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The fuel regression rate expressions reported in the hybrid literature often depend explicitly on the physical

dimensions of the system such as the fuel port diameter. Typically, when these dimensional formulas are applied to

systems with significantly different scales, they produce grossly inaccurate results. This paper addresses the

development of scalable space–time averaged regression rate formulas for hybrid rockets. The derivation process

hinges on the assumption that the local instantaneous regression rate is a function of the local mass flux and the axial

port distance in the power law format as predicted by the classical theory developed byMarxman. In this study, we

have developed physics-based nondimensional formulas for the space–time averaged regression rate and used these

expressions to develop a scalable regression rate law for a selected propellant combination, paraffin-based SP-1a/

GOX, from limitedmotor data. Initially, space and time averaging are treated separately, whichwere later combined

to develop a technique that allows for the coupling between the spatial and time variations to predict the port

diameter and mass flow rate profiles as functions of time. Finally, a comprehensive technique to estimate the

systematic and random errors on the regression rate and mass flux data is also outlined.

Nomenclature

Aport = local port area
Aor = orifice area
a = regression rate coefficient
BG = mass flow equation parameter
CD = diameter equation coefficient
Cd = discharge coefficient of the orifice
Cm = mass flux equation coefficient
Cport = local port circumference
c�o = characteristic velocity of the oxidizer
D = hydraulic diameter of the port
E = relative error
Error = error relative to the exact mass flux
fo = O=F function for the oxidizer flux case
ft = O=F function for the total flux case
G = local mass flux in the port
�GoA = area averaged oxidizer mass flux
�GoD = diameter averaged oxidizer mass flux
�GoE = exact oxidizer mass flux
�GoF = flux averaged oxidizer mass flux
Go = oxidizer mass flux
Gt = total mass flux
L = grain length
m = length exponent
_m = local mass flow rate in the port
_mo = oxidizer mass flow rate

_mt = total mass flow rate
n = mass flux exponent
O=F = oxidizer to fuel ratio of the motor
Pf = orifice upstream pressure
R = final to initial port diameter ratio, Df=Di

_r = regression rate
_rL = regression rate at the exit plane
_rmin = minimum regression rate
_rraw = regression rate before O=F correction
tb = burn time
Vportx = volume of the port from the leading edge to an

arbitrary point x
x = axial distance
xmin = distance at minimum regression rate
� = O=F parameter, oxidizer flux case
� = O=F parameter, total flux case
�Mf = total mass of the fuel burned
� = mass flux coefficient
�f = fuel density

Subscripts

f = final
i = initial

Superscripts

- = averaged quantity
� = dummy variable

I. Introduction

A S DISCUSSED extensively in the literature, hybrid rockets
offer many advantages over conventional liquid and solid

systems. One of the most important advantages is the hybrid’s
inherent safety, which is a direct consequence of the storage of the
fuel and oxidizer remotely from each other in different phases (one in
liquid, the other in solid, making it virtually impossible for them to
mix and react spontaneously). The two-phase propellant system also
forces hybrids to operate in a heterogeneous, boundary layer,
combustion configuration. Typically, the hybrid combustion process
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is diffusion limited, making the fuel regression rate primarily mass
flux dependent. In practice, the accurate ballistic design of a hybrid
system requires the full understanding of the dependence of the
regression rate on themass flux and other key operational parameters
such as pressure and grain length. This functional relation is
commonly referred to as the “regression rate law” and each
propellant combination has its unique regression rate formula due to
the differences in the thermophysical and thermochemical properties
of the components of the propellant. Because of the lack of fidelity in
the combustion models presently available for hybrid rockets, an
accurate theoretical determination of the regression rate law based on
the fundamental properties of the propellants is still not possible.
Even though there are theories that can predict the form of the
regression rate dependency on system properties, none of these
prediction tools can accurately estimate the regression rate behavior
of a system in a manner that is required in the internal ballistic design
process.

Consequently, in practice, the regression rate law for each hybrid
propellant system of interest must be constructed from extensive
motor testing. The interpretation of the motor data and the reduction
to a scalable regression rate law is a difficult process. Themethods of
data reduction are not unique due to the nonlinear nature of the
problem and, for certain test conditions, each method may yield
significantly different results. In many reports and papers, the
technique used in the data reduction process is not adequately
discussed, decreasing the value of the information. In certain cases,
the regression rate is written in terms of dimensional parameters
other than the oxidizer or total mass flux, resulting in formulas that
are accurate for interpolation purposes but potentially highly
problematic when they are used to extrapolate to other scales. One
example to such a scaling formula is given in [1], which assumes a
regression rate law that shows an explicit and strong dependency on
the average port diameter.

�_r� 0:065 �G0:77
o

�
�D

3

�
0:71

When this formula is used to predict the regression rate of a system
10 times larger in scale, one estimates a regression rate
approximately five times higher. Clearly, such an increase in
regression rate with motor scale is highly unrealistic.

Our goal in this study is to develop space–time averaged
regression rate expressions from the classical local instantaneous
regression rate equation in the power law format. The mass flux and
axial distance exponents will be kept as free parameters to preserve
the generality in the derived formulas.

In the first part of the paper, we concentrate on developing a space-
averaged regression rate law with a nondimensional correction term.
Two laws will be given: one based on the oxidizer mass flux and the
other on the total mass flux. It will be shown that the correction
formulas, which are functions of O=F alone, show that both the
oxidizerflux and totalflux based regression rate laws produce similar
levels of error (the formula based on the total flux being slightlymore
accurate). Later in the section, the scaling formulas are applied to
paraffin-basedmotor test data to successfully reduce the scatter in the
regression rate–mass flux plane.

In the second part, we discuss the issues associated with time
averaging. This is an important consideration for estimating a
regression rate law from motor test data because, unlike the
regression rate, themassflux is a nonlinear quantity (ratio of themass
flow rate to the port area). This nonlinear character permits several
means of time averaging for the mass flux. The commonly used ones
are based on the average port diameter, average port area, and
average mass flux. It is important to note that all of these methods are
approximations and they would produce different regression rate
laws for a given set of motor test data. As it is shown in the following
sections, the most accurate method is based on the average port
diameter.

A section on the error analysis including the effects of the random
measurement and systematic errors is also included. The issues
associated with the selection process of the optimum burn time (i.e.,

for minimum combined error) for the regression rate evaluation tests
are discussed.

In the final part of this paper, the coupling of space and time
averaging processes will be examined. The partial differential
equations that govern the regression rate in the fuel port as a function
of time and axial distance will be constructed. Some numerical
simulations will be conducted to gain insight into the issue of space–
time coupled regression rate of the fuel grain. Some paraffin motor
tests will be used as examples to understand the axial variation of the
regression rate.

II. Scaling Law for the Local Instantaneous
Regression Rate

A universally acceptable and highly accurate theory to predict the
local regression rate of a hybrid fuel grain, at a given instant of the
motor operation, does not exist. Most complete models developed to
date are the classical diffusion limited theory by Marxman et al. [2]
and semi-empirical relations developed by Chiaverini et al. [3]. For
the sake of simplicity, wewill take the classical theory as the baseline
in our derivations. Similar results can also be obtained by using
Chiaverini’s more extensive regression rate scaling relations.

According to the diffusion limited theory developed by Marxman
et al. [2], the local instantaneous recession velocity of the hybrid fuel
can be expressed as a power law formula in terms of the local mass
flux and the axial position in the port.

_r� aGnxm (1)

The classical values for themass flux and length exponents are 0.8
and �0:2, respectively. These values originate from turbulent
boundary layer heat transfer arguments and were derived for a fully
turbulent boundary layer developing over a flat plate with no dilution
of the oxidizer in the freestream along the axis of the cylindrical port.
In reality, the combustion process that takes place in a hybrid rocket
is much more complex. First of all, the diffusion flame that forms
over the surface conforms to the cylindrical internal geometry of the
fuel port. Consequently, downstream of the axial location that the
boundary layers merge, the oxidizer concentration along the
centerline starts to decrease due to the dilution induced by the
combustion products. This fact, along with many other complicating
factors that are not included in the relatively simple model, such as
the variation of the blowing parameterwith length, result inmassflux
and length exponents that are significantly different from the values
predicted by the diffusion limited theory. In fact, the flux exponent is
reported to be in the range of 0.5–0.8 for most hybrid systems.

The coefficient a can be assumed to be constant for a given
combination of propellants. We like to note that under extreme mass
flux conditions (i.e., very high or very low) or for metal loaded fuel
systems, the regression rate expression becomes pressure dependent.
In this case, the coefficient a can be taken as a function of the
chamber pressure. For the operating conditions encountered in
typical hybrid rocket applications the effect of pressure on the
regression rate is generally negligible and for the sake of simplicity it
will be ignored in this paper. We would like to note that the results of
the following sections can easily be extended to a system with
pressure dependent operation.

III. Space Averaging

In this section, we concentrate on averaging of the regression rate
over the burning surface of the fuel grain. For the sake of simplicity,
the regression rate is assumed to be constant around the
circumference of the fuel port at any given axial location. Note that
this is a fairly good approximation for circular ports, but loses its
validity for port shapes with sharp corners. Note that the introduction
of this assumption simplifies the two-dimensional space-averaging
problem down to the one-dimensional length averaging of the
regression rate.

We start with the mass balance in the fuel port, which can be
expressed as
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d _m

dx
� �fCport _r (2)

Following the substitution of the local instantaneous regression rate
expression given byEq. (1), themass balance expression reduces to a
first-order nonlinear ordinary differential equation for the local mass
flow rate

d _m

dx
� BG _mnxm (3)

Here, we have used the definition of the mass flux G � _m=Aport

and introduced the following parameter for convenience

BG � a�f
Cport

Anport
(4)

Note that BG follows the scaling law

BG /
Cport

Anport
/ D1�2n (5)

In general, both the circumference and the port area are functions
of the port hydraulic diameter which is expected to vary with axial
distance. For most hybrid rocket systems the flux exponent is in the
range of 0.5–0.7 and, consequently, the hydraulic diameter
dependency of BG is quite weak. Furthermore, for typical hybrid
applications, the change in the port area with axial distance is also
small, typically less than 10% (see [3]). For that reason, BG will be
assumed to be constant and its value will be evaluated using the
space-averaged hydraulic diameter of the port. Following this
approximation, Eq. (3) can easily be integrated by separation of
variables.

A. Oxidizer Flux Scaling

Our goal in this section is to derive an expression for the regression
rate in terms of the oxidizermassflux.We start by integrating Eq. (3),
which yields the following mass flow rate distribution in the port.

_m

_mo

�
�
1� �

�
x

L

��m�1��1=�1�n�
(6)

where

�� 1 � n
1�mBG

Lm�1

_m1�n
o

(7)

Upon the substitution of Eq. (6) in Eq. (1), the local instantaneous
regression rate can be written explicitly as

_r� a _mn
oL

m

Anport

�
1� �

�
x

L

��m�1��n=�1�n��x
L

�
m

(8a)

Here, wewill neglect the axial variation of port area and introduce the
oxidizer mass flux asGo � _mo=Aport , whereAport is calculated using
the space-averaged diameter. Again, this assumption can be justified
for hybrids because the axial variation of the port diameter is small.
Note that in Sec. VI of this paper, the constant port area
approximation will be eliminated. Using the definition of the
oxidizer mass flux, Eq. (8a) can be expressed as

_r� aGnoLm	1� ��x=L��m�1�
n=�1�n��x=L�m (8b)

We define the space-average regression rate as follows.

�_r�
Z

1

0

_r�x=L� d�x=L� (9)

Equation (9), following the substitution of the local regression rate
given by Eq. (8), can be integrated by parts to yield the following
closed form solution for the average regression rate.

�_r� aG
n
oL

m�1 � n�
��1�m� 	�1� ��

1=�1�n� � 1
 (10)

Independently, average regression rate and oxidizer to fuel ratio of
the motor are related according to the following formula

�_r

aGnoL
m
� 1

O=F

1

BG

_m1�n
o

L1�m (11)

where the oxidizer to fuel ratio is defined as

O=F� _mo

�fLCport
�_r

(12)

Using the definition of �, one can write the relation

�_r

aGnoL
m
� 1

O=F

1 � n
1�m

1

�
(13)

After combining Eqs. (10) and (13), one obtains the following
formula for � in terms of O=F and n.

��
�
1� 1

O=F

�
1�n
� 1 (14)

Upon substitution of this expression for � in Eq. (13), one finds an
exact formula for the space-averaged regression rate in terms of the
motor O=F, n, and m.

�_r

aGnoL
m
� 1

1�m
1 � n

f	1� 1=�O=F�
1�n � 1gO=F� fo�O=F� (15)

It is key to note that the only operational variable that appears in the
correction term is the motor O=F.

B. Total Mass Flux Scaling

Similarly, the regression rate law in terms of the total flux can be
derived as follows. The ordinary differential equation for the mass
flow rate, Eq. (3), can be integrated from an arbitrary axial point x to
the end of the fuel grain to obtain the following mass flow rate
distribution in the port.

_m

_mt

�
�
1 � �

�
1 �

�
x

L

��m�1���1=�1�n�
(16a)

Note that � is defined as

�� 1 � n
1�mBG

Lm�1

_m1�n
t

(16b)

This formula is similar to Eq. (6) but written in terms of the total mass
flow rate instead of oxidizer mass flow rate as in Eq. (6).

Upon the substitution of Eq. (16a) in Eq. (1), the local
instantaneous regression rate can be written explicitly as

_r�x� � aGnt Lmf1 � �	1 � �x=L��m�1�
gn=�1�n��x=L�m (17)

After inserting this formula in the average regression rate expression,
Eq. (9), and integrating by parts, one obtains the following closed
form solution.

�_r� aG
n
t L

m�1 � n�
�1�m�

	1 � �1 � ��1=�1�n�

�

(18)

Independently, a formula relating the average regression rate to
motor O=F can be written as

�_r

aGnt L
m
� 1

�O=F� 1�
1

BG

_m1�n
t

L1�m (19)

where the oxidizer to fuel ratio is
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O=F� _mt

�fLCport
�_r
� 1 (20)

Using the definition of �, the following formula can be derived.

�_r

aGnt L
m
� 1

�O=F� 1�
1 � n
1�m

1

�
(21)

After combining Eqs. (18) and (21), one obtains the following
expression for �.

�� 1 �
�

O=F

O=F� 1

�
1�n

(22)

Finally, upon the substitution of Eq. (22) for � in Eq. (18), the
exact formula for the space-averaged regression rate can bewritten as

�_r

aGnt L
m
� 1

1�m
1 � n

f1 � 	�O=F�=�1�O=F�
1�ng�1�O=F�
� ft�O=F� (23)

C. Regression Rate Variation

It is important to understand the variation of the regression rate
with the axial distance which can be achieved by studying the local
regression rate formula, Eq. (8b). Because it is convenient to work
with nondimensional variables, Eqs. (8b) and (10) have been
combined to derive an expression for the nondimensional regression
rate (normalized with respect to the average value).

_r
�_r
� 1�m

1 � n O=F�	1� ��x=L�
�m�1�
n=�1�n��x=L�m (24)

We would like to remind that � is a function of O=F and is given
by Eq. (14). At the exit plane, x� L, the nondimensional regression
rate reduces to the following form.

_rL
�_r
� 1�m

1 � n O=F��1� ��
n=1�n (25)

The form of Eq. (24) suggests that the regression rate takes a
minimum value due to the balance between the flux term and the
length effect. The value and the position of the minimum regression
rate can easily be determined by using the following relationships.

_rmin

_rL
�
�
�2n � 1�m� 1

�1� ���mn� 1�

�
n=1�n� m�n � 1�

��mn� 1�

�
m=m�1

(26a)

xmin

L
�
�
�m�1 � n�
��mn� 1�

�
1=m�1

(26b)

Note that the minimum regression rate is normalized with respect to
the maximum value which is expected to take place at the exit plane.
Also note that for m � 0, the minimum ceases to exist at an interior
point and the lowest value of the regression rate takes place at the
entrance plane, x� 0.

D. Discussion of the Results for Space Averaging

It is important to start the discussions by stating that the scaling
formulas for the space-averaged regression rate given by Eqs. (15)
and (23) are in the nondimensional format. The left-hand side of the
equation (in either case) is an average regression rate normalized by
the local formula [i.e., Eq. (1)], evaluated using either the oxidizer or
the total mass flux depending on the case of interest. The right-hand
side is a correction for the space averaging in terms of the
nondimensional parameters of flux and length exponents and the
O=F of the motor. It is instructive to separate the nondimensional
correction into two parts:

1) Length effect is given by 1=�1�m�, which originates from the
integration of the direct effect of axial distance (i.e., xm) in the local

regression rate expression. The primary physical cause of this term is
the boundary-layer thickening.

2) Flux effect is represented by the complex functions of O=F,
fo=�1�m�, andft=�1�m�. This term is induced by the continuous
fuel mass addition in the port.

Please note that the exact form of the correction for the oxidizer
and total mass flux formulas are different, as expected. Let us first
consider the limiting case, as the O=F goes to infinity. In this case,
which corresponds to a very short motor or very slow burning fuel,
theO=F correction functions converge to unity and consequently the
flux averaging part of the correction disappears.

In Fig. 1, correction functions for both the oxidizer flux formula
and total flux formula are plotted as a function ofO=F for various n
exponents [i.e., Eqs. (15) and (23)]. As indicated by the figure, both
corrections are more critical at lower O=F ratios for which the
relative increase in the flux along the port length ismore pronounced.
Figure 1 also reveals that the correction grows with increasing flux
exponent n. In the limiting case of n� 0, the functions become unity
as the regression rate becomes insensitive to the local mass flux. We
would like to note that this case has no practical importance in hybrid
rockets, because the regression rate presents a strong dependence on
the mass flux.

The absolute values of the corrections are plotted in Fig. 2 for the
case of n� 0:62. The important observation from this figure (and
also from Fig. 1 for other n values) is that the total mass flux method
produces slightly more accurate results if not corrected for the space
averaging. This observation is consistent with the general perception
in the hybrid field to express the regression rate law in terms of the
total flux for better accuracy. The difference between the two
approaches becomes less pronounced at higher O=F values. In fact,

Fig. 1 Effect of themotorO=F on the regression rate formulas based on
the oxidizer mass flux and total mass flux.

Fig. 2 Absolute value of the relative correction on the regression rate

formulas based on the oxidizermass flux and totalmass flux as a function

of motor O=F.
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for O=F larger than 3–4, the deviation between the two methods
becomes negligible.

Figure 3 shows the errors in percent relative to a referenceO=F of
2.0. Based on this figure, the correction for a system operating at an
O=F of 1.0 produces an error ofmore than 10%when the uncorrected
oxidizer mass flux expression is used and more than 6% when the
total flux approach is implemented. The errors for a motor operating
at an O=F of 3.0 (i.e., equidistant from the reference O=F of 2.0 in
the fuel lean direction) are 4.2 and 3% for the oxidizer and total mass
flux methods, respectively. We also like to note that, if the O=F
correction formulas are used, the selection of the oxidizer mass flux
or the total flux based scaling formulas is completely arbitrary.

The use of formulas for data reduction from the motor tests or for
ballistic calculations is an iterative process. In the case of motor
testing, theO=F for each test is directly measured but the regression
rate flux exponent n is not known a priori. The correct n must be
obtained following an iterative process. For the ballistic calculations,
at each instance of the operation (the flux exponent is known) the
motor O=F is not available, because it requires the knowledge of
regression ratewhich itself is a function ofO=F. Thus, the regression
rate must be obtained following an iterative process. For systems
operating at high O=F ratios, such as H2O2 motors, the effect of
space averaging can be ignored.

The effectiveness of the space-averaging technique has been
examined using the extensive data set from the paraffin-based fuel
SP-1a/GOXmotor tests conducted at StanfordUniversity andNASA
AmesResearchCenter [4,5].Wefirst concentrate on theStanford test
data collected using a 3 in. o.d. lab scale motor. This set is ideal for
verifying the applicability of theO=F correction because there are 60
tests in the matrix with a wide variation in O=F ranging from 1.0 to
2.5. For the moment, the length exponent is assumed to be zero for
this particular propellant combination. The best curve fit expression
estimated for the Stanford data is

�_r� 0:077 �G0:72
o (27)

Here, the units are millimeters per second for the regression rate
and kilograms per meters squared (per second) for the oxidizer mass
flux. This curve fit formula is determined for the transformed
regression rate data set evaluated at an arbitrarily selectedmotorO=F
of 2.0. This transformation operation can be written simply as

�_r� �_rraw
fo�2�

fo�O=F�
(28)

Note that this process needs to be repeated until the oxidizer mass
flux exponent obtained as a curve fit to the modified regression rate
data converges. It has been observed that this iteration procedure is
fairly well behaved and the convergence is achieved in a few steps.

Also note that �_r value estimated using Eq. (28) is the regression rate
expected for a motor operating at an O=F of 2.0.

In Fig. 4, the raw andmodified regression rate data are plotted as a
function of the oxidizermassflux.A plot of the curvefit expression is

also included in thefigure. Note that the scatter in themodified data is
reduced comparedwith the scatter in the raw data. In fact, the norm of
the residuals is reduced from a value of 0.4695 for the raw data to
0.3941 for the modified set. Note that the error norms are estimated
based on the best fits for each data set.

Similar arguments can be made for the combined data from
Stanford andNASAmotor tests. The best-fit regression rate obtained
for the combined set is

�_r� 0:117 �G0:62
o (29)

Here, the units are millimeters per second for the regression rate and
kilograms permeters squared (per second) for the oxidizer mass flux.
The reduction in the data scatter is shown in Fig. 5 for the combined
Stanford NASA data set. The error norm has also improved from
0.334 to 0.293 after the application of theO=F correction on the raw
data.

The O=F correction has also been applied to the Joint
Government/Industry Research and Development (JIRAD) motors
[1]. Unlike the paraffin data, no reduction in the scatter has been
observed. We believe that the limited number tests (i.e., nine burn
rate tests), the relatively high O=F ratios, and the narrow range of
O=F in the test matrix are potential reasons for the inconclusiveness
of the space correction procedure outlined in this paper.

IV. Time Averaging

In this section, we concentrate on the time-averaging issues one
encounters in the testing and design of hybrid rocket systems. For
simplicity, the effects of the space averaging will be ignored and, for
the purposes of this section, the fuel will be assumed to be burning
uniformly along the length of the grain.

Fig. 3 Relative error on the regression rate for a reference O=F of 2.0. Fig. 4 Effect of O=F correction on the Stanford motor data.

Fig. 5 Effect of O=F correction on the Stanford/NASA Ames motor

data.
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The estimation of a well-defined and unique time-averaged
regression rate frommotor data is straightforward [i.e., see Eq. (38)].
However, due to the nonlinear nature of the flux formula, the
calculation of the oxidizer mass flux is not unique. The following are
the three types of time-averagingmethods that are commonly used in
the hybrid field:

1) Based on port diameter, the arithmetic average of the initial and
the final port diameters is used in the calculation.

�G oD �
16 _mo

��Di �Df�2
(30)

Equation (30) takes the following form when it is written in terms of
the final to initial port diameter ratio, R � Df=Di.

�G oD �
16

�

_mo

D2
i

1

�R� 1�2 (31)

2) Based on port area, one uses the arithmetic average of the initial
and final port areas.

�G oA �
2 _mo

Aporti � Aportf

(32)

This can be written in terms of R as

�G oA �
8

�

_mo

D2
i

1

R2 � 1
(33)

3) Based on mass flux, one uses the average oxidizer mass flux at
ignition and at thrust termination.

�G oF � 0:5

�
_mo

Aporti

� _mo

Aportf

�
(34)

This can also be expressed in terms of R as

�G oF �
2

�

_mo

D2
i

R2 � 1

R2
(35)

Please note that the list of averaging techniques given in the
preceding paragraphs is not complete. These are just themethods that
are commonly used in the field. It can be argued that all of these
averaging techniques result in different mass fluxes for the same
measured regression rates. Consequently, different regression rate
laws can be generated for each method for the same set of test data.

Here, we will develop estimates for the error introduced by using
these approximate expressions for the oxidizer mass flux. The
comparison will be based on the exact formula which can be derived
from the time integration of the port diameter. For a single circular
port system, the variation of the port diameter is governed by

dD

dt
� 2_r� 2aGno � CD

_mn
o

D2n
(36a)

where

CD �
a22n�1

�n
(36b)

For constant oxidizer mass flow rate, this equation can be
integrated by separation of variables to obtain the following relation
between the final and initial diameters.

D2n�1
f �D2n�1

i � �2n� 1�CD _mn
otb (37)

The exact oxidizer mass flux associated with the average
regression rate

�_r �
Dpf �Dpi

2tb
(38)

can be derived form the regression rate law as

�G oE �
�
Df �Di

2atb

�
1=n

(39)

The burn time can be eliminated from Eqs. (37) and (39) to obtain
the following expression for the exact mass flux.

�G oE � �
�

Df �Di

D2n�1
f �D2n�1

i

�
1=n

_mo (40)

where

�� 4

�
�2n� 1�1=n

In terms of the diameter ratio, R�Df=Di, this formula can be
written as

�G oE � �
_mo

D2
i

�
R � 1

R2n�1 � 1

�
1=n

(41)

Arguably, all of the oxidizer mass flux estimates based on
Eqs. (31), (33), and (35) are inaccurate, as they produce mass fluxes
different from the exact formula given by Eq. (41). Figure 6
demonstrates this fact in the regression rate/oxidizer mass flux plane.
The exact variation of the regression rate over the course of the burn
for a propellant following the instantaneous regression rate law is
plotted in the figure. The average regression rate for this particular
case is approximately 3:9 mm=s corresponding to an exact oxidizer
mass flux of approximately 29 g=cm2  s. As also shown in the
figure, the fluxes estimated by three separate methods have the
following ranking of error in increasing order: diameter averaging,
area averaging, and flux averaging. The error for the diameter
averaging, for this particular example, is negligible, whereas the
errors for the area averaging and especially flux averaging are
unacceptably high.

The following formulas give the ratio of the predicted oxidizer
mass flux for each averaging technique to the exact mass flux as a
function of the diameter ratio and the oxidizer mass flux exponent.

Error D �
�GoD

�GoE

� 16

��

�
R2n�1 � 1

�R� 1�2n�R � 1�

�
1=n

(42)

Error A �
�GoA

�GoE

� 8

��

�
R2n�1 � 1

�R2 � 1�n�R� 1�

�
1=n

(43)

Error F �
�GoF

�GoE

� 2

��

�
�R2 � 1�n�R2n�1 � 1�

�R� 1�R2n

�
1=n

(44)

Note that these expressions present the systematic error associated
with each technique in a ratio format. An important observation is

Fig. 6 Error introduced by various mass flux averaging methods.
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that if the oxidizer mass flux exponent is 0.5, ErrorD becomes 1.0,
indicating that for n� 0:5, the diameter averaging technique is
exact.

In Fig. 7, the percent errors produced by the Eqs. (42–44) are
plotted against the diameter ratio for an oxidizer mass flux exponent
of 0.62. It is clear from the figure that by far the most accurate
technique to estimate the oxidizer mass flux is based on the port
diameter averaging. Note that the area averaging method
significantly underestimates the flux, whereas the flux averaging
grossly overestimates. Figure 8 demonstrates the effect of the
oxidizermassflux exponent on the systematic error for all of the three
techniques discussed in this section. The influence of n on the error is
different for each technique. For flux averaging and diameter
averaging, error increases with growing n (at least in the range
0:5< n < 0:8), whereas the opposite trend holds for the area
averaging.

V. Estimation of Combined Error

It is critical to evaluate and control the error in estimating the
regression rate law from a set of motor tests. A comprehensive error
model is essential to understand the accuracy of the predicted
regression rate formula and also to minimize the total error by
carefully selecting the test conditions. In reality, the systematic error
introduced by using a particular time-averaging method should be
coupled with the random error associated with the measurements to
estimate the total error on the regression rate and the oxidizer mass
flux. The scaling of the systematic error has been discussed in detail
in the previous section. In the following paragraphs we will develop
formulas to predict the randommeasurement errors and couple these
with the systematic ones to calculate the combined error associated
with each motor test.

The time-averaged regression rate for a given test can be estimated
using Eq. (38). In practice, the final port diameter that appears in the
regression rate equation can be most accurately estimated based on
the consumed fuel mass measurement using the following equation.

Df �
�
D2
i �

4�Mf

��fL

�
1=2

(45)

With the use of Eq. (45), the relative random error in the final
diameter Edf can be written in terms of the relative measurement
errors in fuel grain mass loss E�M, initial port diameter Edi, fuel
density E�, and grain length EL.

Edf �
��
Edi

R

�
2

� 0:5

�
1 � 1

R2

�
2

�E2
�M � E2

� � E2
L�
�
1=2

(46)

Similarly, the relative random error in the regression rate
estimationEr can be written in terms of the relative errors in the final
port diameter Edf , initial port diameter Edi, and the burn time Et.

Er �
��

R

R � 1
Edf

�
2

�
�

1

R� 1
Edi

�
2

� E2
t

�
1=2

(47)

ByusingEqs. (46) and (47), the randomerror in regression rate can
be estimated based on themeasurement errors in initial port diameter,
fuel weight reduction, fuel density, grain length, and burn time. Note
that the relative error in the regression rate decreases with increasing
diameter ratio, R�Df=Di, or web thickness burned. The effects of
the ignition and shutdown processes on the regression rate error is
included in the error associated with the burn time. For systems with
excessive ignition or thrust termination lag times, enhanced
corrections must be developed as discussed in [4].

For a typical test with the following parameters and measurement
errors, the relative and absolute errors in the regression rate can be
estimated to be 0.051 and 0:159 mm=s, respectively.

�_r� 3:130 mm=s; n� 0:62; tb � 8:00 s

Di � 10:16 cm; Df � 15:66 cm E�M � 0:010

E� � 0:011; EL � 0:002; Edi � 0:008; Et � 0:013

Similarly, Eq. (30) can be used to determine the relative error in the
oxidizer mass flux EGo in the case of diameter averaging.

EGo �
��

2R

R � 1
Edf

�
2

�
�

2

R � 1
Edi

�
2

� E2
mox

�
1=2

(48)

Note that similar expressions for the other averaging methods can be
derived.

The relative error in the oxidizer mass flow rate depends on the
details of the oxidizer feed system used in the tests. For the particular
case of a gaseous oxidizer feed systemwith a choked orifice, the flow
rate is controlled by the following equation.

_mo �
PfAorCd
c�o

(49)

As a first guess, the discharge coefficient Cd for the thick, square-
edge orifice can be taken as 0.84 [4].

Based on the orifice equation, the relative error in the oxidizer
mass flow rate Emo can be calculated in terms of the relative errors in
the average feed pressure EPf , orifice diameter Edo, orifice discharge
coefficient ECd, and tank temperature ETo.

Emo �
h
E2
Pf � �2Edo�2 � E2

Cd � �ETo=2�2
i
1=2

(50)

For a typical test characterized by the following conditions, the
relative and absolute randomerrors associatedwith the oxidizermass
flux estimation can be calculated to be 0.037 and 0:730 g=cm2  s,
respectively.

Fig. 7 Error introduced by various flux averaging methods as a

function of the port diameter ratio.

Fig. 8 Effect of the flux exponent n on the error introduced by various
flux averaging methods.
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�G o � 20:0 g=cm2  s; EPf � 0:020; Edo � 0:001

ECd � 0:024; ETo � 0:010

The total error for the regression rate and the oxidizermassflux is a
combination of the systematic error given by Eqs. (42–44) for the
oxidizer mass flux and the random measurement errors given by
Eq. (47) (for the regression rate) and Eq. (48) (for the oxidizer mass
flux). Note that the systematic error on the regression rate estimation
is zero.

A careful examination reveals that both the systematic and the
random error expressions are functions of the diameter ratio. For the
test conditions and measurement errors outlined in the previous
paragraphs, the combined errors and its components are plotted in
Fig. 9. As indicated by the figure, the systematic error in the oxidizer
mass flux calculation (based on average diameter) increases with
increasing R, whereas the random error is almost constant. For the
regression rate, the systematic error is zero by definition and the
random error decreases rapidly with increasing diameter ratio. The
combined error for the regression rate decreases monotonously with
R, asymptoting to zero at infinite diameter ratio. Note that the total
errors for the regression rate and the oxidizer mass flux follow
opposite trends with increasing burn time. This indicates that the test
burn times need to be selected to yield an intermediate R value to
obtain the most accurate burn rate expression. For the particular
example that we have considered in this paper, this optimal diameter
ratio is around 2.0.

VI. Combined Space–Time Averaging

In the previous sections, the space and time averagingmethods for
the regression rate expression has been developed separately. In
reality, the spatial and temporal variation of the port hydraulic
diameter are coupled together and the space and time averaging
processes must be treated simultaneously. In this section, we will

address the space–time coupled dynamics of the hybrid rocket fuel
port. For the sake of simplicity, we will limit our analysis to the case
of a single circular port, however, the following arguments can easily
be extended to a wide range of port geometries.

Based on the definition of regression rate, 2_r � @D=@t, the
variation of the port diameter at an axial position x and time t can be
written as

@D

@t
� CD

_mnxm

D2n
(51)

where parameter CD is defined by Eq. (36b).
Similarly, under the quasi-steady assumption, the mass flow

balance in the port requires that

@ _m

@x
� Cm

_mnxm

D2n�1 (52a)

where the constant is defined as

Cm � a�f22n�1�n (52b)

Equations (51) and (52a) constitute two nonlinear first-order
partial differential equations (PDEs) which could be solved to
determine the space–time variation of the two key variables, _m�x; t�
and D�x; t�. The initial condition [D�x; t� 0� �Di�x�] and
boundary condition [ _m�x� 0; t� � _mo�t�] needed to solve the
problem are the oxidizer flow rate time history and the initial port
diameter distribution, respectively.

A. Numerical Solutions

Presently, no closed form solutions (other than for n� 0:5) could
be obtained for the set of nonlinear PDEs governing the dynamics of
the fuel port diameter. However, we recommend the following
method for numerical integration.

Rearrangement of Eq. (52a) results in the separation of the mass
flow rate term as

@ _m1�n

@x
� Cm

xm

D2n�1 (53)

The integration on the x variable results in

_m�
�
_m1�n
o � �1 � n�Cm

Z
x

0

~xm

D2n�1 d ~x

�
1=1�n

(54)

Equation (54) can be substituted into Eq. (51) to obtain the
following integro-differential equation

@D

@t
� CD

xm

D2n

�
_m1�n
o � �1 � n�Cm

Z
x

0

~xm

D2n�1 d ~x

�
n=1�n

(55)

Numerical solutions for Eq. (55) have been obtained by imple-
menting an RK4 scheme (the classical fourth-order Runge–Kutta

Fig. 9 Combined error on the regression rate and mass flux as a

function of diameter ratio.

Table 1 Summary of motor test data used to evaluate the length exponent for the paraffin/GOX system

Test 4L-04 4L-05 4L-08 4P-01

Oxidizer mass flow rate, kg=s 4.44 4.43 4.42 4.43
Burn time, s 8.30 8.25 8.15 8.40
Average O=F 2.66 2.72 2.64 2.69
Initial port diameter, cm 8.93 10.01 10.30 11.38
Grain length, m 1.149 1.149 1.148 1.148
Final port diameter (fore end), cm 15.53 15.88 16.17 16.67
Final port diameter (aft end), cm 16.23 16.63 16.64 17.54
Axial change in the port diameter, % 4.34 4.54 2.84 4.99
Flux exponent, n 0.62 0.62 0.62 0.62
Length exponent, m �0:018 �0:009 �0:033 0.000
Regression rate coefficient, aa 9:36  10�2 9:24  10�2 9:10  10�2 9:36  10�2

aNote that the units of the regression rate coefficient are based onmillimeters per second for the regression rate,meters for the length, and
kilograms per meters squared (per second) for the mass flux.
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method) for timemarching and the trapezoidal method for the spatial
integration. This method has been used to produce accurate
predictions for the port diameter dynamics using very limited CPU
time. In fact, the runs for most cases took less than 20 s on a desktop
PC.

B. Discussion of Results

The space–time coupled dynamic method has been applied to
some of the paraffin/GOX motor tests conducted at the Hybrid
Combustion Facility of NASA Ames Research Center [4]. Reliable
posttest port diameter measurements were taken at the fore and aft
ends of the fuel grain for four of the motor tests conducted in the
program. The summary of the relevant data for these tests is given in
Table 1. For all cases, an oxidizer mass flux exponent of 0.62 has
been used in the calculations. The length exponent and the regression
rate coefficient has been calculated for each test by matching the
predicted fore and aft port diameters to themeasured values.All tests,
each conducted at different operating conditions, resulted in length
exponents in the narrow range of �0:033 to 0.000 with an average
value of �0:015. Note that the variation in the estimatedm values is
well within the measurement error for the diameters used in the
calculations. Similarly, the estimated regression rate coefficients
varied in the narrow range of 0.0910–0.0936 and averaged at a value
of 0.0927. Note that the units of the coefficient a are based on
millimeter per second for the regression rate, meters for length, and
kilograms permeters squared (per second) for the oxidizer mass flux.

Figure 10 shows the fuel port radius contours as a function of time
calculated by the numerical integration procedure discussed in the
previous paragraphs using the values of n� 0:62,m��0:015, and
a� 0:0927. The oxidizer mass flow rate is assumed to be constant in
time with a value of 4:5 kg=s and the fuel density is taken as
920 kg=m3. For the simulated case, the initial port diameter is
0.106 m and the fuel grain length is 1.144 m. The figure shows that
the port diameter for all times (other than t� 0) has a minimum at a
point close to the fore end and it increases monotonically from its
minimum value with increasing axial distance. The part of the curves
that is very close to the leading edge are not shown because in this
region the regression rate expression, which is based on boundary
layer arguments, ceases to be valid (in fact, it incorrectly predicts
infinite regression rate at x� 0). This is a narrow region for most
hybrid applications and will be ignored in this paper. Also note that
the surface contours get closer as the time progresses, indicating a
lower regression rate due to reduced mass flux.

The distribution of the residual fuel as a function of time has been
plotted in Fig. 11 for various burn times. Note that each burn time
corresponds to a different motor with the grain outside diameter (or
motor case inside diameter) matched to the port diameter at the exit
plane. It is important to understand that the curves are not plotted to
scale and the y axis is amplified significantly compared to the x axis.
As indicated by the figure, initially, the residual fuel increases
sharply with time. As the time progresses, the increase in the residual
web slows down due to the self-correcting nature of the hybrid

regression rate dynamics, namely, as the port opens up more in one
particular area, the regression rate drops because of the decrease in
the local mass flux.

A regression rate lawwith a length exponent close to zero (as in the
case of paraffin/GOX) is a highly desirable virtue, because it makes
the regression rate insensitive to the overall scale of the propulsion
system. For such cases, the regression rate law derived from small
scale motor tests can be used, with reasonable confidence, to conduct
the ballistic design of a full-scale hybrid system. However, we must
state that other important design parameters such as the combustion
efficiency and stability would still be scale dependent. Therefore,
even for m� 0, at each scale, significant motor testing effort would
still be required.

The shortcoming of the weak negative length dependency, for
which the mass flux is the only practical regression rate driver, is the
increased nonuniformity in the regression rate of the hybrid fuel. This
can be observed in Figs. 10 and 11 for the example system. Note that
even for the worst case, the average sliver thickness is relatively
small, resulting in a much smaller residual fuel mass fraction
compared with a multiport system. This minor shortcoming can be
eliminated for a single circular port hybrid by slightly coning the
initial port geometry. As shown in Fig. 12, a 0.5 deg coning reduces
the sliver dramatically for a system with tb � 10 s.

C. Exact Solution for n� 0:5

An exact solution for Eqs. (51) and (52a) can be obtained for the
special case corresponding to a flux exponent of 0.5. In this particular
situation, the mass flow rate equation looses its explicit dependency
on the port diameter and can be written in the following form.

@ _m0:5

@x
� 0:5Cmx

m (56)
Fig. 10 Port diameters contours calculated at various times.

Fig. 11 Fuel sliver distribution for different burn time motors.

Fig. 12 Port diameter contours for a system that starts with a conical
geometry.
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Integration in the x variable yields the solution for themass flow rate.

_m�x; t� �
� ������������

_mo�t�
p

� 0:5Cm
m� 1

xm�1
�

2

(57)

Substitution of Eq. (57) into Eq. (51) and time integration gives the
exact solution for the port diameter as a function of time and distance.

D�x; t� �
�
D2
i �x� � 2CDx

m

Z
t

o

������������
_mo�~t�

q
d~t� CDCm

m� 1
x2m�1t

�
1=2

(58)

For the special case of constant oxidizer mass flow rate, Eq. (58)
becomes

D�x; t� �
�
D2
i �x� � CDxmt

�
2

�������
_mo

p
� Cm
m� 1

x2m�1
��

1=2

(59)

Finally, for m� 0 the port diameter takes the simple form

D�x; t� �
h
D2
i �x� � CDt�2

�������
_mo

p
� Cmx�

i
1=2

(60)

The exact solution (for the case of constant oxidizer mass flow
rate) given by Eq. (59) has been used to check the accuracy of the
numerical solutions described in the previous section. Figure 13
shows the port radius contours at various times for the exact solution
and also for the numerical simulation which was conducted under
identical conditions. As indicated by the figure, even for the
relatively coarse time step of 2 s used in the simulations, the
agreement between the two solutions is perfect for all times.
Moreover, by cutting the time step by half (down to 1 s), we have
managed to further reduce the error to a value which can be taken to
be zero for all practical purposes. It is expected that the numerical
solutions would also be highly accurate at other values of the flux
exponent for which no exact solutions exist.

D. Global Mass Balance

We will close this section by deriving a useful global relation for
the mass balance. Equations (51) and (52a) can be combined to
eliminate the common terms that appear on the right-hand side of
both equations.

@ _m

@x
� Cm

2CD

@D2

@t
(61)

Using the definition of the coefficients, Eq. (61) can be reduced to

@ _m

@x
�
@��fAport�

@t
(62)

Integration in the x variable results in

_m� _mo �
@��fVportx�

@t
(63)

Equation (63) states the obvious requirement that the fuel mass
addition from the leading edge to an arbitrary point xmust be equal to
the increase in the volume of the port in the same region times the
density of the solid fuel. The global mass balance, given by Eq. (63),
can be used to check the accuracy of the numerical solutions.

VII. Conclusions

The following conclusions can be drawn from this study.
1) Nondimensional formulas for space-averaging have been

derived for the separate cases of oxidizer and total mass flux
dependent regression rate laws. The correction term which only
depends on the motorO=F is determined to be more pronounced for
systems operating under fuel rich conditions. The case of oxidizer
mass flux requires a slightly higher correction compared to the total
massflux formula. TheO=F correction reduced the scatter in data for
the paraffin/GOX motors tested at Stanford and NASA Ames
facilities. The effect of correction on the JIRAD data (HTPB/GOX
propellant system) was not conclusive, possibly due to the narrow
range of operational parameters for this particular data set. At this
point, we would like to emphasize that none of the assumptions
introduced in the derivations are related to the type or properties of
the selected fuel. Thus, we fully expect that the results are universal
for any inert hybrid fuel system.

2) Various time-averaging techniques for the mass flux have been
evaluated based on their relative accuracies compared to the exact
expression. It has been determined that the diameter-based averaging
method is by far themost accurate technique. It is important that each
separatemethod selected to reduce the oxidizer mass flux data results
in a significantly different regression rate law even for the same set of
motor data. Therefore, the method used in the analysis must be
explicitly stated in reporting the regression rate/mass flux data.

3) The systematic and random measurement errors for the
regression rate and the oxidizer mass flux have been investigated.
Several equations to predict both kinds of error have been derived. It
has been determined that the most important variable that affects the
combined error is the final to initial port diameter of the test articles.
There exists an optimal value for the diameter ratio that minimizes
the combined error in the regression rate and the oxidizer mass flux.
For the example considered in this paper, the optimal ratio is
determined to be around 2.0.

4) Finally, the partial differential equations that govern the space–
time coupled dynamics of the port geometry in the simple case of a
circular port have been derived. An exact solution for the special case
of n� 0:5 has been developed. For all other mass flux exponents, an
efficient and accurate numerical solutionmethod has been suggested.
The method has been applied to the case of paraffin-based fuels
burned with GOX. The results indicated a very weak length
dependency in the regression rate law. This observation is consistent
with the experimental results [4] which showed no measurable
change in the regression rate as themotor scale has been increased by
a factor of 3.0.
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