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Introduction

The Rijke tube [1] is a classic experiment that is rela-
tively simple and inexpensive to build in a typical university
laboratory. Despite its construction simplicity, it can serve to
illustrate a wide variety of mathematical modeling, empirical
identification, verification and feedback control techniques. As
such, it is suitable for use in both advanced undergraduate and
graduate controls laboratory courses.

The Rijke tube also serves as prototypical experiment for
research and study of thermoacoustic phenomena in which
heat transfer and acoustics are dynamically coupled. This
experiment is perhaps the simplest illustration of the phe-
nomenon of thermoacoustic instabilities, which typically
occur whenever heat is released into gas in underdamped
acoustic cavities. The heat release can be due to combustion
or solid/gas heat transfer. Under the right conditions, the
coupling between the acoustic and heat release dynamics
in the cavity becomes unstable. This instability manifests
itself as a sustained limit cycle resulting in audible, powerful
pressure oscillations. Thermoacoustic instability phenomena
are most often encountered in combustors [2], [3], where
the resulting powerful pressure waves are undesirable due
to the danger of structural damage as well as performance
degradations. In this context, they are often referred to as
combustion instabilities, and are notoriously difficult to model
due to the additional complexity of combustion dynamics
[4], [5]. The advantage of the Rijke tube is that it generates
thermoacoustic instabilities without a combustion process. The
absence of combustion renders the mathematical modeling
and subsequent system analysis problems significantly more
tractable, yet many of the identification and feedback control
issues involved in combustion instabilities are present in the
Rijke tube. Thus, this experiment provides an easily accessible
platform within which one can explore the myriad issues
relevant to thermoacoustic instabilities and their control.

The present paper aims at introducing the Rijke tube
as both an experimental and theoretical platform to explore
thermoacoustic dynamics and their control. It consists of two
complementary parts. The first is an experimental investiga-
tion of the dynamics of the Rijke tube using closed-loop
identification and model validation. The second part details
the derivation of a control-oriented model from the simplified
thermoacoustic physics of one-dimensional gas dynamics. This
model is examined using LTI system tools such as the root

locus and the Nyquist criterion, giving insight into the open-
loop instability and the effects of feedback control. The first
part is an empirical approach that requires little knowledge of
the underlying physics, and it is remarkable that one can obtain
rather useful and predictive models of the system with this
approach. In our courses, most students who have performed
this experiment and subsequent analysis did not start out with
any knowledge of thermoacoustic physics. Further insight is
obtained by combining the results of the feedback control
experiments with the theoretical models developed in the
second part. The section on mathematical modeling has been
made compact and self contained, as well as easily accessible
to readers with a control engineering background. This perhaps
distinguishes the present paper from other excellent treatments
of the Rijke tube in the literature [6], [7], [8], in that the
self-contained presentation is written for a control engineering
audience.

Prior to embarking on the two main components of
this paper, a brief description of how a typical Rijke tube
experiment is conducted, the observations that can be made,
and the construction of the apparatus are given.

Observations of the Rijke Tube and its Control

By way of an introduction, some basic observations that
can be quickly made in the laboratory are described. These
observations set the stage for the many modeling, identification
and control questions that can be subsequently posed and
investigated. Figure 1(a) illustrates the basic operation of the
Rijke tube. A heating element (typically a resistive coil) is
placed in the bottom third of a vertical open glass tube; for
details on the specific setup here at UCSB, see “Construction
of the Rijke Tube Apparatus.” If the coil is sufficiently hot,
a steady upwards flow of air is achieved. An increase in the
power to the coil causes an increase in the air flow, and at
some critical value of this power, the tube begins to emit a
loud, steady “hum” like a pipe organ. A decrease in the power
to the coil will cause the hum to die out. A measurement of the
frequency of that sound, and assuming typical sound velocity
in air at room temperature, shows the wavelength to be equal
to twice the length of the tube. This is consistent with a half-
wavelength standing wave in the tube.

The next step is to experiment with a simple active
acoustic feedback scheme. A speaker is placed a slight distance
under the tube. The speaker is powered by a variable gain
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Figure 1. (a) The Rijke tube shown with a heating element placed
towards the bottom (suspension mechanism for coil not shown).
Upward arrow indicates steady air flow caused by the coil’s heat. (b)
The Rijke tube with microphone, speaker and feedback controller.
The external signal w is used for closed-loop identification.

amplifier with input from a microphone that is placed near the
top of the tube. This is illustrated in Figure 1(b), where the
amplifier is referred to as the controller. This arrangement can
be thought of as simple proportional feedback. If the power
to the coil is made sufficiently high to cause the tube to hum,
one can experiment with the feedback gain to investigate its
effects. If the sign of the feedback gain is chosen correctly, it
is observed that as the gain is increased upwards from zero,
there is a critical value of the feedback gain which causes
the loud hum to quickly disappear. A natural question is
whether this represents a stabilization of an unstable process,
or possibly some form of noise cancellation. A quick check
of the control signal (speaker input) reveals that signal to
be near zero, indicating that the speaker is indeed stabilizing
the thermoacoustic instability rather than canceling the noise
produced by it. This simple stabilization scheme allows for
closed-loop system identification to be done, from which an
empirically determined open-loop transfer function can be
obtained.

After stabilization by simple proportional feedback, the
next step is the investigation of the gain margin and what
happens at high gains. It is observed that with further increase
in the feedback gain, the tube begins to emit a loud “screech”
sound, at a different and higher frequency than the hum ob-
served earlier. A measurement of the screech frequency yields
that it is roughly a harmonic of the originally observed hum
frequency. Often it will be either the third or fifth harmonic
with other harmonics occurring less often. Exactly which of
the harmonics it is turns out to depend on the microphone
position, and is an important feature of the problem which
can be later used for the model validation component of the
experiment. In summary, the instability at high feedback gains
(the screech) occurs due to the right half plane zeros inherent
in this system. The open-loop pole locations are determined by

the tube’s acoustics and are largely independent of speaker and
microphone position. However, the open-loop zero locations,
which influence the high-gain instability, are dependent on
actuator and sensor location.

Empirical Investigation of the Rijke Tube

The experimental exploration of the Rijke tube begins
with establishing the conditions for the initial thermoacoustic
instability as a function of heater power input. The effects of
proportional acoustic feedback are then investigated through
initial stabilization and then observing instabilities at high
gains. Once a stable system is established, closed-loop identifi-
cation is performed and a model from frequency response data
is obtained. A root locus analysis of the identified model is
used to explain the basic thermoacoustic instability. Locations
of the open loop poles and zeros of the identified model play
an important role in the dynamics, and root locus analysis is
used to further validate the model using observations of the
high-gain instabilities.

Observing the Thermoacoustic Instability

The initial operation of the Rijke tube is quite simple: The
heater coil power supply is turned on and increased slowly.
During this process one can feel the upward flow of hot air
by placing the hand slightly over the tube top as depicted in
Figure 1(a). There is a critical heater power beyond which the
tube will begin to hum loudly. The increase in sound level
up to saturation occurs in a couple of seconds. If the heater
power is decreased and then increased again, a slight hysteresis
phenomenon can be observed. The sound frequency f is easily
measured with an oscilloscope (about 143 Hz in our setup),
and using the speed of sound under standard conditions c =
343 m/s, its wavelength

λ = c/f

is approximately equal to twice that of the tube. This is
consistent with a half-wavelength standing wave in the tube,
which is the fundamental mode of a tube open at both ends.
The basic physics of that mode are illustrated in Figure 3.

Proportional Acoustic Fedback

When microphone, DAQ board and speaker are connected
in the arrangement shown in Figures 1(b) and S1, proportional
feedback can be applied to the Rijke tube. It is observed that as
the gain of the power amplifier is increased, there is a critical
gain value Kmin above which the tube’s hum will quickly
disappear. This is usually an impressive demonstration of the
power of feedback.

Since many students who perform this experiment are
not familiar with acoustics, they are often unsure as to what
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Figure 3. A diagram of the fundamental acoustic mode of the Rijke tube showing its “half-wave” nature. In the top three rows, the spatial
waveforms are shown. Acoustic pressure is shown in color and the acoustic velocity at the ends is illustrated as arrows. The bottom row
depicts one period of the temporal waveform of the velocity at the bottom of the tube. In phase (a), the pressure just started increasing in
the center of the tube due to the air rushing in, which in (b) has led to the pressure achieving a maximum at the center, while simultaneously
the velocity has been decreased by the resulting pressure gradient. In (c), the pressure gradient has inverted the velocity, so that air now
starts rushing out of the tube with (d) increasing velocity, until (e) the pressure reaches a minimum in the center and the gradient leads to
(f) air being sucked in again, until (a) pressure moves towards its maximum again and the cycle repeats.

is happening when the tube’s hum disappears. They often
say that the tube’s noise has been “cancelled,” probably
because of familiarity with noise-canceling headsets. However,
the process here is fundamentally different. The feedback
has stabilized the thermoacoustic instability which caused
the limit cycle in the first place. To verify the distinction
between stabilization and noise cancellation, it suffices to
observe the control signal into the speakers terminals on an
oscilloscope as the critical feedback gain is reached and the
hum disappears. The oscilloscope will show that the control
signal decays rapidly and hovers around zero as the critical
stabilizing feedback gain value is reached. In contrast, a noise-
canceling system would have a persistent non-zero control
signal canceling the persistent noise.

Interesting phenomena occur at higher gains. There is a
critical higher gain value Kmax above which a new instability
is triggered. When that gain is reached, the tube will begin
to “screech” loudly. A measurement of that screech frequency
reveals it to be a harmonic of the initial fundamental hum
frequency (as depicted in Figure 4). Exactly which harmonic it
is will depend on the details of the experimental set up (in ours
it is typically the 3rd or 5th harmonic). This phenomenon is
however repeatable if the experimental setup — microphone,

speaker and heater locations — is unchanged. The screech
frequency should be noted as it can be predicted from a root
locus analysis of the identified system model, and therefore
can be used to validate that model.

Closed-Loop Identification

In this empirical approach to the Rijke tube, no physical
modeling is done. Instead, system identification tools are used
to obtain information about the dynamics. The Rijke tube
with the heater on is an unstable system, and therefore must
be identified while operating in a stabilizing closed loop. A
conceptual block diagram of the Rijke tube system is shown
in Figure 5. The working assumption is that the the power and
pre-amplifier, as well as the microphone and speaker can all
be described by pure proportional gains. In reality, they are
designed to pick up and transmit sounds audible to humans,
hence their frequency responses outside the hearing range
(20-20,000 Hz) will be quite poor and not flat; however, in
the frequency range of interest in this experiment (typically
100-1,000 Hz) where the Rijke tube acoustic dynamics are
dominant, experience has shown this working assumption to be
reasonable. Therefore in the diagram of Figure 5 the speaker,
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Sidebar 1: Construction of the Rijke
Tube Apparatus

The particular Rijke tube hardware configuration used
in the controls laboratory at UCSB is described briefly.
Details of this basic set up can be easily modified
according to other specific laboratory facilities. The basic
apparatus used for this experiment (see Figure S1) is
composed of the following main components:
• Glass tube, length = 4 ft, Internal Diameter =

3 in. (High aspect ratio is necessary to achieve
thermoacoustic instability with only moderate heater
power.)

• Heater coil (resistive Nichrome heater)
• Microphone and pre-amplifier (e.g. a simple op-amp

circuit)
• Speaker
• Power amplifier (for speaker)
• AC or DC variable power supply (for heater coil)

Power Supply

Audio Amplifier

PC

with

DAQ Board

Microphone

Coil

Speaker

Base air flow

Figure S1. Photograph and diagram of the UCSB Rijke tube
experimental apparatus.

A data acquisition (DAQ) board and Simulink Real-
Time Windows Target are used to collect data. Either
a simple op-amp circuit or a Simulink block can be used
to realize the variable feedback control gain, with the
former option illustrated in Figure S1. The glass tube is
vertically mounted to a rigid frame, with the heater coil
mounted about one quarter of the way up from the bottom
of the tube. The power supply is used to heat the coil.
The microphone is mounted near the top and in the center
of the tube’s cross section. The microphone signal (AC
coupled) is fed via the DAQ board to Simulink, where
it is recorded and multiplied with the variable gain. The
test signal (used for system identification, see Figure 5)
is also added there. The generated signal is then routed
from the DAQ board to the audio amplifier and to the
speaker.

Figure 2. Time trace of the microphone signal (a) at the onset
of instability showing growth, and then saturation of the limit cycle.
Linear growth on a semilog plot (b) of the signal’s envelope confirms
initial exponential growth of its amplitude. A zoomed-in picture (c)
shows the periodic, but non-symmetric limit cycle behavior. With
appropriate proportional feedback, the limit cycle is stabilized as this
trace of the speaker’s input signal (d) shows.

0 K
fundamental mode unstable stable higher harmonic is unstable

Kmin Kmax

Figure 4. A depiction of the effects of proportional feedback on the
Rijke tube. A minimum feedback gain Kmin is necessary to stabilize
the unstable fundamental mode. There is then a critical higher gain
Kmax beyond which a higher harmonic mode of the tube becomes
unstable yielding a high-pitched screech.

Rijke tube, mic and pre-amp blocks are lumped together
and regarded as simply “the Rijke tube,” and the variable
gain power amp is regarded as a pure proportional gain.
The “test signal” is generated in Simulink and added to the
control signal, it provides the input for the closed loop system
identification process.

Closed-Loop System Identification: Care needs to
be taken when identifying systems in a closed loop, since
simply recording the plant input and output and applying
open-loop identification techniques, ignoring the fact that the
input is the result of feedback, might yield wrong results; in
particular the property of consistency, i.e. that collecting an
infinite amount of data will result in an exact identification
of the underlying system, is lost. The reason is that most

tube

speaker mic pre-amppower amp

w

test
signal

equivalent Rijke tube

Figure 5. Equivalent block diagram of the Rijke tube with acoustic
feedback. The speaker, microphone and pre-amp transfer functions
are assumed as unity and are lumped together with that of the Rijke
tube. The power amplifier is simply regarded as a variable gain. The
external test signal w is used for closed-loop identification.
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identification techniques start from a system model of the form
y(t) = F (ejω)u(t) + ν(t), where ν represents measurement
noise, and it is assumed that noise and input are uncorrelated.
However, if the system operates in closed loop, the input u(t)
is determined from the measured output, and hence now cor-
relates with the measurement noise. The simplest workaround,
and the one chosen here, is the so-called indirect method:
As shown in the conceptual block diagram in Figure 5, an
exogenous test signal w is added into the loop. The structure
of the model then is again y(t) = T (ejω)w(t) + ν(t), but
now T (ejω) is the closed-loop transfer function, and w and
ν are indeed uncorrelated. T (ejω) can then be identified with
any open-loop technique, and the open loop F (ejω) can be
recovered by simple algebra. For more background and more
sophisticated methods see e.g. [9], [10]. Here, the closed-loop
transfer function from the test signal w (added into the input
of the power amplifier) to the microphone output y is

T =
KF

1−KF ,

where K is the aggregation of all the gains of the other
components (assumed to be independent of frequency) in the
loop. Once T is identified, F is obtained by inverting the above
relation

F =
1

K

T

1 + T
. (1)

It would be very difficult to obtain a value for K, which
for instance incorporates the unknown conversion factor from
pressure to voltage output by the microphone, but the above
equation shows that the poles and zeros of F can be identified
from those of T without knowing K. In other words, F is
identified up to an unknown gain factor 1

K .

Open-Loop Identification Method: The dynamics un-
derlying the Rijke tube are a combination of acoustics and heat
transfer, and are thus of relatively high order (in fact, they are
infinite dimensional). Nonparametric frequency-domain iden-
tification schemes are better suited to those types of systems
than time-domain based ones, since one is not forced to select
a model order a priori. Instead, the frequency response T (ejω)
is identified directly, and then a least-squares based method is
used to fit a model of appropriate order over the identified
frequency range. So-called spectral methods (see e.g. [11,
Ch. 6]) estimate the frequency response as the ratio of the cross
spectrum Φyw(ω) of output and test signal, and the spectrum
Φw(ω) of the test signal. The MATLAB System Identification
Toolbox [12] offers two implementations of these methods,
spa and spafdr. While both estimate the cross spectrum
and input spectrum by applying a smoothing window to what
roughly amounts to the discrete Fourier transforms of input
and output data, spa performs the windowing in the time do-
main, whereas spafdr applies the window in the frequency
domain. The expected sharp peaks in the frequency response
require fine resolution in frequency; since a narrow frequency-
domain window, which is what is required, corresponds to
a wide time-domain window, using spafdr allows one to
specify a small (frequency-domain) window, resulting in a
drastic decrease in computation time compared to the large
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Figure 6. Closed-loop frequency response obtained with a sine
sweep over the range of 0-2.5 kHz (top) and 0-900 Hz (bottom). The
response below 20Hz, which is outside the audible range, and above
1kHz is likely dominated by microphone and speaker distortions.
The range 0-1 kHz however exhibits typical wave-like dynamics with
resonances occurring at multiples of the fundamental frequency. Note
that here and in all Bode plots that follow, a linear frequency axis
is used to emphasize the pattern of a fundamental frequency with
harmonics.

(time-domain) window that would have to be specified to
achieve the same resolution using spa. (Another important
distinction between spa and spafdr is that the latter allows
for frequency dependent resolution (hence the name), but we
did not make use of this feature.) The least-squares fit is then
performed using the function clsfits from the FREQID
Toolbox for MATLAB [13], [14].

Test Signal: A test signal should have rich frequency
content, while, due to actuator and sensor limitations in
physical systems, amplitudes should be kept reasonably small.
Popular choices include white noise, Schroeder-phased sinu-
soids [15] and sine sweeps (also known as chirp signals). We
experimented with all three types of signals, and sine sweeps,
which have been found to be beneficial in the identification of
acoustic systems [16], emerged as the most effective choice;
all shown data was collected using a sweep over the shown
frequency range.

5



For the identification experiment, the tube is first brought
to a hum. Then, the feedback with a stabilizing gain is turned
on, and the test signal is added to the feedback signal, as
shown in Figure 5. The microphone signal is recorded for
the duration of the experiment (in our case about 120 s), and
together with the applied test signal forms an input-output
pair, which is all the data needed to obtain a spectral estimate.
To minimize the effects of random noise, this is done several
times, and an average of the estimated frequency responses
is formed. Figure 6 shows an averaged closed-loop frequency
response along with the individual experiments. This response
with several very lightly damped modes at integer multiples
of a fundamental frequency has the signature of wave-like dy-
namics. The fundamental frequency corresponds very closely
to the frequency of the hum observed in the non-stabilized
Rijke tube.

In order to perform the least-squares fit of a finite dimen-
sional transfer function model for T to the estimated frequency
response, a value for the model order needs to be selected.
Figure 7 shows a 12th order transfer function fit, which nicely
captures the first 6 harmonics in the frequency response.

To obtain the transfer function F , a parametric model of
the open loop, the fitted model T is then plugged into (1).
Of course it is also possible to apply (1) to the nonparamet-
ric estimated frequency response at each frequency, thereby
obtaining a nonparametric model of the open loop. Both of
those possibilities are compared in Figure 8, they are in close
agreement, which is encouraging. Note that, while the phase at
the first peak of the closed loop T drops by 180o indicating a
stable pole slightly to the left of the imaginary axis, it increases
by 180o in the open-loop response, indicating a pole slightly
in the right half plane (RHP).
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Figure 7. Closed-loop frequency response obtained by a non-
parametric spectral estimation, and a 12th order least-squares fit. Note
that due to the log-scale, the seemingly large deviations in the ranges
between the peaks are actually very small.
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Figure 8. Open-loop frequency responses, obtained by applying
(1) to the identified closed-loop response at every frequency (green)
or to the fitted closed-loop response (black).

Model Validation: Root Locus Analysis

The model F of the open loop obtained in the last section
can now be used to explain the experimental observations.
The root locus explains, why proportional feedback initially
stabilizes the thermoacoustic instability, and why a higher
frequency mode becomes unstable at high gains. It will also
give a quantitative prediction of that higher frequency — a
prediction that can be used to validate the model.
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Figure 9. A full view of the root locus of the identified open-
loop model with variable proportional feedback control gain. The
open-loop poles show the (unstable) fundamental mode at 144Hz
and its (stable) harmonics very close to the imaginary axis. Several
RHP open-loop zeros attract closed-loop poles into the RHP at high
feedback control gains.

Figures 9 and 10 show the root locus of the identified
open-loop dynamics. The pole pattern resembles that of a
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(b)
Figure 10. Root loci of the identified open-loop model F showing
closed-loop pole locations (F· ) at gains that (a) just stabilize the
unstable fundamental mode and that (b) make the fifth mode unstable.

damped wave equation, with imaginary parts of the poles
being integer multiples of a fundamental frequency, and the
real parts having successively higher damping as the mode
frequency increases. As promised, the fundamental mode is
unstable, having positive real part. The imaginary part of the
fundamental mode corresponds to the hum frequency heard
when the tube is initially powered on.

This system also has multiple RHP zeros which ultimately
attract a subset of the initially stable open-loop poles into
the RHP, thus causing instability to reoccur at high gains.
Figure 10(a) shows the locus and the pole locations at the
value of the gain sufficient to initially stabilize the fundamental
mode (denoted Kmin in Figure 4), all poles are in the left half
plane. However, due to the presence of RHP zeros, some poles
will eventually cross into the RHP as the gain is increased.
Figure 10(b) indicates that for this particular identified model,
it is the fifth harmonic mode that becomes unstable at higher
gain (denoted Kmax in Figure 4). The frequency of this mode
must correspond to the frequency of the screech heard in
the experiment as the system becomes unstable again at high
feedback gains, which is indeed what we observed on the setup
used to collect the identification data. This serves as a useful
method of model validation.

Common Problems in the Identification Process

Often, the phase of the open-loop frequency response will
also drop, instead of increase, by 180o at the first peak, i.e.
the open loop is identified as stable, while we know that the
open loop must be unstable. The stability of the open loop
is very sensitive to the amplitude and phase of T at the first
peak. This is most easily explained with an argument based
on the Nyquist criterion: From (1), it is seen that F has the
same poles as T in negative unity feedback, so stability of F
can be assessed through the Nyquist criterion. In order for T

to encircle the critical point (−1, 0j), one needs |T | > 1 and
∠T = −180o at the same frequency. Inspecting Figure 6 again,
one sees that for the presented data, the first peak reaches
only about 2 dB, and the range for which it exceeds 0 dB
is only about 1 Hz wide. Hence, if the peak is “cut off,” the
identification will result in a stable open loop. Likely culprits
are insufficient frequency resolution and too much smoothing
during the spectral estimation. This situation is detailed in
Figure 11. If increasing the resolution and decreasing the
smoothing do not help, a different speaker might be the
solution; we found speakers to have quite different frequency
responses, some added considerable phase lag.

It also might happen that the root locus predicts the
higher harmonic instability incorrectly. This again indicates
that the initial closed-loop identification step was inaccurately
performed (insufficient or noisy frequency response data, order
selected for the model fit too low, etc.). A repeat of the
identification step with more care will typically resolve this
issue and the more carefully identified model will then yield
the correct prediction of the high gain instability.

Lastly, if experiments are run for a long time, the tube
walls, especially around the heater, absorb a lot of heat. If
the identification is stopped and restarted for a new run, there
might be no initial humming, due to the tube walls heating
the air around the heater to the point where the heat transfer
between air and heater is insufficient to support the humming.
In that case, one can only wait for the tube to cool off, or, if
the setup admits, increase the power to the heater to increase
the coil temperature.

Microphone position

The microphone position generically influences only the
location of the zeros, not the poles, which is why its exact
position was never stated. However, there are special locations
that do yield interesting results. Figure 12 shows the identified
open loops if the microphone is placed at three quarters, and
at half the length of the tube. Doing so appears to “remove
peaks,” in the former case it would be every fourth, and in the
latter case every even-numbered one.

This is relatively easily explained with the physical model
of the transfer function developed in the modeling section,
but there is also a very intuitive explanation: each peak
corresponds to a mode, a standing pressure wave, in the tube;
the standing wave corresponding to the first peak is a half-
wave, for the second peak a full wave, and so on. Placing the
microphone at e.g. the center means placing it where all the
even numbered modes have a pressure node, and hence their
contribution is not registered by the microphone, a pressure
sensor.

This would not be surprising at all for a tube without a
heater; that it still holds true with the heater indicates that
its effect, the thermoacoustic effect, is pulling the first mode

7



135 140 145 150
−315

−270

−225

−180

−135

P
h
a
se

 (
d
e
g
)

Frequency  (Hz)

−15

−10

−5

0
M

a
g
n
itu

d
e
 (

d
B

)

 

 

γ = 1

γ = 15

−1.5 −1 −0.5 0
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Im
a
g
in

a
ry

 A
xi

s

0 dB

−180 deg

Real Axis

Figure 11. By comparing two frequency responses obtained from the same data with different amounts of smoothing (γ is passed to
spafdr and corresponds roughly to the size of the smallest detail [12]), the difficulty in identifying an unstable open loop can be illustrated.
The cyan and magenta frequency responses shown on the left appear to be qualitatively the same, thus one might tend to choose the magenta
one as it looks smoother while still capturing the resonant peak. However, the most important feature – the corresponding unstable open loop
– is not captured by this smoother response; this is immediately clear when considering the Nyquist plots, shown on the right: the magenta
curve cannot loop around the critical point because it never leaves the unit circle. Note that even γ = 15 still corresponds to relatively little
smoothing.

into the right half plane, but besides that, regular acoustics
dominate the response.

−60

−40

−20

0

M
a
g
n
it
u
d
e
 (

d
B

)

100 200 300 400 500 600 700 800 900

−1080

−720

−360

0

P
h
a
s
e
 (

d
e
g
)

 

 

Frequency  (Hz)

ξm = 1/2
ξm = 3/4

Figure 12. Bode plots for identified and fitted open-loop responses
with different microphone positions. Placing the microphone in the
middle of the tube (ξm = 1/2) seems to remove every other peak,
while placing it at a quarter length from the tube attenuates the fourth
peak only. The very ugly identification data at the removed peaks, and
especially at the peak around 560 Hz, can be explained by the fact
that perfect cancellation of a pole by a zero is virtually impossible;
instead, one gets a pole and a zero very close together – notoriously
difficult to identify.
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Figure 13. Smoothed time traces of voltage and current across
the heating coil as the power is first set to a small value, and then
increased until the humming sets in. The lower plot shows estimated
resistance and temperature of the wire.

Estimating the wire temperature

Having an estimate of the temperature of the heating coil
is of interest in and of itself, but it is also useful regarding
the choice of materials to be used. It is straightforward to
obtain a rough estimate from measurements of just voltage
supplied to and current drawn by the heating coil by using
the temperature dependence of the electrical resistance of the
wire. The resistance R of a wire is commonly assumed to

8



depend on its temperature T affinely:

R(T ) = R0

(
1 + α(T − T0)

)
,

where R0 is the resistance at T0, a known point of reference,
and α denotes the (linear) temperature coefficient, which is
tabulated for different materials. Typically, α > 0, i.e. the
resistance increases as the material heats up; for the Nichrome
wire we are using, α ≈ 1.76 10−4 1/K. The relationship can
be inverted to

T = T0 +
R−R0

αR0
.

For the reference point (R0, T0), room temperature T0 =
293 K is assumed. The resistance R0 at room temperature is
estimated by setting the power supply to a small voltage and
recording current and voltage across the coil; then the supplied
power is increased until the instability sets in and current and
voltage are again recorded. Since current measurements are
very noisy, in particular at low voltages, where the signal-to-
noise ratio is smaller, averages over relatively long times are
taken. An example time trace is shown in Figure 13, and one
arrives at an estimate of

Tcoil ≈ 660oC = 933 K. (2)

It is worth pointing out that while resistive thermometers are
based on the same principle, the wire temperature here can by
no means be used as a measurement of the gas temperature.
For that to be the case, the thermal inertia of the wire would
need to be several orders of magnitude smaller, which is why
resistive thermometers use extremely thin wires and different
materials.

Physical Modeling of the Rijke Tube

The remainder of this paper is devoted to physical and
mathematical modeling of the Rijke tube at several levels of
fidelity. The objective is to develop the most parsimonious
model from a systems and controls perspective that can explain
experimental observations of thermoacoustic instabilities, as
well as the identification and feedback stabilization results.
The key is to model the acoustic dynamics of the tube
cavity, which are LTI, and the heat release at the coil, which
contain a memoryless nonlinearity, separately. The feedback
between those two physical phenomena is responsible for the
thermoacoustic instability. As in the experimental section, it
will be seen that LTI systems tools can explain much of the
above phenomena.

A summary of the modeling results and their predictions
about the instability is given next. This summary section can
be largely read on its own; it assumes certain models for
acoustics and heat transfer which are interpreted and motivated
physically. Detailed derivations are postponed to subsequent
sections for those readers interested in delving deeper.

coil-to-gas
heat release

tu
be

 a
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us
tic

s

v̄

ṽ(xo)

Q̄

Q̃ �
+

+

p̃(0)

p̃(xm)

(ṽ
,p̃

)

Figure 14. A block diagram depiction of the internal and the
input-output dynamics of the Rijke tube. The ”tube acoustics” block
models the spatially distributed velocity ṽ and pressure p̃ fluctuations.
Speaker and microphone signals are ideally modeled as pressure
fluctuations p̃ at the bottom end (x = 0) and mic position (x = xm)
respectively. The fluctuations Q̃ of heat released from coil to gas act
as a source term in acoustic dynamics as depicted by the horizontal
arrows in diagram. In turn, this convective heat transfer process is
influenced by the absolute gas velocity v + ṽ(xo) near the coil.
This internal feedback coupling between acoustics and heat release
dynamics is the cause of the thermoacoustic instability.

Summary of Modeling and Analysis Results

A control-oriented model and physical description of
the basic thermoacoustic dynamics can be summarized using
two descriptive diagrams. Begin with Figure 14 where “tube
acoustics” represents the dynamics of the velocity and pressure
fluctuations ṽ and p̃. These are the fluctuations of the actual
flow velocity v and pressure p about the nominal values v̄
(the steady upward velocity) and p̄ (atmospheric pressure)
respectively. These fluctuations are also referred to as “acoustic
velocity” and “acoustic pressure.” Both velocity and pressure
fluctuations are fields that vary along the length of the tube,
while the nominal v and p are assumed to be constant in
both time and space. As demonstrated later, the dynamics of
(ṽ, p̃) are described by a one-dimensional wave equation with
the speaker (actuator) input modeled as a pressure boundary
condition, while the microphone signal is the value of the
pressure field at the microphone location. These acoustic
dynamics constitute a linear time-invariant (though infinite-
dimensional) system.

The second ingredient is to model the interaction be-
tween the heater coil and the surrounding air. In a steady
situation with constant upward flow, heat is transferred from
the heater to the upward-flowing gas conductively as well
as convectively. The convective heat transfer is a function
of flow velocity: the higher the velocity the more heat is
transferred from the coil to the gas. If flow velocity near
the heater is fluctuating (in time), then the amount of heat
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Figure 15. The nature of the feedback between acoustics and
heat release depicted in Figure 14. The linear time-invariant (LTI)
acoustic dynamics G transfer functions has lightly damped modes,
which are in feedback with a first-order lag and a memoryless square-
root type nonlinearity characterizing convective heat release. As a
mapping from ṽ to q̃, the nonlinearity can appear as either high or
low feedback gain at small or large amplitudes of ṽ respectively.
At small ṽ amplitudes the lightly damped modes of the acoustics
are destabilized by the high “effective gain” of heat release. As
amplitudes of ṽ increase, the effective feedback gain decreases so
that conditions for a stable limit cycle are achieved.

transferred from coil to gas also fluctuates in response. This
is shown in Figure 14 as a green wavy arrow depicting
velocity fluctuations, and red waves depicting fluctuations of
heat released from the coil. The block labeled “coil-to-gas
heat release” represents the effect of local velocity fluctuations
ṽ(t, xo) on fluctuations Q̃(t) in the amount of heat released.
Vice versa, as will be demonstrated later, Q̃(t) acts as a source
term in the gas dynamics (10), and can therefore be considered
as an input to the acoustic part of the model. Within the
“tube acoustics” block there is an acoustic feedback path from
Q̃(t) back to ṽ(t, xo), which as explained earlier drives Q̃(t)
through the heat release mechanism.

Figure 15 describes this feedback mechanism in a little
more detail. The center block G is the LTI 2 × 2 transfer
function matrix of the acoustics from the inputs to the outputs
depicted in Figure 14. This matrix is made up of transcendental
transfer functions since the underlying dynamics are infinite
dimensional. For example, with undamped acoustics, coil
location xo = L/4, and microphone position xm > L/4 it
is

G(s) =




sinh
(

(L−xm)
c s

)

sinh
(
L
c s
) γ̄

c

sinh
(
L
4c s
)

sinh
(

(L−xm)
c s

)

sinh
(
L
c s
)

1
ρc

cosh
(

3L
4c s
)

sinh
(
L
c s
) − γ̄

4ρc2
1

cosh
(
L
2c s
)


 , (3)

for values and explanations of the involved parameters see
Table II. The transfer function G22(s) is important for under-
standing the thermoacoustic instability since it is in feedback

with the heat release dynamics. Note that on the imaginary
axis

cosh
( L

2c
jω
)

= cos
( L

2c
ω
)
,

and therefore G22 has infinitely many poles on the imaginary
axis at

ωk = (2n− 1)
cπ

L
, n ∈ Z,

that correspond to the odd acoustic modes of a tube with two
open ends, i.e. standing waves with wavelengths of 2L, 2L/3,
2L/5 and so on. The fundamental mode corresponds to n = 1
and is the one depicted in Figure 3. If damping and/or radiative
effects were to be included, those poles would be shifted to
the left in a similar manner to those in Figure 9; this issue
is further elaborated in “Wave Dynamics with Diffusion and
Damping” on Page 19. The important fact to keep in mind
is that G22 has many very lightly damped poles arranged at
integer multiples of a fundamental frequency.

The heat release dynamics in the bottom blocks of Fig-
ure 15 combine two effects. The simpler one being a first-
order lag with time constant thr representing the “thermal
inertia” of the boundary layer surrounding the coil. The
second effect is the square-root dependence of heat release on
velocity. This is known as King’s law [17], and it reflects that
convective heat transfer is enhanced by increasing velocity, but
the “enhancement rate” decreases as velocity increases. This
effect of diminishing returns of heat release is responsible for
the fact that an instability in the feedback loop between G22

and heat release ultimately produces a stable limit cycle. This
is similar to what occurs in linearly unstable loops containing
a saturation-type memoryless nonlinearity. The exponentially
growing response due to the instability ultimately saturates,
producing a stable limit cycle.

Hence, the heat release dynamics constitute a feedback
from acoustic velocity to heat transfer. It is very important
to distinguish this feedback from the stabilizing proportional
feedback of the preceding section: On the one hand, the heat
release process can be interpreted as an internal feedback
loop, it connects two signals not accessible to measurement or
direct manipulation; on the other hand, the stabilizing feedback
is an external controller. In other words: the open loop
identified in the previous section corresponds to the transfer
function from p̃(0) to p̃(xm) in Figure 15, which includes the
closed loop of G22 and heat release. The above qualitative
arguments hint that the key to quantitative understanding of
the thermoacoustic instability is analyzing the linearization of
this internal feedback loop, consisting of G22, the first-order
lag, and the linearization of the heat release square-root law,
which can be modeled as a variable linear gain. It turns out
that a root locus analysis accurately describes the effect of this
gain as is demonstrated next.

The open-loop transfer function of the linearization of the
lower feedback loop in Figure 15 is

− γ̄

4ρc2
1

cosh
(
L
2cs
) 1

thrs+ 1
f ′(v),
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Figure 16. Root locus for the feedback interconnection of G22(s)
and the linearized heat release dynamics in Figure 15. The plot should
be interpreted as if it were shifted slightly to the left, as would be the
case if realistic damping effects were included. The branch shown in
red corresponds to the thermoacoustic instability; assuming standard
conditions on air, its crossover point is at 141 Hz, very close to
the frequency of the observed hum and the 144 Hz predicted by the
identified model, see Figure 10. See Table II for the parameter values
used.

where f ′(v) is the derivative of the square-root nonlinear
gain at the steady upward flow velocity v. This represents a
linear positive feedback gain which depends on the operating
condition v. Thus the stability of the linearized closed-loop
system can be completely characterized using the (negative
gain) root locus of the transfer function

L(s) =
1

cosh
(
L
2cs
) 1

thrs+ 1
. (4)

Since this transfer function has infinitely many poles, a little
care is needed in generating the root locus. Figure 16 shows
the locus of the zeros of 1 + k L(s) using a continuation
(Newton) method in the positive real parameter k. The open-
loop poles are the acoustic ones lying on the imaginary axis
together with one pole on the negative real axis corresponding
to the first-order lag in heat release dynamics. In reality, the
acoustics have some damping and its corresponding poles lie
slightly to the left of the imaginary axis as for example in
Figure 9. Therefore the open-loop dynamics are stable, but
have an array of very lightly damped poles. With the positive
feedback from coil heat release, we see that half of the acoustic
poles eventually move into the right half plane. The first pole
(pair) to cross into the RHP corresponds to the fundamental
frequency and is depicted by the red branches in Figure 16.
Its imaginary axis crossing frequency of 141 Hz corresponds
almost exactly to the frequency of the hum recorded at the
onset of thermoacoustic instability. Once this instability is
triggered, the system exhibits growing oscillations and leaves
the linear regime (remember, the •̃ variables need to be
small). Intuitively, the square root term then offers diminishing
returns, i.e. at higher acoustic velocities, it almost saturates,

and even larger oscillations in velocity are not supported by the
enhanced heat transfer anymore. The system is brought into a
limit cycle, the shape of which can be seen in Figure 2(c).

Acoustic Dynamics from Mass, Momentum and Energy
Balances

The basic features of the Rijke tube experiment can
be captured using a simplified model of one-dimensional
compressible gas dynamics. A brief description and derivation
of the Euler equations of gas dynamics in one dimension is
included in “One-dimensional Compressible Gas Dynamics”
on Page 12. These are partial differential equations (PDEs)
that describe conservation of mass, momentum, and energy, re-
spectively. They can be written in several forms, and the form
chosen here is the one that relates the time-varying density
ρ(t, x), velocity v(t, x) and pressure p(t, x) distributions along
the axial dimension x of the tube. The one-dimensional model
is a reasonable approximation to the true three-dimensional
physics since the Rike tube has a high aspect ratio, and
therefore the important fluctuations of ρ, v and p are primarily
in the axial direction. The equations are



∂ρ
∂t
∂v
∂t
∂p
∂t


 = −



v ρ 0
0 v 1

ρ

0 γp v







∂ρ
∂x
∂v
∂x
∂p
∂x


+




0
0
γ̄q


 , (5)

where q(t, x) denotes the external heat power added per
unit volume, and acts as an input (source term). The non-
linear equations are written in a matrix-vector form which is
convenient later for linearization. Depending on the steady
conditions about which these equations are linearized, the
resulting linearization is a one-dimensional linear PDE that
looks like a wave equation, and thus describes acoustic wave
propagation. The linearization of the above equations will form
the “tube acoustics” block in Figures 14 and 15.

Actuation and Sensing

The Rijke tube has both ends open, which is typically
modeled by having pressure boundary conditions held at the
ambient atmospheric pressure. The bottom end however is
very close to the actuating speaker, and while a true model
of the influence of the speaker involves accounting for inward
radiating waves, a simple and reasonable approximation is
to assume the speaker signal as pressure fluctuations at the
bottom end. Thus the pressure boundary conditions for the
system (5) are

p(t, 0) = p0 + u(t),

p(t, L) = p0,
(6)

where p0 is the ambient pressure, and u(t) is the speaker
signal. Note that u(t) acts as an input to the gas dynamics,
but it is not distributed. The same holds for the measurement
through a microphone, which is a pressure sensor whose out-
put is (proportional to) the pressure p(t, xm) at the microphone
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Sidebar 2: One-dimensional Compressible Gas Dynamics

Acoustic phenomena occur in compressible fluids. In full
generality, the dynamics of such fluids are often modeled
by the Euler equations of gas dynamics. Since the Rijke
tube has a large aspect ratio, the geometry is simplified
so that all variations of pressure, density and velocity
can be assumed to occur only along the axial direction.
Therefore a simpler one-dimensional mathematical model
of compressible gas dynamics is sufficient to describe
thermoacoustic phenomena in the Rijke tube. The three
physical laws of (1) Conservation of mass, (2) Momentum
balance, and (3) Energy balance can be used to derive three
PDEs for one-dimensional gas dynamics as shown here.

v(x1) v(x2)

p(x2)p(x1)

x1 x2 x

q

Figure 17. A small “control volume” used to account for density,
momentum and energy balances in a 1-D model. The time rate of
change of a quantity inside the volume [x1, x2] is equal to the flux
through the boundaries x1 and x2 of quantities that influence it.

To begin with, consider a one-dimensional medium with a
control volume between x1 and x2 as illustrated in Fig-
ure 17. Let ψ(t, x) and φ(t, x) be two spatially distributed
fields that satisfy a flux-type relationship

d

dt

(∫ x2

x1

ψ(t, x) dx

)
= φ(t, x)

∣∣∣
x2

x1

,

which states that the time rate of change of the total quantity

of ψ in [x1, x2] is given by the value of φ at the boundaries
x1 and x2. Dividing the above equation by (x2 − x1) and
taking the “small-volume limit” of (x2 − x1) → 0 results
in the PDE

∂ψ

∂t
(t, x) =

∂φ

∂x
(t, x).

This accounting procedure can now be performed for the
gas’ density ρ(t, x), momentum ρ(t, x)v(t, x), and internal
energy ρ(t, x)U(t, x) distributions. For a “calorically per-
fect” gas that also satisfies the ideal gas law, the internal
energy (which accounts for the energy stored in molecular
motion and vibration) can be expressed in terms of the
pressure field by U(t, x) = cv

R p(t, x), where cv and R
are the specific heat capacity and universal gas constant
respectively. The derivation of the three physical laws is
outlined in Table I in a simplified setting that neglects
effects such as heat conduction within the gas, its viscosity,
and external forces. These effects can be easily added to
that derivation as needed.
An exercise in algebra and the product rule of differentiation
allows one to rewrite the PDEs of Table I in the following
more standard form

∂

∂t



ρ
v
p


 = −



v ρ 0
0 v 1

ρ

0 γp v







∂ρ
∂x
∂v
∂x
∂p
∂x


 +




0
0
γ̄q


 ,

where γ := 1 + R
cv

is the heat capacity ratio of the gas
(γ = 1.4 for diatomic gases like air), γ̄ := γ − 1, and
q(t, x) denotes the heat power added per unit volume. These
equations are the one-dimensional version of the Euler
equations of gas dynamics; the matrix-vector form they are
written in is particularly convenient for linearization.

Balance in Control Volume PDE

Mass Conservation
d
dt

∫ x2

x1

ρ dx︸ ︷︷ ︸
total mass

in control volume

= ρv
∣∣∣x2
x1︸ ︷︷ ︸

mass influx
through boundaries

∂
∂tρ = ∂

∂x (ρv)

Momentum Balance
d
dt

∫ x2

x1

ρv dx︸ ︷︷ ︸
total momentum

in control volume

= v (ρv)
∣∣∣x2
x1︸ ︷︷ ︸

momentum influx
through boundaries

+ p
∣∣∣x2
x1︸ ︷︷ ︸

total force
at boundaries

∂
∂t (ρv) = ∂

∂x

(
ρv2 + p

)

Energy Balance
d
dt

∫ x2

x1

(
ρU +

ρv2

2

)
dx︸ ︷︷ ︸

total energy
in control volume

= v

(
ρU +

ρv2

2

)∣∣∣∣∣
x2

x1︸ ︷︷ ︸
power added by
material influx

+ pv
∣∣∣x2
x1︸ ︷︷ ︸

work rate of
pressure forces

+

∫ x2

x1

q dx︸ ︷︷ ︸
heat power

added

∂
∂t

(
ρU + ρv2

2

)
= ∂

∂x

(
v
(
ρU + ρv2

2

)
+ pv

)
+ q

TABLE I
DERIVATION OF THE BASIC PDES OF ONE-DIMENSIONAL GAS DYNAMICS.
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Sidebar 3: Boundary Layer Effect on Heat Release

When heat is transferred from a hot surface to a gas
in steady relative motion, the heat transfer coefficient’s
dependence on gas velocity is captured by King’s law

heat transfer coefficient ∼ κ+ κv
√
|v|. (S1)

When gas velocity is not constant but fluctuating, this
dependence has dynamics as well. Lighthill [18] analyzed
these dynamics in great detail — incidentally, the author
was inspired to this investigation by the Rijke tube.

Ts

Tb T̄

Qs→b
Qb→f

v̄ + ṽ

Wire

Boundary Layer

Figure S6. Illustration of the boundary layer’s effect on coil-to-
gas heat transfer. Intuitively, the boundary layer depicted by the
orange ellipse can be imagined as a blob of stagnant air. Heat
transfer from the boundary layer into the free stream, denoted by
Qb→f , reacts instantly to changes in the free stream velocity v+ ṽ
according to King’s law (S1), but heat Qs→b transferred from
the wire needs to propagate through the boundary layer before
reaching the free stream, leading to a first-order lag from flow
velocity ṽ to heat release q̃ fluctuations.

Whenever flowing fluid comes into contact with a solid, a
boundary layer is formed, and it is found that the thermal
inertia of the boundary layer around the wire can be
modeled by a simple first order lag, i.e. a transfer function

of the form 1/(thrs+1). An estimate for the corresponding
time constant is given by [18]

thr = 0.2
dwire

v
=

diameter of the wire
5 · steady free stream velocity

.

Cascading the static and dynamic dependence of the heat
transfer on the velocity leads to the model (9).
As has been observed in [18] already, this lag, even if it is
very small, is crucial for the model to be valid. In the current
setting, this can be demonstrated nicely by considering the
root locus for the model without lag (corresponding to
thr ≡ 0), shown in Figure S7. This root locus predicts a
humming frequency of roughly 282Hz, which is twice what
is observed in experiments.
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Figure S7. What the root locus of Figure 16 would look like if
the wire’s thermal boundary layer effect was ignored. This amounts
to assuming thr = 0, or equivalently ignoring the first order lag
in the heat release response. The fundamental frequency branch
which moves into the right half plane is now incorrectly predicted
to be twice what is observed in experiments. This illustrates
that including the first-order lag is crucial to correctly predict
thermoacoustic instabilities.

location xm. The controller used to stabilize the tube connects
those two signals via a proportional control feedback loop.

Heat Transfer

The Euler equations (5) have an external heat input q(t, x)
as a source term, which can be used to model heat released
from the coil into the gas. If the coil is assumed to be located
in a very narrow section at location xo, then a reasonable
approximation to this distributed input is

q(t, x) =
1

A
δ(x− xo) Q(t), (7)

where δ is the Dirac impulse with units 1/m, Q(t) is the heat
power released from the coil in W, and A is the tube cross
section.

The next key step is to quantify the dependence of coil-
to-gas heat power released Q(t) on the flow velocity v(xo, t)
near the wire. Heat is transferred from a solid to a gas due
to both conduction and convection. Convection depends on

the velocity v of the gas, whereas conduction does not; both
depend on the temperature difference. King’s law [17] is a
commonly used approximation for these dependencies, and in
the current context it states that in steady flow, the heat power
transfer QK of a hot circular wire of length lw in a colder
fluid flow is

QK = lw

(
κ+ κv

√
|v|
)

(Twire − Tgas), (8)

where κ is the fluid’s thermal conductivity, and κv is a
constant that is largely empirically determined. The first term
is Fourier’s law of heat conduction, while the second term
expresses that convective heat transfer occurs at a rate pro-
portional to

√
|v|. The formula suggests that heat transfer is

enhanced by flow velocity, regardless of direction, but the “rate
of enhancement” tapers off as velocity increases.

King’s law does not include any temporal dynamics.
However, if the gas velocity fluctuates, there are important
dynamic effects to be considered, and it will turn out that their
inclusion is crucial to correctly predicting the frequency of
the hum. These dynamics are mainly due to a boundary layer
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forming around the wire, which has its own thermal inertia.
Figure S6 and “Boundary Layer Effect on Heat release”
explain this effect. An intuitive picture is to imagine this
boundary layer as a blob of stagnant air, through which the
heat needs to be conducted before reaching the free stream
of gas outside the boundary layer. The conclusion is that this
boundary layer effect introduces a first-order lag into the heat
release process which now can be modeled by

thrQ̇(t) = −Q(t) +QK(t) (9a)

QK(t) = lw(Twire − Tgas)
(
κ+ κv

√
|v(t, x0)|

)
. (9b)

Note how the mapping from v(·, xo) to QK in (9b) is the
memoryless nonlinearity in the bottom loop of Figure 15,
while Equation (9a) represents the first order lag.

The above model tacitly assumed that Tgas is constant,
but in reality it fluctuates together with pressure and density.
It is shown in a subsequent section (see Figure 18) that
this effect is much less significant than the dependence on
velocity fluctuations, and therefore the diagram of Figure 15
has only the velocity fluctuations as an input to the heat release
mechanism.

Linearization of the Acoustics

The full system is described by (a) the gas dynamics (5),
the boundary conditions (6) and heat input (7), which are in
feedback with (b) the heat release model consisting of King’s
law (9b) and the first-order lag (9a) of the boundary layer
effect. The two subsystems of gas dynamics and heat release
can be linearized separately. The linearization of the former
yields linear acoustic dynamics, and while the linearization
of the latter is straightforward, an analysis of the involved
parameters reveals that velocity fluctuations are significantly
more important than pressure and density fluctuations in the
feedback path.

Linearization of the nonlinear model (5) requires knowing
the steady state conditions. An accurate calculation of the
steady state requires incorporating buoyancy effects (to model
steady upward flow due to steady heat release from the coil)
as well as the steady temperature and density variations along
the tube length (e.g. gas in the upper section is hotter than
that in lower section). However since the important parameter
in acoustic dynamics is the speed of sound, and the above
variations have relatively minor effect on the speed of sound,
an alternative and much simpler equilibrium can be used for
the acoustic linearization. This simple equilibrium assumes
spatially constant density, velocity, and pressure fields, which
trivially satisfy the nonlinear PDEs, if there is no heat input
(q ≡ 0) and no speaker actuation (u ≡ 0). Denoting a steady
state by a bar • and small deviations from it by a tilde •̃, a
linearization is obtained by plugging ρ(t, x) = ρ+ ρ̃(t, x) and
so on into the nonlinear equations and discarding all terms of
second or higher order in the deviation variables. Applying

this process to (5) leads to

∂

∂t



ρ̃
ṽ
p̃


 = −



v ρ 0
0 v 1/ρ
0 γp v


 ∂

∂x



ρ̃
ṽ
p̃


+




0
0
γ̄


 q̃, (10)

which very closely resembles (5) with the important difference
that the “A-matrix” is now a constant matrix and hence, (10)
is a linear, but infinite-dimensional state-space description of
the gas dynamics with the state

[
ρ̃ ṽ p̃

]T
. Furthermore,

from (6) it follows immediately that p = p0, and that p̃(t, 0) =
u(t) and p̃(t, L) = 0.

A further simplification is due to the upward flow v being
very small (relative to the speed of sound); rewriting the
model in dimensionless quantities shows that if v � c, where
c =

√
γp/ρ is the velocity of sound in steady state, then v

can be neglected. For details see “Dimensionless Quantities”
on Page 18. Setting v to zero leads to the dynamics of
(10) being decoupled: The density ρ̃ does not couple into
the pressure/velocity dynamics and can be dropped from
consideration. Therefore, the linearization of the gas dynamics
yields the following wave equation with the heat fluctuations
Q̃ as a source term at x = xo

∂

∂t

[
ṽ
p̃

]
=

[
0 − 1

ρ

−γp 0

]
∂

∂x

[
ṽ
p̃

]
+

[
0
γ̄
A

]
δ(x− xo) Q̃(t). (11)

The boundary conditions on pressure and the speaker signal
u can be written in the general form
[
1
0

]
u(t) =

[
0 1
0 0

] [
ṽ(t, 0)
p̃(t, 0)

]
+

[
0 0
0 1

] [
ṽ(t, L)
p̃(t, L)

]
. (12)

The two equations (11) and (12) represent the LTI dynam-
ics of acoustics driven by the two scalar inputs Q̃(t) and u(t).
The remaining task is to find an expression for the transfer
functions from those two inputs to the pressure and velocity at
any location within the tube as outputs. A standard technique is
to apply the Laplace transform to (11) and (12), and rearrange
so that the spatial derivative is on the left hand side of the
equation. Then, one obtains an ordinary differential equation
with boundary conditions
[
V ′(s, x)
P ′(s, x)

]
=

[
0 −s

γp

−sρ 0

][
V(s, x)
P(s, x)

]
+

[
γ̄/γ
pA

0

]
δ(x−xo)Q̃(s)

[
1
0

]
U(s) =

[
0 1
0 0

] [
P(s, 0)
P(s, 0)

]
+

[
0 0
0 1

] [
P(s, L)
P(s, L)

]
, (13)

where V(s, x), P(s, x), U(s) and Q(s) are the Laplace trans-
forms (in t) of ṽ(t, x), p̃(t, x), u(t) and q̃(t) respectively,
and differentiation in x is denoted by prime, e.g. V ′(s, x) :=
d
dxV(s, x). The Laplace transform variable s can be simply
regarded as a parameter in the above differential equation
which can now be treated as an ODE (in x) with two point
boundary conditions. A general formula (S10) for the solution
of this TPBVP is derived in “Transfer Function Computation
for Two-Point Boundary Value Problems.” Application of this
procedure to (13) yields the transfer function matrix (3).
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Sidebar 4: Transfer Function Computation for Two-Point Boundary Value Problems

A unified way to treat linear two-point boundary value
problems can be described by using the “first order form”,
which is a state space realization with space x as the
independent variable

d

dx
ψ(x) = Fψ(x) +Gδ(x− xo) r, x ∈ [xi, xf ] (S5)

Nu u = Niψ(xi) + Nfψ(xf ). (S6)

The first equation is the differential equation, while the
second expresses general linear boundary conditions. The
“inputs” r and u can be regarded as parameters. The
objective is to obtain a formula for the solution ψ(x) as
a function of r and u. The matrices F and G may depend
on other parameters (e.g. the Laplace transform variable s),
and the formula obtained applies to such cases as well.
The presence of δ(x− xo) in the r input term implies that
the solution ψ(x) could have a discontinuity at xo, but is
continuous everywhere else. The upper and lower limits at
the jump point xo

ψ(x+
o ) := lim

x↘xo
ψ(x), ψ(x−o ) := lim

x↗xo
ψ(x),

@
@
@@R

�
�

��	

xi xfxo

x+
ox−o

satisfy the following relation (which follows from (S5)):

ψ(x+
o ) = ψ(x−o ) + G r. (S7)

The solution over each of the intervals [xi, xo] and [xo, xf ]
can be propagated from each end

ψ(x) =

{
Φ(x, xi) ψ(xi), x ∈ [xi, xo]
Φ(x, xf ) ψ(xf ), x ∈ [xo, xf ]

, (S8)

where Φ(x1, x2) = eF (x1−x2) for the constant coefficient
ODE (S5). The jump relation (S7) can now be rewritten by

first observing that (S8) gives

ψ(x−o ) = Φ(xo, xi) ψ(xi)

ψ(xf ) = Φ(xf , xo) ψ(x+
o ),

which combined with (S7) yields a relation between ψ(xi)
and ψ(xf ) as a function of the input r:

ψ(xf ) = Φ(xf , xo)
(

Φ(xo, xi)ψ(xi) + G r
)
. (S9)

The given boundary conditions (S6) can now be combined
together with (S9) in the following matrix-vector form
[
−Φ(xf , xi) I

Ni Nf

][
ψ(xi)
ψ(xf )

]
=

[
Φ(xf , xo)G 0

0 Nu

][
r
u

]
.

Finally, this permits rewriting the solution (S8) in terms of
the inputs r and u as

ψ(x) =





[
Φ(x, xi) 0

]
Γ

[
r
u

]
, x ∈ [xi, xo]

[
0 Φ(x, xf )

]
Γ

[
r
u

]
, x ∈ [xo, xf ],

where

Γ =

[
−Φ(xf , xi) I

Ni Nf

]−1 [
Φ(xf , xo)G 0

0 Nu

]
.

Depending on the system structure, the value of ψ at xo
might be discontinuous. The average value at the point xo
is written as

ψav(xo) =
1

2

[
Φ(xo, xi) Φ(xo, xf )

]
Γ

[
r
u

]
. (S10)

Note that the basic computation is that of Φ(·, ·) which
can be done analytically with computer algebra routines for
systems of order 4 or less. This corresponds to PDEs in
which the spatial derivative order is 4 or less, which is the
case for the wave equation studied in this paper.

Linearization of the Heat Release

To facilitate interconnection of heat release and acoustic
models, the temperature T in King’s law (9b) can be expressed
in terms of the state variables of acoustics p and ρ by using the
ideal gas law T = p/(ρR) — note that now, Tgas is not initially
assumed to be constant, but it is shown in “Dimensionless
Quantities” on Page 18 that its contribution (expressed with
pressure and density) can be neglected. As in the preceding
section, all variables are then expressed as steady state plus
deviation, e.g. v = v + ṽ, and the linearized version of (9b)
takes the three-input form

Q̃K =
[
f(v)Tρ f ′(v)

(
Twire − T

)
−f(v)Tp

]


ρ̃
ṽ
p̃


 , (14)

conveniently written as a vector gain multiplying the acoustic
states. T = p/(ρR) is the steady-state temperature and simply
a parameter, and f(v) = lw(κ + κv

√
|v|) is the velocity-

dependent heat transfer coefficient according to King’s law (8).

This representation of the heat release dynamics illustrates
nicely that while all three state variables influence the heat
transfer process, they do so with different gains, and so it is
no surprise that this model can also be simplified substantially
by considering the relative sizes of those gains: careful dimen-
sional analysis of the linearization shows velocity fluctuations
to be the main driver of heat release dynamics when the flow
is very subsonic (i.e. v̄ � c), for details see Sidebar “Di-
mensionless Quantities” on Page 18. It is thus reasonable to
proceed with the single-input linearized version of (9b)

Q̃K = f ′(v)
(
Ts − T

)
ṽ.

15



Symbol Value Used

ρ Density 1.2 kg/m3

p Pressure 105 N/m2

c =
√
γ pρ Speed of Sound 343 m/s

cp, cv Heat Capacities 1008, 718 J/(kg K)

γ = cp/cv Adiabatic Ratio 1.4

R = cp − cv Ideal Gas Constant 290 J/(kg K)

L Tube Length 1.219 m

thr
Heat Release Time
Constant

≈ 3.5 10−4 s

TABLE II
VALUES OF RELEVANT PARAMETERS USED FOR COMPUTATIONS.

Q̃(t)

1
thrs+1

− f(v)T
p

f ′(v)(Twire − T )

f(v)T
ρ

ṽ(t, xo)

p̃(t, xo)

ρ̃(t, xo)

Figure 18. A signal flow diagram of the linearized heat release
model. The analysis in “Dimensionless Quantities” shows that the
gains of the local acoustic pressure p̃(t, xo) and the local density
variation ρ̃(t, xo) are much smaller than the gain of the local acoustic
velocity ṽ(t, xo), hence they may be neglected.

Figure 18 depicts this reduction graphically. For the range of
steady velocities v̄ in the Rijke tube experiment, the nonlinear
heat release dynamics (bottom loop of Figure 15) are hence
only a function of velocity fluctuations and the linearization
is represented compactly by the transfer function

B(s) =
f ′(v)(Ts − T )

thrs+ 1
(15)

between local velocity fluctuations ṽ(t, xo) and heat released
into the gas Q̃(t), see also Figures 15 and 18.

It should be stressed here that the significance of the
steady buoyancy-induced upward velocity v is very different
for the heat release than for the gas dynamics. The wave-
like equation (11) for the gas dynamics was obtained by
assuming v ≈ 0 with the justification that the dynamics would
not change much if v were nonzero but small. For the heat
transfer, however, assuming no steady upward component in
the velocity would result in an invalid linearization, since the
derivative of

√
| · | is discontinuous at 0. The importance of

the offset in velocity lies in moving to the “linearizable part”
of the square root function, as depicted in the bottom block
in Figure 15.

ṽ(xo) Q̃

p̃(0)p̃(xm)


G11(s) G12(s)
G21(s) G22(s)

�

B(s)

w

K

+

F̌
Figure 19. The modeled transfer function between speaker input
and microphone output signals can be represented – with linearized
heat release – as a lower linear fractional transformation F̌ = G11 +
G12BG21/(1 −G22B).

Comparison of Modeling and Empirical Results

Finally, the previous modeling efforts can be used to test
how closely the physical model (3) corresponds to reality (or
rather the identified model as a proxy for reality) beyond
explaining the thermoacoustic oscillations. It is important
to understand first the relationship between the modeled
and identified transfer functions. The open-loop Bode plot
of Figure 8 corresponds to the identified response F (ejω)
of pressure fluctuations as measured by the microphone to
pressure fluctuations induced by the speaker; in the model
depicted in Figure 15, this is the transfer function from p̃(0) to
p̃(xm) (with w and K set to zero), including the (linearized)
heat release feedback loop; for clarity, this is illustrated in
Figure 19.

Comparisons need to be made between the identified open
loop F (ejω) and

F̌ (s) = G11(s) +
G12(s)B(s)G21(s)

1−G22(s)B(s)
.

There remain however several unknown parameters in the
model: an overall gain due to the unknown conversion factors
of speaker and microphone, the microphone position xm, and
linear gain and time constant thr of the heat release feedback
B(s). Additionally, the assumptions about friction, diffusive
effects, and the steady upward flow that were made during the
modeling of the gas dynamics — and had the advantage that
the very simple model (11) and transfer function (3) could
be obtained — also lead to system poles moving onto the
imaginary axis, which made necessary the less-than-rigorous
argument that intuitively, the neglected damping would move
the poles towards the left (rendering them stable), and presents
a clinical case which makes comparisons difficult. “Wave
Dynamics with Diffusion and Damping” addresses the issue
numerically and Figure S13 suggests that the poles lie on a
parabola shape.
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Figure 20. Bode plots of open-loop (K = 0) and closed-loop
(with a stabilizing K 6= 0) frequency responses derived from
the physical model of Figures 19 and 15. Note the opposite
signs of the 180o phase increase near the fundamental mode
indicating open-loop instability and closed-loop stability of
that mode.

If the damping effect is imitated by considering jω+ε0 +
ε1ω

2 instead of jω, and choices of the unknown heat release
time constant, heat release gain and feedback gain are made
judiciously, one obtains the responses shown in Figure 20;
remarkably, despite employing very simple devices to treat
the aforementioned difficulties, these responses qualitatively
capture the most important features of Figures 7 and 8:
resonant peaks, a phase increase of 180o at the first peak for
the unstabilized open loop F̌ , and phase drops of the same
amount at the higher-order peaks for F̌ and at all peaks for
the stabilized closed loop F̌ /(1 + KF̌ ). That it is easy to
find a wide range of parameter values that generate responses
with these features after only a few manual iterations can be
seen as evidence that the physical model indeed captures the
important structures of the underlying physics.

Summary

The Rijke tube experiment has been presented from a
control engineer’s perspective. To emphasize this perspective,
the first part of the paper showed how one can approach
this experiment using “black box” techniques such as system
identification and model validation. Although a great deal
of insight can be obtained from these generic systems tech-
niques, a thorough understanding of the underlying dynamics
is achieved by physical modeling from first principles in the
second part of the paper. As is typical in any control-oriented
modeling exercise, choices must be made as to the right level
of “granularity” of various pieces of the model. In this paper,
these choices were guided by the findings in the empirical
part of the investigation. A notable example is modeling the
boundary layer effect on heat release from the coil, without

which the root locus arguments presented would fail to explain
the observed limit cycle frequencies in the experiment. While
a full fidelity model of that boundary layer would be rather
complex, it was shown that a first-order lag model for that
boundary layer is sufficient to produce consistent predictions.
This back and forth cross validation between modeling and
experiment can serve as an instructive pedagogical device.

Thermoacoustic effects are mostly known within the
controls community as undesirable phenomena that need to
be regulated [2], [19], [3], [20], [21], [6], [22]. There is
however another perspective in which these effects can be
regarded as an energy conversion mechanism. In the Rijke
tube, the thermoacoustic instability produces a limit cycle
which can be thought of as a mechanism of converting
some of the steady heater power into acoustic power radiated
from the tube. This is only one example of several types
of thermoacoustic engines in which powerful, internally con-
tained acoustic waves perform the mechanical work in the
energy conversion process [23], [24]. Thus acoustic waves
replace the traditional pistons, cranks and turbines typical in
traditional heat engines, and can therefore potentially have
very high efficiencies. With some notable exceptions [25],
[26], [27], these devices have not received much attention
from control engineers. Although the Rijke tube is not a useful
heat engine, the underlying energy conversion mechanisms are
sufficiently similar to thermoacoustic engines to render it a
simple and useful experimental testbed for active control of
thermoacoustic phenomena.
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Sidebar 5: Dimensionless Quantities

It is common practice in fields such as fluid dynamics
or heat transfer to express physical relationships in terms
of dimensionless quantities, and for good reasons: it often
leads to a reduced number of parameters, allows to compare
relative sizes more easily, and last but not least leads to
aesthetically more appealing equations.
In the model equations for the Rijke tube, there are three de-
pendent variables, namely ρ, v, and p, and the two indepen-
dent variables x and t. Variables are non-dimensionalized by
setting them in relation to some reference value; a natural
reference value for the pressure p would be its nominal
value, the atmospheric pressure p0 = p, similarly for ρ. The
situation is different for the velocity v: it is expected that
the nominal velocity v is very small, hence scaling v by v
would lead to a large quantity, not comparable to the scaled
pressure and density. In other words: While the percentage
change in p and ρ will be small, the percentage change in
v will be large. Thus, the velocity is scaled by c, the speed
of sound, and the set of scaled variables is

ψ := p/p, m := v/c, and r := ρ/ρ.

Similarly, scaling the spatial variable x by the tube length L
and time t by the time it takes sound to propagate through
the entire tube yields

ξ := x/L, τ := ct/L,

and
∂

∂ξ
= L

∂

∂x
,

∂

∂τ
=
L

c

∂

∂t
.

Rewriting, for example, the conservation of momentum
equation (see Table I) using dimensionless variables and
the relation c2 = γp̄/ρ̄ leads to

∂m

∂τ
= −m∂m

∂ξ
− 1

γr

∂ψ

∂ξ
.

Rewriting the state-space model (10) in terms of the dimen-
sionless variables, yields the more appealing dimensionless
form

∂

∂τ



r̃
m̃

ψ̃


 = −




Ma 1 0
0 Ma 1

γ

0 γ Ma


 ∂

∂ξ



r̃
m̃

ψ̃


+




0
0
q̊


 , (S19)

where •̃ again signifies deviation from steady state, Ma :=
v/c is the famous Mach number, and q̊ := γ̄L

pc q simply
lumps q with several parameters to obtain a dimensionless
input.
Using (S19), the case for neglecting the diagonal elements
in (10) can now be made more rigorous: without computa-
tion or measurement, it is clear that Ma� 1, whereas γ is
of order unity, hence compared to γ, Ma ≈ 0.
Similarly, rewriting (14) using the dimensionless variables,
one obtains

Q̃K =
[
f(v)T cf ′(v)(Twire − T ) −f(v)T

]


r̃
m̃

ψ̃


 .

Comparison of the gains of r̃ and ψ̃ on the one hand, and
m̃ on the other leads to

f(v)

cf ′(v)(Twire − T )
= 2

T

Twire − T

(
κ

κv
√
v

+ 1

)
Ma.

If all terms except for Ma can be expected to be of order
unity or less, then it is justified to neglect the contributions
of density and pressure variations to the heat transfer. The
only term in question is κ/(κv

√
v), the ratio between

conductive and convective heat transfer; these are typically
comparable – see [17, Tables V & VI, note that velocities
are measured in cm/s] – and hence this term is of order
unity, too.
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Sidebar 6: Wave Dynamics with Diffusion and Damping

Adding thermal diffusion, viscosity and wall friction to the
equations in the right column of Table I, linearizing and
rewriting in nondimensional form as outlined in “Dimen-
sionless Quantities,” one obtains

∂

∂τ



r̃
m̃

ψ̃


 =




0 0 0
Maβ̄ −β̄ 0

0 2Maγβ̄ 0





r̃
m̃

ψ̃


−




Ma 1 0
0 Ma 1

γ

0 γ Ma


 ∂

∂ξ



r̃
m̃

ψ̃


+

φ




0 0 0
0 Pr/γ 0
−1 0 1


 ∂2

∂ξ2



r̃
m̃

ψ̃


+




0
0
q̊


 , (S21)

where Pr = ν/α is the Prandtl number, the ratio of kine-
matic viscosity and thermal diffusivity, φ is a dimensionless
“diffusion strength” parameter, and β̄ quantifies the amount
of friction.
The complexity of the model has increased significantly:
(S21) is of second order, due to diffusion, and in three states,
since the density r̃ is not decoupled anymore. In principle,
the procedure of “Transfer Function Computation for Two-
Point Boundary Value Problems” can still be applied, but
the obtained transfer functions are too unwieldy to learn
anything from them. However, the poles of any derived
transfer function will be a subset of the spectrum of the
right-hand-side operator, analogously to the situation in
finite-dimensional LTI systems. Hence, instead of transfer
function computations, the spectrum of the right-hand-side
operator is computed numerically using Chebyshev spectral
methods. For details on and more applications of such
methods, refer to the excellent book [28].
Figure S13 shows the significant part of the spectrum
obtained using N = 192 grid points, along with some
of the pressure modes for a specific set of the parameters
Ma, Pr, φ, and β̄ representative of the conditions in the
Rijke tube experiment. As expected, the spectrum is located
very close to, but left of the imaginary axis, with modes
corresponding to a standing half-wave and its harmonics;
poles corresponding to higher frequencies are farther left,
indicating more damping. It is important to note that in

particular the parameters φ and β̄, which are known only
to within maybe an order of magnitude, appear to have
very well-defined effects. Increasing the amount of diffusion
φ will “bend” the spectrum, i.e. the parabola shape will
become narrower, while increasing the amount of friction
β̄ will shift the entire spectrum towards the left. These
numerical computations validate the claim made during the
analysis of the root locus in Figure 16, namely that the poles
located on the imaginary axis would be shifted towards
the left if neglected diffusion and/or damping effects were
retained.
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Figure S13. Numerical computation of the spectrum of the
spatial differential operator in (S21). The left plot shows the five
pressure modes corresponding to the fundamental and the first four
harmonics; they are indistinguishable from the pressure modes
of the undamped model (11), corresponding to the resonances
of a tube with two open ends. The right plot shows part of the
numerically computed spectrum: poles located on the imaginary
axis in the case without damping are now damped, i.e. shifted to
the left; higher frequencies are damped more, yet still lightly (note
the axis scales).
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