AA 284a Advanced Rocket Propulsion Lecture 10 Hybrid Rocket Propulsion Design Issues

Prepared by Arif Karabeyoglu

Department of Aeronautics and Astronautics Stanford University and Mechanical Engineering KOC University

Stanford University

Fall 2019

KOC UNIVERS

Axial Flow Hybrid Rocket

- For an axial flow hybrid the oxidizer flows parallel to the axis of the propulsion system through a cylindrical cavity(s) inside fuel grain
- The cross sectional shape of the cylindrical opening (port) can be •
 - Circle, Triangle, D-shape or any other complex form
- There could be multiple cylindrical openings (ports), multi-port hybrid •
 - Two ports: Double-D
 - Four ports: Quad
 - Five ports: Quad+1
 - Larger number of ports utilizes single or double row wagon wheel configuration
 - AMROC motor :15+1 ports
- Fuel utilization (minimizing the sliver fraction) dictates the shapes of the • ports once the number of ports and overall port configuration is selected
- The fuel sliver fraction increases with the increasing number of corners •
- Note that the hydraulic diameters of the ports must be matched for even ٠ burning
- Axial variation of the port geometry is also possible •
- Most simple port design is a single circular geometry. This is the most ٠ efficient shape for fuel utilization. No corners
- We will limit the discussions to single port hybrids

Axial Flow Hybrid Rocket – Axial Variation of Regression Rate

• The local instantaneous regression rate expression:

$$\dot{r}(x,t) = a \ G^n x^m$$

- Note that classical theory predicts n=0.8 and m=-0.2
- First consider the axial variation of regression rate for a given instant in time. For simplicity assume that the port shape and hydraulic diameter is independent of *x*.
- The axial mass balance in the fuel port yields (C_p is the circumference)

$$\dot{m}(x) = \dot{m}_{ox} + \int_{0}^{x} \rho_f C_p \dot{r}(x') dx'$$

Convert to flux (A_p is the port area) and substitute the regression rate expression

$$G(x) = G_{ox} + \frac{a\rho_f C_p}{A_p} \int_0^x G^n x'^m dx'$$

Stanford University

Axial Flow Hybrid Rocket – Axial Variation of Regression Rate

• Convert the integral equation to a differential equation

$$\frac{dG}{dx} = a\rho_f \frac{C_p}{A_p} G^n x^m$$

• Integrate by the separation of variables

$$G(x) = \left(G_{ox} + a \ \rho_f\left(\frac{1-n}{1+m}\right) \frac{C_p}{A_p} x^{1+m}\right)^{1/1-n}$$

- Note that $G_{ox} = \frac{\dot{m}_{ox}}{A_p}$
- For circular port $\frac{C_p}{A_p} = \frac{4}{D_p}$
- To obtain regression rate substitute the flux expression into the regression rate equation

Axial Flow Hybrid Rocket – Axial Variation of Regression Rate

- Constant port area assumption implies that the derived formula for the axial variation of the regression rate is only valid at t=0
- The regression rate variation can be more that 20%
- Axial change in port diameter more than 10% is rarely observed
- This due to the self correcting behavior: As one part of the port opens up more, the local flux decreases, resulting in a decrease in the regression rate
- Typically space averaged port diameter is used in the calculations

Karabeyoglu

Axial Flow Hybrid Rocket – Derivation of the Design Equations

- As discussed in the previous section, the axial variation of the port diameter and the regression rate will be ignored. Introduce the space averaged port diameter and the regression rate
- Use the simplified space averaged regression rate expression which is assumed to be valid at any instant of the hybrid operation

$$\dot{r}(t) = a G_{ox}^n$$

• Using the definition of the regression rate the dynamic equation for the space averaged port diameter can be written as

$$\frac{dD_p}{dt} = 2 \quad \dot{r} = 2 \quad a \quad G_{ox}^n$$

• For a circular port hybrid

$$\frac{dD_p}{dt} = \frac{2^{2n+1}a}{\pi^n} \frac{\dot{m}_{ox}^n}{D_p^{2n}}$$

Stanford University

Axial Flow Hybrid Rocket – Derivation of the Design Equations

• For constant oxidizer flow rate, this expression can be integrated to obtain the port diameter as a function of time

$$D_p(t) = \left[D_{pi}^{2n+1} + \frac{(2n+1)2^{2n+1}a}{\pi^n} \dot{m}_{ox}^n t \right]^{1/(2n+1)}$$

• The instantaneous flux, regression rate, fuel mass flow rate, *O/F* can be calculated from

$$G_{ox}(t) = \frac{4\dot{m}_{ox}}{\pi D_p^2} \qquad \dot{r}(t) = aG_{ox}^n \qquad \dot{m}_f(t) = \rho_f \pi D_p L \dot{r} \qquad \frac{O}{F} = \frac{\dot{m}_{ox}}{\dot{m}_f}$$

• Based on *O/F*, total mass flow rate and nozzle geometry, one can determine the chamber pressure and thrust as a function of time

$$P(t) = \frac{\left(\dot{m}_{ox} + \dot{m}_{f}\right) c_{theo}^{*} \eta_{c}}{A_{nt}C_{d}} \qquad T(t) = \left(\dot{m}_{ox} + \dot{m}_{f}\right) c_{theo}^{*} \eta_{c}C_{Ftheo} \eta_{n}$$

• Numerical integration is required for complex oxidizer flow rate schedules

Stanford University

Axial Flow Hybrid Rocket – Design Example

Axial Flow Hybrid Rocket – Design Example

- Thrust change is due to
 - Change in the fuel mass flow rate
 - O/F shift
 - Chamber pressure drop

- O/F Shift: O/F in a hybrid rocket changes in time
 - Shift due to port opening
 - Shift due to throttling

Axial Flow Hybrid Rocket – Scaling Laws

• For constant oxidizer flow rate, the following formula relates the initial and final port diameters

$$\left(\frac{D_{pf}}{D_{pi}}\right)^{2n+1} - 1 = \frac{(2n+1)2^{2n+1}a}{D_{pi}^{2n+1}\pi^n} \dot{m}_{ox}^n t_b$$

• The final port diameter can be solved in terms of the total oxidizer mass M_{ox}

$$D_{pf} = \left[\left(\frac{(2n+1) \ 2^{2n+1}a}{\pi^n} \right) \frac{M_{ox}^n t_b^{1-n}}{1 - (D_{pi} / D_{pf})^{2n+1}} \right]^{\frac{1}{2n+1}}$$

• The fuel grain length can be related to the O/F

$$L = \frac{4M_{ox}}{\pi \rho_f \left(O/F \right) \left(D_{pf}^2 - D_{pi}^2 \right)}$$

Axial Flow Hybrid Rocket – Design Process

- Select
 - Propellants
 - Port diameter ratio
 - Structural design constraint
 - Bore stress increases with increasing diameter ratio
 - A typical value is 2
 - Note that the diameter ratio is related to the volumetric loading

$$VL = 1 - \left(\frac{D_{pi}}{D_{pf}}\right)^2$$

- The diameter ratio also determines the flux ratio during the burn
- O/F (from optimal lsp)
- Burn time
 - from optimal trajectory and constraints
 - Minimize the gravity loss under the acceleration and Qmax constraints
- Propellant mass (from mission requirement)
- Chamber pressure
- Nozzle area ratio
- Use the design equations to determine the geometrical parameters: grain dimensions, nozzle throat and exit areas

Axial Flow Hybrid Rocket – Design Process

- The grain geometry is critical in achieving an efficient packing in a hybrid rocket system
- For liquid systems packing is relatively easy since the tank geometries can be selected freely
- For solids packing is less of an issue
 - Solids are denser
 - A wide range of fuel grain geometries are possible (fuel generation rate is proportional to the fuel surface area)
- For most applications small *L/D* values are desirable. Maximize the grain diameter (Written in terms of the total impulse (I_{tot}), volumetric loading (*VL*) and burn time (t_b).

$$D_{pf} = \left[\left(\frac{(2n+1) \ 2^{2n+1}a}{I_{sp}^{n} g_{o}^{n} \pi^{n}} \right) \frac{\left(\frac{O/F}{1+O/F} \right)^{n} I_{tot}^{n} \ t_{b}^{1-n}}{1-(1-VL)^{(2n+1)/2}} \right]^{2n+1}$$
Note that grain length is $L = \frac{4}{\pi \rho_{f} VL} \frac{I_{tot}}{I_{sp} g_{o}} \frac{1}{(1+O/F)D_{pf}^{2}}$
Stanford University

12

Karabeyoglu

Axial Flow Hybrid Rocket – Scaling Trends

- Grain Diameter increases with increasing impulse
- Grain L/D slightly increases with increasing total impulse

- Grain Diameter increases with increasing regression rate coefficient
- Grain L/D decreases with increasing regression rate coefficient

Axial Flow Hybrid Rocket – Scaling Trends

- For slow burning fuels, L/D for a single port system is unacceptably large
- This is the driving force for multiport designs
- 8

Stanford University

- Grain Diameter increases with increasing burn time (for n < 0.5)
- Grain L/D decreases with increasing burn time

O/F Shift

- The oxidizer to fuel ratio of a liquid rocket is directly controlled by adjusting the oxidizer and fuel mass flow rates
- The O/F of a solid system is constant (or passively programmed) since fuel and oxidizer are premixed in the solid phase
- The O/F of a hybrid rocket shifts during the operation since the fuel generation is determined by the physics and chemistry of the combustion process
- The O/F for a single circular hybrid can be written as

$$\frac{O}{F} = \frac{\dot{m}_{ox}}{\dot{m}_{f}} = \frac{\pi^{n} D_{p}^{2n} \dot{m}_{ox}}{\rho_{f} \pi \ D_{p} L \ a \ 4^{n} \dot{m}_{ox}^{n}} = \frac{D_{p}^{2n-1} \dot{m}_{ox}^{1-n}}{\rho_{f} \pi^{1-n} a \ 4^{n} \rho_{f} L}$$

- For typical hybrids the port exponent 2*n*-1 and the oxidizer mass flow rate exponent 1-*n* are both positive (0.5<*n*<0.8)
- Thus O/F increases with time (diameter effect) for constant oxidizer mass flow rate. For Dpf/Dpi=2 and n=0.62, O/F shifts by a factor of 1.18. Effect of this kind of a shift on the c* efficiency is small due to the flat nature of the c* curve around the optimum O/F
- Also O/F increases with increasing oxidizer mass flow rate (for *n=0.62*, a throttling ratio of 10:1 changes the O/F by a factor of 2.4)
- If n=0.5 no shift due to port opening, if n=1 no shift due to throttling
- Oxidizer flow rate can be programmed to keep the O/F constant $\dot{m}_{ox} \propto D_p^{(2n-1)/(1-n)}$
- In a classical hybrid both O/F and thrust can not be controlled simultaneously
- Aft oxidizer injection allows one to schedule the required thrust profile at a constant O/F

Shift Efficiency

- For an *n* exponent of 0.92 shift efficiency is still close to unity, but not negligible for $R_f > 2.0$
- For $R_f < 2.0$, shift efficiency is higher than 0.99

- Same conclusions can be drawn for other oxidizers such as N₂O
- The only difference is the stretching of the curves in the *O/F* axis
- Shift efficiency scale is the same for N₂Oand LOX

Efficiency > 1.0 ?

- At low average *O/F*, the c* curve is concave
- Thus average c* experienced by the motor can be higher than the c* evaluated at the average *O/F*
- Efficiency > 1.0

- At high average *O/F*, the c* curve is convex
- Thus average c* experienced by the motor is lower than the c* evaluated at the average O/F
- Efficiency < 1.0

Active O/F Shift Control – Oxidizer Flow Rate Adjustment

• The following oxidizer flow rate schedule generates neutral burning

$$m_{oxi} = \left(\frac{C_n \left(O/F\right)_{opt}}{D_i^{2n-1}}\right)^{n/(1-n)}$$

- For most propellants (*n*>0.5) the oxidizer flow rate variation in time is significant
- Since the influence of the shift on c* is negligible for most circular port systems, oxidizer flow rate scheduling is NOT recommended

Active O/F Shift Control – Aft Oxidizer Injection

• Oxidizer injection at two locations results in 2D control in a hybrid (as in a liquid engine)

• For neutral burn the following scheduling should be implemented

$$\frac{n \mathcal{R}_{oxfore}\left(t\right)}{n \mathcal{R}_{ox}} = \frac{n \mathcal{R}_{ox}^{(1-n)/n} D_{i}^{(2n-1)/n}}{\left[C_{n}\left(O/F\right)_{opt}\right]^{1/n}} \left(1 + \frac{G_{oxref}}{L\rho\left(O/F\right)_{opt}}t\right)^{(2n-1)/2n} \qquad \qquad \frac{n \mathcal{R}_{oxaft}\left(t\right)}{n \mathcal{R}_{ox}} = 1 - \frac{n \mathcal{R}_{oxfore}\left(t\right)}{n \mathcal{R}_{ox}}$$

- For systems requiring precise control of thrust and O/F, aft injection is the best method
- Only shortcoming is the extra hardware (plumbing, injectors etc...)

Fuel Grain Stress Distribution-Pressure Loading

Hybrid Rocket Fuel Port Designs

Regression Rate Data for Various Hybrid Propellants

Stanford University

• HTPB/LOX:

 $\dot{r} = 3.043 \ 10^{-2} G_{ox}^{0.681}$

HTPB/Escorez/LOX

 $\dot{r} = 2.061 \ 10^{-2} G_{ox}^{0.68}$

- HDPE/LOX $\dot{r} = 2.340 \ 10^{-2} G_{ox}^{0.62}$
- **Paraffin/LOX** $\dot{r} = 11.70 \ 10^{-2} G_{ox}^{0.62}$
- Paraffin/N2O

 $\dot{r} = 15.50 \ 10^{-2} G_{ox}^{0.50}$

(Units are mm/sec and kg/ m²-sec)

Hybrid Rocket Internal Ballistic Design Example

- Pre-combustion
 chamber: vaporization
 of the oxidizer (2:1
 ellipse)
- Post-combustion chamber: mixing and reaction of the unburned fuel and oxidizer. Increase effective L* (hemisphere)

