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Combustion of Liquefying Hybrid Propellants:
Part 2, Stability of Liquid Films

M. A. Karabeyoglu* and B. J. Cantwell’
Stanford University, Stanford, California 94305

The stability of a liquid layer under strong blowing and subjected to large shear forces is investigated. This case
is of practical importance for application to the regression rate estimation of liquefying hybrid rocket fuels such as
solid cryogenic hybrids. An Orr-Sommerfeld equation for the linear stability of the liquid-gas interface is derived,
and an exact solution is found for a linear base velocity profile. The exact solution for the liquid phase is coupled
with the linearized gas-phase response with appropriate boundary conditions at the interface to give an eigenvalue
problem for the linear stability of the layer. The results for liquid layer Reynolds numbers of practical interest
(50-300) show the existence of a range of unstable wave numbers. It is observed that both the most amplified wave
number and the maximum amplification increases with the liquid Reynolds number. It is also discovered that
increasing surface tension and liquid viscosity have a stabilizing effect on the film. This prediction is supported
by experimental results showing fast burning rates for low-viscosity fuels such as solid cryogenic pentane and
noncryogenic wax. Finally, the stability theory is applied to the classical polymeric hybrid propellants that burn by
forming a melt layer. Because the melt layers of these polymeric materials are highly viscous, they can not sustain

thin film instabilities.

Nomenclature

power series solution coefficient
transform variable, —ib/(c Re)'/3
gas-phase blowing parameter
regression rate parameter
skin-friction coefficient with blowing
and without blowing

amplification parameter,c = 8/«
exact solution coefficient
differential operator

port diameter

Froude number

viscous solution for the gas-phase
Orr-Sommerfeld equation

port mass flux, U; p,

body force per unit mass

melt layer thickness

gas-phase velocity profile integral [see Eq. (44d)]
unitary complex number
liquid-phase pressure

= dynamic pressure in the port
nondimensional gas-phase normal
stress perturbation

pressure perturbationin the liquid
liquid layer Reynolds number
gas-phase Reynolds number
regression rate

mean velocity of the gas flow

gas velocity at the center of the port
mean axial velocity of the liquid at the interface
with and without blowing

mean axial velocity of the liquid

o

AT > W
1

7HCp =

o0
I

o)
I

fg(g) =

X
I

o T TN IR Q
1]

TR
Q0 o
o
[ T || |

=
—~
o~
N
I

Ul, UIU =
Us(y) =

Received 2 February 1999; revision received 8 January 2002; accepted
for publication 10 January 2002. Copyright © 2002 by M. A. Karabeyoglu
and B. J. Cantwell. Published by the American Institute of Aeronautics and
Astronautics, Inc., with permission. Copies of this paper may be made for
personal or internal use, on condition that the copier pay the $10.00 per-copy
fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923; include the code 0748-4658/02 $10.00 in correspondence with
the CCC.

*Research Associate, Department of Aeronautics and Astronautics. Mem-
ber AIAA.

TProfessor, Department of Aeronautics and Astronautics. Member ATAA.

621

liquid velocity along the axis

mean normal velocity of the liquid
liquid velocity in the normal direction
Weber number

axial distance along the axis of the port
normal distance in the liquid

transform variable [see Eq. (31)]
nondimensional wave number
amplification parameter

= gas-phase stress perturbation parameter
[see Eq. (44¢)]

interface disturbance amplitude

liquid layer momentum thickness
normal curvilinear coordinate in the gas phase
surface waveform

viscosity

density

surface tension

mean shear stress exerted by the gas

_ flow on the liquid-gas interface

T, = nondimensional gas-phase shear

stress perturbation
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¢(x,y,t) = liquid-phasestream function

16 =y componentof ¢(x, y, 1)

v(¢) = inviscid solution for the gas-phase
Orr-Sommerfeld equation

Subscripts

d = dimensional variable

g = gas-phase properties

[ = liquid-phase properties

Superscripts

~ = perturbation quantity

- = nondimensionalquantity

/ = transformed variable

Introduction

OME hybrid rocket propellants, such as the solid cryogenic
propellants, burn by forming a melt layer at the combustion
surface. In Ref. 1, various effects of melt layer formation on the



622 KARABEYOGLU AND CANTWELL

Wave form
S A Mean Velocity

T
ST

Fig. 1 Schematic of the stability model.

performance of the motor are discussed. Specifically, a theory that
postulates the existence of entrainment from the liquid surface as a
mass transfer mechanism, in addition to the vaporization, is devel-
oped. It is determined that the calculated burning rates are in good
agreement with the experimentally observed values for cryogenic
hybridrockets utilizing frozen hydrocarbonsas the solid propellant.
An expression for the melt layer thickness is formulated, and it is
shown that during typical operating conditions of a hybrid motor a
melt layer with a reasonable thickness can be formed. The instabil-
ity of the liquid film formed on the surface of a hybrid fuel grain is
essential for the possibility of entrainment from the liquid interface.
Although the stability of liquid layers were extensively studied in
the past,>~> the behavior of films under strong blowing conditions
andrelatively highliquid Reynolds numbers, which are encountered
in hybrids, has not been explored. In this paper, we will investigate
the linear stability of a liquid layer with strong blowing under the
effect of strong shear force generated by the gas flow in the port.

A schematic of the liquid layer stability model is shown in Fig. 1.
In our investigations, we ignore the effect of density variations and
all chemical reactions in the gas phase on the stability. In the cal-
culations, we modify and adapt the linearized gas-phase equations
derived by Benjamin® for the incompressible flow overa wavy wall.
Because our predictions for the Reynolds numbers for the hybrid
liquid films are typically on the order of a couple of hundreds,
both the small Reynolds number and the high Reynolds number
approximations™? introduced in the literature as the solution tech-
niques for the film stability equation are not satisfactory. For that
reason, we develop new solution techniques for the liquid layer as-
pect of the problem.

The body force g is taken in the normal direction to make di-
rect comparison with the previous stability work reported in the
literature> Note that, for a spin-stabilizedrocket, the centrifugal ac-
celeration will generate a body force in the normal direction acting
outward as indicated in Fig. 1. The effect of axial acceleration of a
missile on the stability is not addressed in this paper. Because the
melt layer thicknesess are very small for typical hybrid fuels, it is
fair to state that, for moderate accelerations, the effect of the axial
body force on the stability is small compared to the dominant effect
of the shear forces generated by the gas flow in the port.

Derivation of the Liquid-Phase Stability Equation

In this section the hydrodynamic stability equation for the liquid
layer formed on the solid fuel grain is derived. For hybrid applica-
tions, the liquid layer Reynolds numbers defined with respect to the
liquid layer thickness are estimated to be less than 300. Thus, the
liquid flow in the layer can be assumed to be laminar in nature. In our
analysis, we ignore the variations of the fluid properties across the
thickness of the layer. We believe that the effect of these variations
on the stability behavior of the film is small.

We start with the incompressible Navier-Stokes equations for a
fluid with constant physical properties’:

] ] ] 1 9P
_u+u_u+v_u=ﬂvzu___

(1a)
ar dx ay o pr 0x

ad ad Rl 10P
—U+u—v+v—v=ﬂV2v——— (1b)
ot ax y o pi 9y

ou ov

—+—=0 1

0x ay (1c)

The film stability model for a hybrid motor must take into ac-
count the generation and injection of liquid at the solid interface
and removal of the liquid at the gas interface. During the steady-
state operation for which the film thickness is constant, the removal
rate must be equal to the injectionrate. In our study, we concentrate
on this steady-state situation just described. Even in this simple state
of operation, the liquid layer equations with respect to the rocket
frame of reference does not possess a steady-state component. To
simplify the analysis, the problemhas to be formulatedin a frame of
referencethat is fixed to the moving interfaces, which are translated
at a constant speed with respect to the rocket frame. The new set
of governing equations with respect to this moving reference frame
can be obtained on the application of the following translational
transformation on the Navier-Stokes equations:

x'=x, v =y +rt, u =u

vV =v+7, P =P

It can be shown that the Navier-Stokes equations are invariant
under this transformation, namely, the equations keep their forms
with the new set of primed variables defined in the transformation
equations. (For the sake of simplicity, from now on we drop the prime
notation.) For that reason, Egs. (1a-1c) also govern the dynamics
of the fluid motion with respect to the moving reference of frame,
and these equations will be used in the stability investigations.

In the movingreferenceof frame, there exists a steady component
of the flowfield. It is reasonable to assume the following base flow,
which is the steady part of the flowfield in the liquid layer:

up(x, y, 1) = Up(y) 2

Here V, is the mean velocity of the liquidin the filmin the direction
normal to the undisturbed liquid surface. This component of the
velocity is assumed to be uniform in the whole domain. Moreover,
the parallel component of the mean velocity is considered to be
independent of the axial dimension. The substitution of the base
flow expressionsin the Navier-Stokes equations yields

vo(x,y, 1) =V,

dU, d?U, 1 0P, 0P
_ozﬂ_o___o’ —%_p (3)

%
dy o A’y p 0x ay

We further assume that the mean pressure is uniform in space,
namely, P, is afunctionof time alone. This simplifies the description
of the mean flow to the following ordinary differential equation
(ODE) for the parallel velocity component:

2
w W
pr &y dy

This equation can easily be integrated to give

Uo(y) = (tg/pi Vi) expl=(Vipi /) hlexpl(Vior /u)y]l — 1} (5)

Note that the boundary conditions used are the no-slip require-
ment at the wall and the shear force balance at the gas-liquid inter-
face:

dU
TgZC/'Pd ZMI_U (6)

Ugly=0 =0,
oly=0 dy o

Here 7, is the mean shear stress exerted by the gas flow on the liquid

surface, C; is the skin-friction coefficient, and P, is the dynamic
0

pressure of the gas flow defined as p,U,".

Note that the mean y-component velocity of the liquid flow can
be written in terms of the regression rate of the slab after a simple
mass balanceconsideration.Namely, the mass balance on the control
volume placed at the liquid-solid interface requires V; =7 p;/p;. At
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this point, it is useful to define a regression rate parameter (which
is also a liquid-phase blowing parameter) b as

b= Vihp /= (o5 /1) (1 /8,)) M

where the momentum thickness for the liquid layer is defined as
8, =/ pi7. For typical operating conditions of hybrids, the liquid
blowing parameter falls in the range of 0.1-1.0. The velocity ex-
pression takes a more compact form when it is written in terms of
b, namely,

Uo(y) = Ul {explb(y/h)] — 1}/be” ®)

where U = 1,1 /py.

In the limit of zero liquid blowing, 7 = 0, the application of the
L’Hospital’s rule yields the following linear velocity profile of the
standard Couette flow, as expected:

Uo() = U}y [l = =/ ©)
According to Eq. (8), the liquid velocity at the surface is
Us(h) = U, = Ul[e" — 1]/be" (10)

In Fig. 2, the plot of the velocity profiles according to Egs. (8)
and (9) are shown for a typical blowing parameter value of 0.4.
It is apparent that the exact velocity profile is quite different from
the simple Couette flow profile. However, it is observed that, for
values of b smaller than 0.8, the exact solution is fairly close to a
linear variation from the zero wall value to the maximum velocity
predictedby Eq. (10). Note that the first-order effect of the injection
is to reduce the surface velocity of the liquid. For that reason, the
following corrected linear profile is a good approximation for small
blowing parameters:

Uo(y) = U/l(e” = 1) /be")(y/ ) an

The corrected linear velocity profile given by Eq. (11) will be used
in the linear stability investigationsas an approximationfor the base
flow. This simplification is essential for the analytic developmentof
an explicit stability expression for the film layer.

Now we perturb the liquid flowfield around the base flow pre-
sented in the preceding paragraphs. We separate the flow variables
into their base flow components and perturbation components as

1 T T T T

u="Uy(y) +u(x,y,1), v=V +ux,y,1)

P =Pyt)+ P(x,y,1)

Next, we substitute these expressionsin the Navier-Stokes equa-
tions. After collecting the terms to the first order and performing
the simplifications on the base flow terms, we obtain the following
linear equations:

ou Yy ou +~dUU n 1
- =2y
ot ax dy o

<.

Vii—Vi— (12a)

>
=
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S

<

97 9 18P 9
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ot 9 pdy p dy
3 v
L%y 12
8x+8y (120

The pressure terms can be canceled from the first two of these
equations by cross differentiationand subtraction. In short notation,
the resulting set of equations become

Uy — Upx + Uglty + Upll oy — UpDyy + Uy, + Uy'D
= (,le/pl)(ﬁxxy + ﬁyyy — Vyxx — IN)yyx) - Vl(ﬁ” - ﬁxy) (13a)
O + Ut + P/ o1 = (i) p) (B + Byy) = Vidy — 8 (13b)
u,+v,=0 (13c¢)
We investigate the stability of the harmonic surface waves.

Therefore, we assume the following waveform for the liquid-gas
interface’:

na(x,y,1) = dexpli(agx — Bt)] (14)

Next, we define a stream function of the following form, which
is consistent with the assumed surface wave,

@(x, ¥, 1) = ¢a(y) expli(egx — Bat)]

u =§0ya lj=—§0x (15)
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Fig. 2 Exact velocity profile for the regression rate parameter of b = 0.4; the linear approximation given by Eq. (11) and the velocity profile with no

blowing are plotted.
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Note that this definition of the stream function automatically sat-
isfies the continuity equationand Eq. (13a) becomes a linear fourth-
order ODE for the dependent variable ¢,:

(@aUs — Ba) ()] — &2¢a) — @aUy b

= —iGu/on (9} =202 +aies) +iVi(9) —a2e),) (16)

This is the Orr-Sommerfeld equation that governs the stability
of a film layer with the steady-state injection of the fluid. For a
pressure perturbationof the form P (x, y, 1) = pexpli (oyx — Byt)],
Eq. (13b) can be expressed as

p/on = [@aUs = B, — Uia — (i) ip) (8] — a2¢))

+ Vi D) rafes) (17)

It is desirable to work with nondimensional quantities. For
convenience, we introduce the following set of nondimensional
variables:

t=1tU/h, X =x/h, y=y/h, B = Bah/U;
a = agh, [_/0=U0/U1, v=uv/U, n=na/h
p=p/pU, ¢ =¢a/Uh

The nondimensional version of Orr-Sommerfeld equation becomes
(@Uy = p)(@" — o’p) — aUy¢
= —(i/Ro)(9"" —2a7¢" +a'p) — b(¢" —’¢)]  (18)

where the liquid layer Reynolds number is defined as Re=
U,hp; /1. The equation for the pressure perturbation can be written
in terms of the nondimensional properties as

p=[(@Uy— B)p' — Ujep + (i /Re) (9" — a*¢) — ibp" | (n/x)
(19)

We use the approximate mean velocity expression given by
Eq. (11), which simplifies to Uy =y in nondimensional form. On
substitutionof this linear velocity profile and some minor rearrange-
ments, the Orr-Sommerfeld equationcan be written in the following
form:

¢"" —20°¢" + o' —b(¢" — a’¢) = iaRe(y = ©)(¢" — o’¢)
(20)

Here, c is defined as 8/« for convenience. Note that this is a
fourth-order linear equation with variable coefficients. In the next
section we discuss the appropriate boundary conditions for the film
stability problem.

Boundary Conditions
The first two of the boundary conditions can be obtained from
the velocity requirements at the solid-liquid interface. The physical
statement of the requirements are 1) the parallel component of the
velocity at solid wall must be zero due to the no-slip condition and
2) the regression rate of the slab is steady. These conditions can be
formulated as

ii(0) = 0, 5(0) =0

These can be written in terms of the stream function formulation as
¢(0) =0, ¢'(0) =0 21

Another requirement that needs to be satisfied by the solution is
the kinematic boundary condition at the liquid-gas interface. In the
linear form this can be written as’

(1) = 22 = +

In terms of the stream function the kinematic condition simplifies
to

p()=1-c (22)

There are two other constraints that limit the possibility of so-
lutions, that come from the dynamic conditions at the liquid-gas
interface. These are the shear and the normal force balances at the
liquid surface. The shear force balance in the linear form requires

%g = (MI/PIUIZ)(ﬁy + ﬁx)

In this relation, 7, is the nondimensional gas-phase shear stress
perturbation on the liquid interface. Note that the gas shear pertur-
bation should be determined by solving the gas-phase perturbation
equations, which will be discussed later. For the present purposes,
we consider 7, as a known input for the liquid layer stability prob-
lem. The definition of the stream function can be used to convert
this equation into the stream function format as

/1 =—(1/Re)[¢"(1) + a*p(1)] (23)

Finally, the normal force balance at the surface requires
—p + (2/Re)v; = niz/We + (P, — n/Fr)

Here P ¢ 1s the nondimensional gas-phase pressure perturbation
on the liquid surface and

We = p,U? [oh, Fr=U}/gh (24)

After converting this equation into the stream function format

and coupling with the other boundary conditions, one obtains the
following expression:

(1—0)¢'() —¢(1) — (I/iaRe)[¢" (1) — bg" (1) — 3a’¢'(1)]

= () We+1/Fr— B, /n)l6(1)/(1 - )] (25)

Equations(21-23),and (25) set five conditionson the fourth-order
differentialequation(20). Thus, this is an overposedboundary-value
problem. The correct approach is to consider the Orr-Sommerfeld
equation with those five conditions as an eigenvalue problem, the
eigenvaluebeingthe amplification parameterc. The directnumerical
solution of this eigenvalue problem is computationally expensive
because it requires many iterations (each iteration a finite difference
solution itself) for every selection of the parameters such as the
Reynolds number, Froude number, or the Weber number that might
effect the stability of the layer. For that reason, it is desirable to
develop analytical solutions. We obtain solutions for the stability
problem by using two independent techniques. We first develop a
power series solutionthat can only be appliedto films with Reynolds
numbers less than unity. For the power series solution, we modified
Craik’s technique,’ which was originally applied to a simpler case
of alayer with no blowing. Because, in hybrid applications, the film
layer Reynolds numbers can be significantly larger than unity, we
also formulated an exact solution for the liquid stability problem
just defined. In the next section we discuss the development of the
two distinct solutions.

Development of Solutions

Power Series Solution

Following Craik,?> we assume a regular power series solution for
the Orr-Sommerfeld equation (20) of the form

N
P =Y A" (26)

n=0

Next, thispower seriesis substitutedin the Orr-Sommerfeldequa-
tion to obtain the recurrence relations for the coefficients of the
power series. The form of the recurrencerelations implies that if the
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following order of magnitude relations are valid, the power series
converges rapidly:

a? <1, |—iaRe| < O(1), |—icaRe + 2a?| < O(1)

|—icaRe + a*| < O(1), b < O()

We truncate the series at n =6 under the assumption that the
convergence rate is reasonably fast. The first seven coefficients of
the series, which are of our concern, are calculated with the use of
the recurrence relations. Eventually, the stream function ¢ can be
expressed, to the first order, in terms of four unknown coefficients
Ag, Ay, Ay, and Aj:

() = Ag + AY + A3 + (¢/12)5* = (p/60)5°]

+ As[3 + (/DT + (/2007 — (p/60)5°] (27

This approximate general expressioncan now be used to solve the
eigenvalue problem specified by the boundary conditions. First, it
is clear that the zero velocity conditions at the solid surface requires

AU = Al = 0 (28)

The remaining boundary conditionsseta new eigenvalue problem
with reduced dimensions that can be solved to yield the following
condition on the eigenvalue ¢ (to the first order) for the existence of
a solution:

o 1 _i+3i%g/n
n

%_‘_E 2a

2
(3+3b + 6a )} 29)

icRe

—(-ol2a-0-1+
= C 5 C

This is the quadratic stability relation of the liquid film layer.
For a selection of physical film parameters and gas-flow conditions,
the sign of the imaginary part of the eigenvalue ¢ determines the
stability of the layer. The stability behavior of the layer according
to this relation will be discussed later in this paper.

Exact Solution

The assumptionsrequired for the convergenceof the power series
solution limit the range of applicability of the solution to Reynolds
numbers and regressionrate parameters less than one. However, the
liquid layers formed on the walls of the hybrid fuel grain possess
Reynolds numbers up to several hundred, due to the large shear
forces exerted by the strong gas flow. In this range of moderate
Reynolds numbers, the applicability of the high Reynolds number
expansionsolutionsis also highly questionable. For that reason, we
developed an exact solution for the eigenvalue problem stated. In
this section we present the outline of our derivation.

It is convenient to restate the Orr-Sommerfeld equation in the
operator format,

(D* —bD* — 2’ D* + ba’ D + )¢
= [iaRe(y — c)|(D* — a?)¢ (30)

where the differential operator is defined as D =d/dy.
The critical step in the derivation is the factorization of the oper-
ator on the left-hand side of the equation as

(D* —=bD —a*)(D* — a?)¢ = [iaRe(5 — )|(D* —a?)p (31)

After the factorization,this fourth-orderequationcan be separated
into two second-orderequationsthatcan be expressedin the standard
ODE notation as

0" —bh — [o* +iaRe(7 — )]0 =0 (32a)
¢ —a*p=0 (32b)

The first of these is a homogeneous linear equation with variable
coefficients, whereas the second one is an inhomogeneousequation

with constant coefficients. Our solution strategy is to first solve
Eq. (32a) and use the result to determine the particular solution of
the second equation.

We start the solution procedure of Eq. (32a) with the application
of the following transformation

a? +iaRe(d —c)

z= > (33)
(eRe)3
In terms of the transformed variable, the equation becomes
o + B 4 0=0 (34)
— —— Z =
dz? dz

where B=—ib/(aRe)'/3.

Equation (34) takes a simpler form in its reduced form, 6 =U V.
Here, the variable V is given by V = exp[—(B/2)z], and U is the
solution of the following ODE’

U LB (35)
w i w

The ODE for U can further be simplified after the transformation
E=z+ B?/4:

— —&—=0 (36)

This equation is commonly known as the Airy equation, and the
solution can be readily written in terms of the Airy functions Ai and
Bi (Ref. 7):

U(§) = c1Ai(§) + c,Bi(§) (37

Now, we transform back to the original nondimensional physical
variables to obtain the solution

0(5) = c1exp[—(B/2)z(]Ai[z(}) + B*/4]
+ ¢ expl[—(B/2)z(3)]1Bi[z(3) + B*/4] (38)

Note that z is a linear function of y by Eq. (33).
We are now in a position to solve Eq. (32b), which becomes

e, LAV D Y
d—yz—aqﬁ—clexp -7 z(y) lZ(y)+T

B _ . _ B?
+c exp[—(z)z(y)}Bz |:z(y) + T:| (39)

The homogeneous solution of this equation is quite simple
on(3) = c1e® 4 e (40)

The particular solution can be obtained with use of the technique
of variation of parameters. After some algebraic manipulations the
total solution can be written as

4

$G) =Y ctu@) @1)

n=1

where the four independent particular solutions of the Orr-
Sommerfeld equation are

¢1 = ele (42a)

¢y =e™ % (42b)

1 y
b3 (y) = ;[ sinhfor(y — 9)]

Yo

B\ .. |..| .. B>,
X exp[—(z)z(y)} Ai |:z(y) + Ti| dy (42¢)
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1 y
$4(y) = ;[ sinhor(y — 9)]

Yo

B\ . |..| .  B*| ..
X exp[—(z)z(y)} Bi |:z(y) + Ti| dy 42d)

In this format, the boundary conditions can be written explicitly

as
4
D cntn(© =0 (430)
n=1
4
> =0 (43b)

n=1

4

Y ale,() — ¢, (1)] = Re

n=1

[t

£ (43¢)
n
4

Z e @)(1) — b/ (1) — 3¢),(1) + (iaRe)[(c — D (1)

n=1

2 P
+¢u(D]} = iaRe (% + % - Tg) 43d)

4

Y b (h=c—1 (43e)

n=1

These boundary conditions with the analytical expressions for
the independent solutions can now be used to solve the eigenvalue
problemfor the eigenvaluec. Note that the selectionof yo = 0 signif-
icantly simplifies the solution because the first two of the boundary
conditions require ¢; = ¢, =0 and drop out of the system. In this
case, the system is reduced to three equations for three unknowns,
c3, ¢4, and c¢. Note that even the reduced system involves difficult
integrals and thatit is nonlinearin c. Thus, the solutionrequires nu-
merical integration and some iterative procedure on c¢. To perform
the calculations, we developed a MATHEMATICA program that
automates the solution procedure and iteratively solves the eigen-
value c, for any given selection of parameters. The time required for
the solution at a specified point of the parameter space is less than a
second with a modern desktop computer. Thus, the analytic solution
developed for the film stability problem is apparently very efficient
in terms of the computation time over the numerical simulation of
the Orr-Somerfeld equation or the Navier-Stokes equations.

Gas Phase

The linear stability problem discussed in the preceding section
requires the gas-phase response as the input. In this section we will
describe the gas-phase perturbation treatment that was first devel-
oped by Benjamin® and later adapted to the thin-film stability prob-
lem by Craik > Benjamin investigated the flowfield generated by a
shearing gas flow on a wavy surface and presented explicit formulas
for the shear and normal stresses disturbancesinduced by the shear
flow on the surface. The following fundamental simplifications were
introduced in the treatment:

1) Primary gas flow is parallel and in the direction of the surface
waves.

2) In the case of a turbulent gas flow, the interactions with the tur-
bulence and the wave motionare neglected.In other words, the mean
velocity distribution for the turbulentcase is disturbed by the waves
in the same fashion as the velocity distribution in an equivalent
laminar flow.

3) The complete solution for the Orr-Sommerfeld equation de-
rived for the gas phase is expressed as a sum of the inviscid solution
¥ (¢) and a viscous solution confined to a small thickness next to
the surface f, (¢), where ¢ is the curvilinear coordinate that is per-

pendicular to the wavy surface. The viscous solution, which rapidly
diminishes as one moves away from the surface, is required to sat-
isfy the wall boundary conditions imposed on the fourth-order Orr-
Sommerfeld equation. The region where f,(¢) is significant com-
pared to the inviscid solution is called the wall friction layer, not to
be confused with the viscous sublayerof a turbulentboundarylayer.

The explicit solution for the shear stress and pressure perturba-
tions presentedby Benjamin® is revised and reformulated by Craik®
in the context of the liquid layer stability problem formulated in the
preceding section. We have discovered that the simplifying assump-
tion, A < 1, that was used by both Benjamin® and Craik,? signifi-
cantly restricts the applicability of the gas-phase stress perturbation
expressions given in Refs. 3 and 6. This assumption on A is partic-
ularly invalid for hybrid rocket applications, typically characterized
by high gas velocities and small disturbance wavelengths. We fol-
lowed Benjamin’s® original derivation to refine the set of gas-phase
stress perturbation formulas by relaxing the restricting assumption
on A. We found that the nondimensional normal and the tangential
stress perturbations P, and T,, which are valid for any value of A,
can be approximated by the following equations:

; . (a/Re) R
n  1+1.288 exp(in/6)A |:C/' 21i| R

W

pe 1 explin/3)a’(@Re)~%

Lo _qar3 L) L :
n e ) pr Cp[1+1.288 exp(in/6)A]?

(44b)
A= L(ﬂ) (ﬂ) (oeRe)_%(x2 (44¢)
Cr\ Pg
o 2
U,
1 =/U‘ (U_;,J) exp(—a¢) d(ag) (44d)

Here, U, is the mean boundary-layer velocity profile of the gas
flow, Ug‘J is the gas velocity at the center of the port, and 1, and
p, are the average viscosity and the density of the gas in the port,
respectively. The real parts of stress parameters correspond to the
components of stress that are in phase with the wave displacement,
whereas the imaginary parts of the stress parameters represent the
stress components, which are in phase with the wave slope.

Apart from the three general simplifications discussedin the pre-
ceding paragraph, the following specific assumptions restrict the
applicability of Eqs. (44a-44d):

1) Both the dimensional wave velocity and the velocity of the
liquid at the liquid-gas interface need to be small compared to the
gas velocity in the center of the fuel port:

Ba/aa = cUy L UY, U <, (45)
Under these assumptions the liquid-gas interface can be treated as
a rigid surface. For hybrid applications, both of these assumptions
are easily satisfied.

2) The wavelength of the surface disturbance must be small com-
pared to the port diameter:

ad,/h = kd, > O(1) (46)

For the film thicknesses and mass fluxes typically encountered in
hybrid rockets, this is a good approximation.

3) The wavelength of the surface disturbance needs to be small
compared to the thickness of the wall friction layer. This condition
can be expressed for the turbulentboundary layer of a hybrid rocket
as

kx < 0.172B;"**Re}” (47)

Here, Re, = Gx /i, is the gas-phase Reynolds number, k =a/h
is the dimensional wave number, x is the distance along the axis
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of the port, B, is the blowing parameter, and the port mass flux is
defined as G = U; p.- The blocking factor of the following form as
suggested in Ref. 8 is used in the preceding inequality:

Cy/Cp =B (48)

Alsonote thatthe blowing skin-frictioncoefficientis calculatedfrom
the following turbulent boundary-layerrelation commonly used in
hybrid rocket applications:

_1i
C; =0.0296Re, ° (49)

4) The linear region of the velocity profile, viscous sublayer in
the case of turbulent wall flows must cover the thickness of the wall
friction layer. For the turbulent boundary layer of a hybrid rocket,
this assumption implies the following condition:

kx > 1.720107*B; 3 Re0? (50)

The last two assumptions are fundamental to Benjamin’s® treat-
ment, and they are essential in obtaining an analytical expression
for the rapidly decaying viscous component of the solution. Equa-
tions (44a-44d) for the gas-phasestress perturbationsare derived for
anincompressiblegas flow with no blowingallowed. For thatreason,
note that the applicability of these relations to the hybrid boundary
layer with combustionand strong blowing is a rough approximation.

5) The effect of blowing is assumed to be limited to the primary
gas flow, that is, C;. The influence of blowing on the flow pertur-
bations in the gas phase is ignored.

6) The effect of chemical reactions and gas property variations
across the boundary layer and along the axis of the rocket are ig-
nored. We use average values for the gas-phase properties such as
1 and p,. For typical hybrid rocket conditions, the flame zone in
which the majority of the chemical reactions and the heat release
takes place is relatively remote from the surface. Thus, the wall fric-
tion layer and the flame zone do not overlap. We believe that this
minimizes the coupling between the flow induced by the surface
disturbancesand chemical reactions.

For the sake of simplicity, the following form of the gas-phase
velocity profile will be used in evaluating the integral /:

1
U, (&) 20h\’
i}g Z(d_,,) , for ¢ <d,/2h (51a)
1
U, 2hY
UgU —(2 d,,) , for d,/2h <¢ <d,/h (51b)

Note that for hybrid rocket applications, the boundaries of the inte-
gral in Eq. (44d) need to be from O to d,, / h.

Finally, it can be shown that with use of the shear balance at
the liquid-gas interface, the liquid layer Reynolds number can be
written in terms of the gas-flow parameters and the properties of the
liquid:

Re = Re;Cr(pi/pg) (g /i) (h/x)*[(e” — 1) /be"]  (52)

Discussion of Results for Stability

In this section we present the results for the liquid layer stabil-
ity problem that are obtained with the application of the solution
techniques discussed in the preceding section. For all of the calcu-
lations that will be conducted in this paper, the following geomet-
rical and gas-phase properties will be used, d, =2 cm, x =14 cm,
e =6.51076 Pa-s, and p, = 8 kg/m’. Liquid properties for various
materials are listed in Table 1 (see Refs. 9 and 10). The solid densi-
ties of all of the cryogenic propellants are assumed to be equal to the
density of solid pentane, 850 kg/m>. The solid density of the wax is
taken to be 930 kg/m*. The gas-phase blowing parameter B,, used
in the calculations for all of the fuels, is seven.

It is important to demonstrate the validity of the gas-phase as-
sumptions listed in the preceding section for a typical set of op-

erating conditions, G = 100 kg/m?s, 7 = 1 mm/s, and & = 0.3 mm.
For pentane as the working liquid, the ratio of the liquid interface
velocity to the gas velocity in the center of the portis estimated to be
0.0359. This indicates that the conditions imposed by Eq. (45) are
satisfied and that the first assumptionis a valid one. For the selected
operating point, the conditions on assumptions 2, 3, and 4 can be
reducedto k> 0.0714cm~! and 0.339cm™' <k <3390 cm~!. All
of these inequalities are satisfied over the range of wave numbers
where the positive amplification takes place, (see Figs. 4-7). It can
be shown that, for a wide range of operating conditions typically
encountered in hybrids and over the wave numbers for which most
of the positive amplification occurs, all conditions are satisfied and
the use of the gas-phase equations (44a-44d) is acceptable.

First, we compare the result of the exact solution with the power
series solution for verification purposes. Figure 3 shows the am-
plification rate (imaginary part of caw Re) as a function of the wave
number for the power series solution and also for the exact solution.
Figure 3 is for a water film with a relatively low liquid Reynolds
number of 5 and at a regression rate parameter b of 0.2. (For a given
Reynolds number the corresponding Weber number can be calcu-
lated with use of the simple relation We = (u;/p;h*c) Re?.) The
body force is assumed to be zero, and the film thickness is 0.3 mm.
As can be deduced from Fig. 3, the exact solutionis in good agree-
ment with the power series predictions for the small Reynolds num-
ber used in the calculation, within the range of small wave numbers.
As expected, the error associated with the power series solution
increases rapidly with increasing nondimensional wave number.

One of the most interestingresults of this linear theory is thateven
at very small film thicknesses there exists a finite range of amplified
wave numbers, namely, the layer is unstable over a finite range of
wave numbers. Instabilities of that type were first discovered for
thin water films in a wind tunnel by Craik,? and they are called the
slow waves. These are generated by the interaction of the gas-phase
shear stresses acting on the liquid surface with the slope of the liquid
layer surface. Figure 4 shows a typical form of the dimensional am-
plification rate of the interface disturbance, —Im(g8,), as a function
of the dimensional wave number k calculated with use of the lin-
ear stability theory outlined in this paper. Note that the dimensional
amplification rate can be expressed in terms of the nondimensional
amplification rate as

~Im(B,) = —Im(caRe) (11 /h*p;)

For this calculation, the liquid is water, liquid Reynolds number is
50, film thicknessis 0.3 mm, regressionrate is zero, and the Froude
number corresponding to the body force of 9.81 m/s? is 9.458. As
indicated in Fig. 4, there is a positive amplification domain that
lies between two cutoff wave numbers. The amplification takes a
maximum value at a wave number between these two cutoff wave
numbers. This is the most amplified wave number, and the cor-
responding wavelength is expected to be the observed size of the
disturbancein the actual flow system. As the body force diminishes,
the first cutoff point moves toward zero.

Intuitively, the most important parameter that links the linear sta-
bility results to the entrainment rate of the liquid from the surface is
the amplification rate of the disturbances. Figure 5 shows the effect
of the liquid Reynolds number on the amplification curves. This
plotis for a 0.3-mm-thick pentane film. The liquid Reynolds num-
beris adjusted by changing the port mass flux from42.7 kg/m?* - s to
92.2 kg/m? - s. The regression rate parameter is 0.55, and the body
force is assumed to be zero. Note that as the liquid layer Reynolds
number (which is directly proportional to the gas-stream dynamic
pressure) increases, the amplification rate increases. The Reynolds
number also increases the most amplified wave number, meaning
thatat higher gas flow velocitiesthe expected wavelengths of the in-
stabilitiesare smaller. This latterresultis in good agreementwith the
experimental findings for the scale of waves formed on the surface
of a thin film.!"!

The effect of the liquid injection on the film stability is shown in
Fig. 6. The amplification rate as a function of the wave number for
three values of regressionrate parameter b is calculated with use of
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Table1 Material properties of the liquids used in the calculations’

Liquid Pentane CsH/» HFI Acetone C3HgO Isopropanol C3HgO ~ Wax  Water H,O
Molecular weight, g/mol 72.15 69.11 58.08 60.10 432.8 18
Surface tension, mN/m 14.3 15.6 19.2 16.4 7.1 72
Viscosity, mPa s 0.463 2.5 0.51 5.0 0.65 1.0
Density liquid phase, kg/m? 688.4 785.0 835.2 808.9 654.4 1000
Melting temperature, K 143.3 181 178.45 183.3 339.6 273
Boiling temperature, K 309.6 350 329.44 355.4 727.4 373

“For liquids other than water all properties but the surface tension are evaluated at a mean temperature between the melting and vaporization
temperatures. Surface tensionis evaluated at the boiling temperature. Wax properties are estimated in Ref. 10. Water properties are at ambient
conditions.

x 10

Power series
solution 1

Re=5

8l  We=0.00116 Exact solution ~_\
b=0.2

-10+- Fr=0 .

Nondimensional Amplification Rate

H 1 1 | I 1 1 1 | 1
0 0.005 0.01 0.015 0.02 0025 003 0035 004 0045 0.05
Nondimensional Wave Number

Fig. 3 Nondimensional amplification rate (i.e., imaginary part of accRe) of a surface disturbance vs the nondimensional wave number «, calculated
with the power series method and the exact solution method; this case is for a water film with a thickness of 0.3 mm, a liquid Reynolds number of 5,
and a regression rate parameter of 0.2. (Body force is taken to be zero.)
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Fig. 4 Amplification rate of a surface disturbance vs the wave number; water film with a thickness of 0.3 mm and film Reynolds number of 50,
Froude number is 9.458, and the regression rate parameter is zero.
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Fig. 5 Amplification rate of a surface disturbance vs the wave number for various film Reynolds numbers; pentane film with a thickness of 0.3 mm,
Reynolds number is altered by changing the gas mass flux in the port. (Body force and the regression rate is taken to be zero for this calculation.)
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Fig. 6 Effect of regression rate on the stability of the film; pentane film with a thickness of 0.15 mm and a liquid Reynolds number of 50. (Body force

is taken to be zero.)

the exact solution. This case is for a 0.15-mm pentane film with a
liquid Reynoldsnumber of 50 and a Froude number of zero. Figure 6
shows that the normal liquid injection has a slight stabilizing effect
on the film. This conclusion is also confirmed by the power series
solution. For a situation for which the mass flux is kept constant
rather than the liquid Reynolds number, the effect of the regression
rate parameter will be more dominant. This is because, according
to Eq. (52), an increase in the regression rate parameter decreases
the liquid Reynolds number for a given port mass flux value.
Another very important result that came out of the stability in-
vestigationis that both the surface tension and also the viscosity of

the liquid have a stabilizing effect on the liquid film. It turns out
that this feature of the thin-film instabilities plays a major role in
determining which propellant is likely to sustain instabilities and
potentially entrain droplets into the gas stream. To demonstrate the
effectof material propertieson the stability, the amplification curves
for various liquids at a fixed film thickness of 0.15 mm are shown in
Fig. 7. For all of the liquids, the regressionrate is 1 mm/s and the port
mass flux is 80 kg/m? - s. Note that liquids with higher viscosities
such as isopropanol and HFI are more stable than the liquids with
small viscosity values. The stability curve for one grade paraffin
wax, which is solid under ambient conditions, is included in Fig. 7.
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Fig. 7 Amplification curves for various liquids for a port gas mass flux of 80 kg/m? - s and a regression rate of 1 mm/s, film thickness of 0.15 mm

used. (Body force is assumed to be zero.)

Itis predicted by the theory that this particular grade of wax would
form an unstable melt layer and possibly entrain liquid dropletsinto
the gas stream. In support of this prediction, lab scale motor tests
recently conductedat Stanford University using a similar grade wax
resulted in very high regression rates. In fact, the regression rates
for wax is determined to be on the same order of the burning rates
observed for solid cryogenic pentane.!

As a final note, the linear stability theory developedin this paper
can also be applied to classical hybrid propellants that form a liquid
layer on their burning surfaces. One such propellantis high-density
polyethylene (HDPE) polymer, which has been tested extensively
as a hybrid fuel. In Ref. 10 itis shown that the meltlayer of HDPE is
four orders of magnitude more viscous than pentane. The linear the-
ory suggests that the melt layers of these highly viscous polymeric
fuels will be extremely stable at the port mass flux levels typically
encountered in hybrid motors.

In practice, the linear instability of the liquid film is a necessary,
butnot a sufficient, conditionfor the onsetof entrainment.Moreover,
linear stability investigationcan not be directly used for calculating
the level of entrainment. The rigorous treatment of the entrainment
problem requires a fully nonlinear investigation. In this study, we
avoid this difficulty by assuming that the scaling of the amplification
rate predicted by the linear theory gives a direct measure for the
scaling of entrainment.

Conclusions

In this paper we discussed the linear stability of a film layer with
blowing. It is shown that the layer can be unstable over a wide
range of parameters. The maximum amplification and also the most
amplified wave number both increase with increasingdynamic pres-
sure (or mass flux) in the port for a given liquid at a constant film
thickness. Itis also shown that blowing has a small stabilizing influ-
ence on the film. Furthermore, the material properties of the liquid
have an important role in the stability behavior of the liquid layer.
Specifically, we have shown that increasing surface tension and liq-
uid viscosity stabilizes the film. This observation is confirmed by
motor tests performed with several solid cryogenic fuels and non-
cryogenic wax. The linear theory is also applied to classical hybrid
rocket fuels that burn by forming a melt layer. It has been shown

thatbecause the melt layers of these materials are very viscous, they
cannot sustain the thin-film instabilities. Finally, for typical hybrid
operating conditions, the effect of body forces on the stability of the
film is negligible compared to the effect of the strong shear force
generated by the gas flow in the port.
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