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Axial Flow Hybrid Rocket  
•  For an axial flow hybrid the oxidizer flows parallel to the axis of the 

propulsion system through a cylindrical cavity(s) inside fuel grain 
•  The cross sectional shape of the cylindrical opening (port) can be 

–  Circle, Triangle, D-shape or any other complex form 
•  There could be multiple cylindrical openings (ports), multi-port hybrid 

–  Two ports: Double-D 
–  Four ports: Quad 
–  Five ports: Quad+1 
–  Larger number of ports utilizes single or double row wagon wheel configuration 
–  AMROC motor :15+1 ports 

•  Fuel utilization (minimizing the sliver fraction) dictates the shapes of the 
ports once the number of ports and overall port configuration is selected 

•  The fuel sliver fraction increases with the increasing number of corners 
•  Note that the hydraulic diameters of the ports must be matched for even 

burning 
•  Axial variation of the port geometry is also possible 
•  Most simple port design is a single circular geometry. This is the most 

efficient shape for fuel utilization. No corners 
•  We will limit the discussions to single port hybrids  
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Axial Flow Hybrid Rocket – Axial Variation of Regression Rate 
•  The local instantaneous regression rate expression: 
 

•  Note that classical theory predicts n=0.8 and m=-0.2 
•  First consider the axial variation of regression rate for a given instant in 

time. For simplicity assume that the port shape and hydraulic diameter is 
independent of x. 

•  The axial mass balance in the fuel port yields (Cp is the circumference) 

•  Convert to flux (Ap is the port area) and substitute the regression rate 
expression 
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Axial Flow Hybrid Rocket – Axial Variation of Regression Rate 
•  Convert the integral equation to a differential equation 

•  Integrate by the separation of variables 

•  Note that  

•  For circular port 

•  To obtain regression rate substitute the flux expression into the 
regression rate equation 
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Axial Flow Hybrid Rocket – Axial Variation of Regression Rate 
•  Constant port area 

assumption implies that 
the derived  formula  for 
the axial variation of the 
regression rate is only 
valid at t=0 

•  The regression rate 
variation can be more 
that 20%  

•  Axial change in port 
diameter more than 10% 
is rarely observed 

•  This due to the self 
correcting behavior: As 
one part of the port opens 
up more, the local flux 
decreases, resulting in a 
decrease in the 
regression rate 

•  Typically space averaged 
port diameter is used in 
the calculations  
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Axial Flow Hybrid Rocket – Derivation of the Design Equations 
•  As discussed in the previous section, the axial variation of the port 

diameter and the regression rate will be ignored. Introduce the space 
averaged port diameter and the regression rate 

•  Use the simplified space averaged regression rate expression which is 
assumed to be valid at any instant of the hybrid operation 

•  Using the definition of the regression rate the dynamic equation for the 
space averaged port diameter can be written as 

•  For a circular port hybrid 
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Axial Flow Hybrid Rocket – Derivation of the Design Equations 
•  For constant oxidizer flow rate, this expression can be integrated to 

obtain the port diameter as a function of time 

•  The instantaneous flux, regression rate, fuel mass flow rate, O/F can be 
calculated from 

•  Based on O/F, total mass flow rate and nozzle geometry, one can 
determine the chamber pressure and thrust as a function of time 

•  Numerical integration is required for complex oxidizer flow rate schedules 
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Axial Flow Hybrid Rocket –Design Example 
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Axial Flow Hybrid Rocket –Design Example 
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•  O/F Shift: O/F in a hybrid rocket 
changes in time 
–  Shift due to port opening 
–  Shift due to throttling 

•  Thrust change is due to  
–  Change in the fuel mass flow rate 
–  O/F shift 
–  Chamber pressure drop 
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Axial Flow Hybrid Rocket – Scaling Laws 
•  For constant oxidizer flow rate, the following formula relates the initial and 

final port diameters 

•  The final port diameter can be solved in terms of the total oxidizer mass 
Mox 

•  The fuel grain length can be related to the O/F 

( )
b

n
oxnn

pi

nn

pi

pf tm
D

an
D
D

!
π12

1212
2121 +

++
+=−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

Karabeyoglu 10 

( )
( )

12
1

12

112

1

212 +

+

−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛ +
=

n

n
pfpi

n
b

n
ox

n

n

pf DD
tMan

D
π

( ) ( )22
4

pipff

ox

DDFO
ML

−
=
πρ



AA 284a Advanced Rocket Propulsion 

Stanford University 

Axial Flow Hybrid Rocket – Design Process 
•  Select 

–  Propellants 
–  Port diameter ratio  

•  Structural design constraint 
•  Bore stress increases with increasing diameter ratio  
•  A typical value is 2 
•  Note that the diameter ratio is related to the volumetric loading 

•  The diameter ratio also determines the flux ratio during the burn 
–  O/F (from optimal Isp) 
–  Burn time  

•  from optimal trajectory and constraints 
•  Minimize the gravity loss under the acceleration and Qmax constraints 

–  Propellant mass (from mission requirement) 
–  Chamber pressure 
–  Nozzle area ratio 

•  Use the design equations to determine the geometrical parameters: grain 
dimensions, nozzle throat and exit areas 
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Axial Flow Hybrid Rocket – Design Process 
•  The grain geometry is critical in achieving an efficient packing in a hybrid 

rocket system 
•  For liquid systems packing is relatively easy since the tank geometries can 

be selected freely 
•  For solids packing is less of an issue  

–  Solids are denser 
–  A wide range of fuel grain geometries are possible (fuel generation rate is 

proportional to the fuel surface area) 
•  For most applications small L/D values are desirable. Maximize the grain 

diameter (Written in terms of the total impulse (Itot), volumetric loading (VL) 
and burn time (tb)) 

•  Note that grain length is 
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Axial Flow Hybrid Rocket – Scaling Trends 
•  Grain Diameter increases with 

increasing regression rate 
coefficient 

•  Grain L/D decreases with 
increasing regression rate 
coefficient 
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•  Grain Diameter increases with 
increasing impulse 

•  Grain L/D slightly increases with 
increasing total impulse 
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Axial Flow Hybrid Rocket – Scaling Trends 
•  Grain Diameter increases with 

increasing burn time (for n < 0.5) 
•  Grain L/D decreases with 

increasing burn time 
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•  For slow burning fuels, L/D for a 
single port system is 
unacceptably large 

•  This is the driving force for multi-
port designs 
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•  The oxidizer to fuel ratio of a liquid rocket is directly controlled by adjusting the oxidizer and fuel 
mass flow rates 

•  The O/F of a solid system is constant (or passively programmed) since fuel and oxidizer are 
premixed in the solid phase 

•  The O/F of a hybrid rocket shifts during the operation since the fuel generation is determined by 
the physics and chemistry of the combustion process 

•  The O/F for a single circular hybrid can be written as 

•  For typical hybrids the port exponent 2n-1 and the oxidizer mass flow rate exponent  
 1-n are both positive (0.5<n<0.8) 

•  Thus O/F increases with time (diameter effect) for constant oxidizer mass flow rate. For Dpf/Dpi=2 
and n=0.62, O/F shifts by a factor of 1.18. Effect of this kind of a shift on the c* efficiency is small 
due to the flat nature of the c* curve around the optimum O/F 

•  Also O/F increases with increasing oxidizer mass flow rate (for n=0.62, a throttling ratio of 10:1 
changes the O/F by a factor of 2.4) 

•  If n=0.5 no shift due to port opening, if n=1 no shift due to throttling 
•  Oxidizer flow rate can be programmed to keep the O/F constant 
•  In a classical hybrid both O/F and thrust can not be controlled simultaneously 
•  Aft oxidizer injection allows one to schedule the required thrust profile at a constant O/F   

O/F Shift 
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Shift Efficiency 

16 

•  For an n exponent of 0.92 shift 
efficiency is still close to unity, but 
not negligible for Rf > 2.0 

•  For Rf < 2.0, shift efficiency is 
higher than 0.99 

 

f f iR D D=

f f iR D D=

•  Same conclusions can be drawn for 
other oxidizers such as N2O 

•  The only difference is the stretching 
of the curves in the O/F axis 

•  Shift efficiency scale is the same for 
N2Oand LOX  

 

LOX/Paraffin 
 

 

N2O/Paraffin 
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Efficiency > 1.0 ? 
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•  At low average O/F, the c* curve is 
concave 

•  Thus average c* experienced by 
the motor can be higher than the 
c* evaluated at the average O/F 

•  Efficiency > 1.0 

 

•  At high average O/F, the c* curve 
is convex 

•  Thus average c* experienced by 
the motor is lower than the c* 
evaluated at the average O/F 

•  Efficiency < 1.0 
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Active O/F Shift Control – Oxidizer Flow Rate Adjustment 
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•  The following oxidizer flow rate schedule generates neutral burning 
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•  For most propellants (n>0.5) 
the oxidizer flow rate variation 
in time is significant 

•  Since the influence of the shift 
on c* is negligible for most 
circular port systems, oxidizer 
flow rate scheduling is NOT 
recommended 
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Active O/F Shift Control – Aft Oxidizer Injection 

19 

•  Oxidizer injection at two locations results in 2D control in a hybrid (as in a 
liquid engine) 

                

•  For neutral burn the following scheduling should be implemented 

 

•  For systems requiring precise control of thrust and O/F, aft injection is the 
best method 

•  Only shortcoming is the extra hardware (plumbing, injectors etc…) 
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Fuel Grain Stress Distribution-Pressure Loading  

Failure Boundaries: 
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•  Stress Distribution 
•  Pressure Loading 
•  Single Circular Port  
•  Paraffin-based Fuel 
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•  Material approaches 
failure boundary as b/a 
increases 
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Hybrid Rocket Fuel Port Designs 

Single Circular Port 
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Decreasing Regression Rate 

Fuel Grain

Port

Case

rcw

Fuel Grain

Port Port

Case

rc
w

2 w

Cruciform Port 

Double-D 

4+1 Port Design 

6+1 Port Wagon 
Wheel 
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•  HTPB/LOX: 

•  HTPB/Escorez/LOX 

•  HDPE/LOX 

•  Paraffin/LOX 

•  Paraffin/N2O 

(Units are mm/sec and kg/
m2-sec) 

Regression Rate Data for Various Hybrid Propellants 
681.0210043.3 oxGr −=!
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62.0210340.2 oxGr −=!

68.0210061.2 oxGr −=!

62.021070.11 oxGr −=!

50.021050.15 oxGr −=!
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Hybrid Rocket Internal Ballistic Design Example 
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•  Pre-combustion 
chamber: vaporization 
of the oxidizer (2:1 
ellipse) 

•  Post-combustion 
chamber: mixing and 
reaction of the 
unburned fuel and 
oxidizer. Increase 
effective L* 
(hemisphere) 


