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Liquid Rocket Schematic 

Liquid Systems: 
 

–  Monopropellant vs. 
Bipropellant 

–  Pressure fed vs 
pump fed 

–  Propellants: 
Hypergolic 
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Liquid Rocket Types –Based on Propellants 
–  Monopropellant systems: 

•  Single liquid, simpler system 
•  Decompose over a catalyst bed 
•  Low Isp performance 
•  H2O2, hydrazine, N2O 
•  Used in satellite propulsion, RCS  

–  Cryogenic Engines 
•  LOX/LH2 
•  Expensive, but very high Isp 
•  Upper states 

–  LOX/Kerosene 
•  Decent Isp and density 
•  Hard to stabilize 
•  A lot of launch vehicles use LOX/Kerosene engines 

–  Storable 
•  NTO/Hydrazine or derivative 
•  Toxic, not favored in modern systems 
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–  LOX/Methane 
•  Up and coming technology 
•  Good compromise between 

kerosene and H2 
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Liquid Rocket Thrust Chamber 

Karabeyoglu 4 
 

•  Thrust chamber includes 
–  Injector 
–  Combustion chamber 
–  Nozzle 
–  Ignition system 

•  Introduce the oxidizer and fuel in 
liquid or gaseous phase 

•  Control the mass flow rate of 
oxidizer and fuel 

•  Vaporize mix and react the 
components 

•  Expel though the nozzle 
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Pump Fed Liquid Rocket Cycle Types 

–  Staged combustion cycle is more efficient than the gas generator cycle (older systems 
such as F1 use the gas generation cycle). 

–  Fuel rich pre burners are easier to develop but not as desirable as the oxidizer rich 
burners  

•  Soot deposit on turbine blades 
•  Much more oxidizer than fuel (O/F >1) 

–  Only LOX rich staged combustion systems are Russian engines 
–  LOX/H2 systems typically utilize fuel rich pre burners 
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–  Need a working gas to drive 
the turbine of the turbopump 
system 

–  Vaporize the propellant to 
drive the turbine by 

•  Combustion (very lean or 
very rich to limit 
temperature) 

•  Use the fuel from 
regenerative cooling  

–  Turbine inlet temperature is 
typically around 800-850 K 

 



AA 284a Advanced Rocket Propulsion 

Stanford University 

Liquid Rocket Engines 
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Engine Thrust, klb Isp, 
sec 

Propellants Design Year 

F-1 
(Saturn V- First Stage) 

1,500 
(SL) 

265 
(SL) 

LOX/RP-1 1959 

J-2 
(Saturn V-Upper stages) 

230 
(vac) 

425 
(vac) 

LOX/H2 1960 

RS-27A 
(Old Delta Booster) 

200 
(SL) 

255 
(SL) 

LOX/RP-1 1987 

MA-5A 
(Old Atlas Booster) 

430 
(SL) 

265 
(SL) 

LOX/RP-1 1988 

SSME (RS-24) 
(Space Shuttle Main Engine) 

512 
(vac) 

453 
(vac) 

LOX/H2 1972 

SE-10 
(Lunar Module Descent) 

Max 10.5 
(vac) 

305 
(vac) 

N2O4/N2H4+ 
UDMH 

1963 
 

RD-180 
(Atlas V Booster) 

900 
(SL) 

311 
(SL) 

LOX/Kerosene Late 1970’s 
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A High Performance Engine: RD-180 
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•  High performance LOX/kerosene engine 
•  Built and marketed by RD AMROSS 

–  50% NPO Energomash (Russian) 
–  50% Pratt and Whitney (US) 

•  Derived from the Russian engine RD-170 
(developed for the Energia/Buran system) 

•  Used in Atlas III and Atlas V launchers 
•  Staged combustion cycle – Oxidizer rich 

pre burner 
•  Vacuum Isp: 337.8 sec 
•  Nozzle expansion ratio: 36.4 
•  Chamber pressure: 257 atm 
•  O/F: 2.71 
•  Thrust: 0.9 Mlbf 
•  Throttling range: 47% to 100% 
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Liquid Rocket Combustion 
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•  Monopropellant vs Bipropellant  
•  Low Residency Times: <10 msec 
•  High Volumetric Heat Release: 370 Mega-Watt/m3 
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Liquid Rocket Combustion  
•  Combustion Zones: 

–  Injection Atomization Zone: 
•  Heterogeneous mixture (liquid/gas) 
•  Low velocities 
•  Relatively cool 
•  Main process evaporation of the droplets 

–  Rapid Combustion Zone: 
•  Intensive fast combustion reactions 
•  Large increase in velocity (due to gas/liquid volume increase) 
•  Combustion is an inherently unsteady process (small explosions) 

–  Stream Tube Combustion Zone: 
•  High gas velocity, small residence time 
•  Combustion reactions at a slow rate 
•  Stream tubes are formed 
•  Limited transport across the stream tubes 

•  Boundaries between zones are fuzzy 
•  Combustion models and design tools are incomplete 
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•  Diffusion flame 
•  Transport through molecular 

diffusion + convection 
•  Diffusion flame, O/F stoichiometric 
•  Evaporation of a burning droplet in 

quiescent environment  
•  D2 law for droplet evaporation 

•  The Spalding number is 

•  As a first order approximation 
droplet surface temperature can 
be taken as the boiling 
temperature 
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•  See “Combustion” by I. Glassman 
for a rigorous derivation 
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Liquid Rocket Combustion-Stream Tube Model 
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•  One dimensional model 
•  Different steam tubes could be at different O/F ratios. Introduces a loss 
•  Boundary layer heat transfer can be modeled by this model 
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Liquid Engine Design Issues  
•  Must consider performance, stability and compatibility 

simultaneously 
•  Performance (Isp): 

–  Theoretical value (for a given average O/F) 
–  Losses: 

•  Thermal (heat transfer) 
•  Combustion efficiency (mixing/kinetics) 
•  Nonuniform propellant distribution (mixing) 
•  Boundary layer (friction) 
•  Geometry (nozzle divergence) 
•  Particle lag (two phase flow) 

–  The Isp efficiencies of the modern engines are fairly high: 95-98 
% 

–  Operational conditions are critical 
•  Low pressures: Kinetics 
•  Low Thrusts: Boundary layer 
•  Small Volume: Low combustion efficiency 
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Liquid Engine Design Issues  
•  Stability: 

–  Liquid engine combustion is an inherently unstable 
process 

–  Metastable (minimize the amplitude of the 
fluctuations) 

–  Stability fixes: 
•  Chemical 
•  Aerodynamic 
•  Mechanical 

•  Compatibility 
–  Environmental components 

•  Thermal (Heat Transfer) 
•  Chemical (Reactions) 
•  Gas dynamic (Erosion) 
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Liquid Engine Design Issues  
•  Control Variables: 

–  Feed system dynamics 
–  Injector design, injector pressure drop 
–  Combustion chamber geometry 

•  Combustion chamber volume, Vc (includes the convergent part of 
the nozzle). Define L* 

•  Residence time in the chamber is  

•  Efficiency increases with L*. More time for atomization, 
vaporization, mixing and reacting 

•  For typical liquid systems L* ranges 0.8-3 meters 
•  Baffles 
•  Absorption cavities 

–  Propellant additive selection (i.e. Hypergolic propellants) 

tc AVL =*
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Liquid Engine Design Issues  
•  Combustion chamber and nozzle walls must be cooled 

–  Regenerative cooling 
•  Cooling jacket, some of the heat is used to warm the fuel 

–  Ablative cooling 
•  Carbon graphite, phenolic 

–  Film cooling 
•  Injector face cooling 

–  Radiation cooling 
•  Used in small engines and monopropellant systems 
•  Niobium, Rhenium coated Inconel 

–  Combination 
•  As the combustion chamber size reduces 

–  Heating intensity increases 
–  Surface area decreases 

•  Nozzle throat has the maximum heat transfer 
•  Total pressure loss in the chamber 

–  Ac/At must be high to minimize the total pressure loss  
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Liquid Engine Injector Design  
•  Injector design is critical for stable and efficient operation 

–  Meter the oxidizer and fuel flow rates 
–  Atomize the liquids 

•  Types 
–  Impinging stream: doublet, triplet, self impinging 
–  Shower head (V2 rocket injector) 
–  Hollow post sleeve element 
–  Splash plate 
–  Pintle 

•  Flow rate expression 

•  Typically Cd varies from 0.60 to 0.84 (0.61 for square edge orifice) 
•  Large injector pressure drop is important for stability and efficiency 

–  Increasing Delta P increases the tank weight or pump requirements 
•  Momentum matching for the oxidizer and fuel streams. Makes the 

throttling more difficult 
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Liquid Rocket Injector Design - SSME Injector 
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•  Liquid rocket injectors are very complex devices 
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Liquid Rockets Summary 
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Summary 
•  Complicated design 
•  Expensive manufacturing 

–  Exotic materials 
–  Complex parts with tight tolerance requirements 

•   Very good Isp performance 
•  Multiple liquids in the system 
•  Fire hazard 
•  Mature technology 

Challenges 
•  Cost effective systems 
•  LOX/RP-1: Oxygen rich pre-burner  
•  Replacement for hydrazine and its derivatives 

 


