plane erosion is ignored) 

•  The throttling ratio is defined as 

Nozzle Erosion 
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•  Define a reference pressure for which the nozzle erosion rate is known (for a selected 
average O/F for the motor). Solve for the unknown an 

•  For most systems it is reasonable to assume that m=1 
•  The erosion rate increases with the increasing mass fraction of the oxidizing agents in 

the nozzle exhaust. 
–  CO, HO, H2O, 2 x O2, O 

•  This value is high in hybrid and liquid systems resulting in high erosion rates 
•  In hybrids and liquids the erosion rate is a strong function of the O/F of the motor. For 

high O/F the erosion rates can be quite high. 
•  Aluminum addition typically reduces the erosion rate for hybrids since Al2O3 formation 

decreases the mass fraction of oxidizing agents 
•  In solid rockets the nozzle throat erosion rate for various nozzle throat insert materials 

are  
–  ATJ Graphite: 0.004-0.006 in/sec 
–  3D Carbon-Carbon: 0.0005-0.001 in/sec 

•  2D carbon/carbon or 3D carbon/carbon nozzle inserts are not suitable for liquid or 
hybrid rockets due to the oxidizer attack to the surface 

Nozzle Erosion 
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•  Propellants: GOX/
Paraffin 

•  Nozzle material: 
ATJ graphite 

•  Burn time: 8 sec 
nominal 

•  Chamber 
pressure: 800 psi 
nominal 

•  Nozzle throat 
diameter: 2” 
nominal 

Nozzle Erosion Data – ATJ Graphite 
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•  Nozzle erosion effects the performance adversely due to 
–  Reduction of the nozzle area ratio in time, Isp loss 
–  Increase in nozzle weight, structural mass fraction increase 

•  Note that the erosion (or the effect of nozzle erosion) can be minimized by 
–  Keeping the chamber pressure low (reduce the nozzle mass flux) 
–  Running at low O/F 
–  Formulating the propellants to minimize the mass fraction of the oxidizing agents (can use the 

results of the Isp code) 
–  Selecting a suitable nozzle material 
–  Introducing a cool film on the surface of the nozzle 

•  Nozzle weight can be estimated from the nozzle erosion rate equation by estimating 
the required thickness of the ablative material. Use a safety factor (i.e. 1.5). The weight 
of the structural shell can be calculated using the hoop stress induced by the pressure 
inside the nozzle 

•  For hybrids silica phenolic is commonly used as the ablative nozzle material over the 
entire nozzle surface. Silica phenolic is resistant to oxidizer attack.  

•  For small inexpensive hybrid systems ATJ graphite is also commonly used. Note that 
ATJ is a brittle material. One must minimize the stress concentration areas. 

•  Use the following reference erosion rate for preliminary design purposes (LOX/HC 
hybrids running at O/F less than 2.5) 

–  Erosion rate: 0.007 in/sec at 500 psi (m=1) 

Nozzle Design Issues 
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Nozzle Mass Area Ratio Variation Example 
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•  LOX/paraffin 
Hybrid 

•  Ablative shell: silica 
phenolic 

•  Structural shell: 
glass phenolic 

•  Increase in area 
ratio improves Isp 
but increases the 
structural mass 
fraction 

 


