
Chapter 18 

Prediction of the Stability of Unsteady Motions 
in Solid-Propellant Rocket Motors 

F. E. C. Culick* 
California Institute of Technology, Pasadena, California 

and 
V. Yangt 

Pennsylvania State University, University Park, Pennsylvania 

Nomenclature 

a = speed of sound, Eg. (23) 
Ab = defined in Eq. (92b) 
An = defined in Eq. (58) 
Anij = defined in Eq. (75) 
Bn = defined in Eg. (58) 
Bnij = defined in Eg. (75) 
C = specific heat of particle material 
{;, = mass fraction of particles, em = pp/Pg 
Cp = mass-averaged specific heat, Eg. (20) 
Cv = mass-averaged specific heat, Eg. (20) 
Dni = defined in Eg. (75) 
eo = stagnation energy, gas phase 
E~ = defined in Eg. (47b) 
Eni = defined in Eq. (75) 
('fo) = time-averaged energy 
f = defined in Eq. (42) 
fl = defined in Eg. (52b) 
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Fn = defined in Eg. (49) 
Fp = force of interaction, Eg. (13) 
8Fp = defined in Eg. (18a) 
?} = defined in Eg. (28) 
9' 1s = defined in Eg. (36b) 
h = defined in Eg. (40) 
hJ = defined in Eg. (52a) 
k = complex wave number, (w - iCl.)1a 

k( = wave number, w/a 
K = defined in Eg. (142) 
m~g) = mass flux of gas inward 
m):) = mass flux of particles inward 
Mb = average Mach number of flow at the propellant surface 
p = pressure 
r;;p = defined in Eg. (29) 
r;;p Is = defined in Eg. (36c) 
Q = energy addition (energy/vol-s) 
Qp = energy transfer, Eg. (14) 
~Qp = defined in Eg. (18b) 
R = mass-averaged gas constant, Eg. (22) 
Rb = defined in Eg. (92a) 
'n = defined in Eg. (58) 
Sc = cross-sectional area 
T = temperature 
t. t = defined in Eg. (90) 
U = ,velocity 
wp = "mass source (mass/vol-s), Eg. (7) 
"(.V = defined in Eg. (27) 
W Is = defined in Eg. (36a) 
XI = defined in Eg. (124a) 
X 2 = defined in Eg (124b) 
CI. = growth constant 
Cl.c = defined in Eg. (99) 
Cl.FT = defined in Eg. (151) 
Cl.N = defined in Eg. (100) 
C::p = defined in Eg. (125a) 
"y = ratio of specific heats 
T)n = time-dependent amplitude, Eg. (58) 
Kp = thermal diffusivity of propellant 
A = defined in Eg. (95) 
f.l = viscosity 
v = kinematic viscosity 
p = density (mass/vol) 
(J = defined in Eg. (15) 
(J" = particle diameter 
Td = defined in Eg. (122a) 
T[ = defined in Eg. (122b) 
<Pn = defined in Eg. (58) 
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\)In = classical mode shape 
w = frequency 
Wn = classical acoustic frequency 

Subscripts 

g = gas propertie& 
p = particle properties 
I = one-dimensional values 
s = evaluated at the burning surface 

Superscripts 

n = mass-averaged or time-averaged property 
( )' = fluctuation 
n = complex amplitude 

I. Introduction 
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THE phenomena called "combustion instabilities" in a solid rocket mo­
tor may be viewed as the unsteady motions of a dynamic system capable 

of sustaining oscillations over a broad range of frequencies. Energy is 
supplied by combustion processes confined chiefly to thin regions near the 
surface of the burning propellant. Interactions between the unsteady mo­
tions and the burning convert a small fraction of the heat released by 
combustion to potential and kinetic energy of the gases within the chamber. 

It is somewhat misleading that the term combustion instability has be­
come standard. The presence of an instability in any combustion chamber 
is established by observing either the behavior of the gas pressure or ac­
celerations of the enclosure, and occasionally both. Combustion itself is 
not unstable except possibly in some cases when explosion ensues or in 
some instances of extinction. An'instability arises because of the coupling 
between the burning processes and the gasdynamic motions, both of which 
alone may be stable. 

An observer perceives an unstable motion as "self-excited": the ampli­
tude of the pressure fluctuation grows out of the noise without benefit of 
any external influence. Hence, the theory of these phenomena belongs to 
the general theory of self-excited dynamic systems. The prevalence of 
instabilities in combustion systems is due primarily to two fundamental 
causes: 

1) The energy required to generate an unacceptably large amplitude of 
unsteady motion is a negligibly small part of the energy available and 
released in combustion of the reactants. 

2) Combustion chambers are almost entirely closed, and the internal 
processes tending to attenuate unsteady motions are weak. 

These causes are present in any combustion chamber but are especially 
consequential for solid-propellant rockets in which the energy release per 
unit volume (or surface area) is extremely high. Two conclusions are im-
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mediate: 1) the possibility of instabilities must be recognized and antici­
pated from the beginning of a development program, and 2) the occurrence 
of an instability in a motor is not necessarily the result of stupidity or of 
maladroit design procedures. Occurrence of the problem must be regarded 
as part of the price for the development of a new system. 

It is therefore essential that theory be constructed to provide a basis for 
analyzing and predicting unsteady motions in combustion chambers. The 
phenomena to be treated are extremely complicated, involving nonlinear 
gasdynamics and the combustion of chemical systems that cannot theoret­
ically be described in all necessary detail. Hence, we must be guided at all 
stages by observational results. The theory is substantially a vehicle for 
organizing and interpreting experimental results. It is not possible to predict 
accurately the occurrence of instabilities from first principles. Nevertheless, 
with judicious melding of theory, measurements, and observations, we can 
construct a framework that provides the basis both for understanding the 
general behavior and for formulating simple statements succinctly sum­
marizing the general characteristics. For practical purposes, achievements 
of the theory consist mainly in the ability to analyze, understand, and 
predict trends of behavior. The influences of geometric characteristics and 
combustion processes can be assessed but, in any event, some experimental 
data are required to provide quantitative results. 

We may distinguish two sorts of theoretical work: analytical and nu­
merical. By "numerical" we mean results obtained by numerical solution 
of the partial differential equations governing the behavior of the system. 
At present, it is not possible to progress with exact formal analysis of those 
equations; "analytical" therefore implies some sort of approximate method. 

Numerical methods have the disadvantage that, even when dimensionless 
variables are used, only restricted results can be obtained. It is therefore 
tedious and expensive to discover general trends of behavior or summarize 
qualitative features. On the other hand, approximate analytical methods 
carry with them inaccuracies that cannot usually be estimated with confi­
dence. Because of the semiempirical nature of the theory, comparison with 
experimental results does not afford a sufficient basis for confirming the 
validity of any approximations. Thus, an important function of numerical 
methods is to provide a means for checking the accuracy of approximate 
methods. This strategy works only if the methods being compared are 
applied to the same problems. Care must be exercised because differences 
in the formulations (approximate or numerical) often do not permit a 
precise correspondence between the required input data and, possibly, the 
boundary conditions as well. 

In this chapter, we discuss both approaches. To provide background and 
motivation for the construction of the approximate analysis, we begin in 
Sec. II with a brief description of the important features of combustion 
instabilities in solid rocket motors. The equations of conservation, the 
common basis for all numerical and analytical work, are discussed in Sec. 
III, followed by application to problems of linear stability in Sec. IV. Some 
aspects of nonlinear behavior are covered in Sec. V. Section VI is a short 
review of numerical calculations of some one-dimensional problems. 
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II. Some General Features of Combustion Instabilities in Solid­
Propellant Rocket Motors 
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Combustion instabilities in different systems are distinguished primarily 
by geometry and the manner in which reactants are introduced. In any 
case, the presence of an instability in a chamber has always been identified 
with the presence of unsteady motions having quite well-defined frequen­
cies. From the earliest observations to the present, the frequencies have 
usually been close to those computed for the classical acoustic modes of 
the chamber if the boundary condition at the nozzle is suitably approxi­
mated. The physical reason for this behavior is that the combustion pro­
cesses and mean flow are relatively small perturbations of the classical 
acoustic behavior, even though they are the necessary causes for the insta­
bilities. That result is the basis for the form of the theory developed in 
this chapter. 

We may estimate the frequencies by ignoring the combustion processes 
and the mean flow and considering a chamber having the same shape as 
the volume containing the combustion gases but entirely enclosed by a 
rigid boundary. The exit boundary is closed at the entrance to the exhaust 
nozzle. That may be somewhat ambiguous, particularly for are-entrant 
nozzle, but an approximate choice is good enough for the purposes here. 
Then the chamber is assumed to contain gases having the same thermo­
dynamic properties as the actual combustion products. It is especially im­
portant that the presence of condensed material be taken into account. 
Then the speed of sound is known; its value and the geometry of the 
equivalent closed chamber determine the frequencies and mode shapes for 
the classical acoustic modes. 

The simplest example is a chamber of length L having uniform cross 
section. No matter what the shape of the cross section, the axial or lon­
gitudinal modes are the same as those for a closed-closed organ pipe. This 
characterization is applied because the velocity fluctuations are longitu­
dinal, parallel to the axis, and, in this idealized limit, uniform over a cross 
section. The velocity must vanish at the ends and varies sinusoidally along 
the axis, being proportional to sinktz. Here ke is the wave number for the 
fth mode, defined in terms of the angular frequency We and the speed of 
sound a as 

k 
_ We 

e -
a 

Classical theory shows that the eigenvalues kt are 

and the cyclic frequencies are 

ie 

k 02:: ,=f-
L 

e~ 
2L 

(1) 

(2) 

(3) 
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Thus, for purely longitudinal modes, the modal frequencies are integral 
multiples of the fundamental frequency 11 = a12L. 

Because it is directly observable, the pressure is a convenient property 
for characterizing instabilities. The acoustic pressure attains maximum value 
at those regions in the chamber in which the velocity is minimum. Hence, 
the pressure varies as coskez, having greatest values at the ends. It is usually 
true that, whereas the pressure fluctuations may have local maxima in the 
interior of the chamber, there are maxima, or antinodes, at the boundary. 
Thus, by analogy with Eq. (3), the frequency for the fundamental mode 
of oscillations in transverse planes is roughly a12D, where D is the diameter 
of the chamber. Typically, then, the frequencies of axial modes are lower 
than those of transverse modes by the ratio DI L, D being less than L for 
most solid rocket motors. 

The physical basis for these estimates is the fundamental result for a 
wave motion that the frequency I, speed of propagation a, and wavelength 
f... are related by fA. = a. What we are really doing is estimating the wave­
length, which is determined by the geometry and the boundary condition. 
For motions between two rigid surfaces where the perpendicular acoustic 
velocity must vanish, an integral number of half-waves will fit. Thus, the 
wavelength of the fundamental mode (having the greatest wavelength) is 
twice the distance between the surfaces, 2L or 2D in the example given 
earlier. This procedure works for a solid rocket because the flow speeds 
are usually small compared with the speed of sound, and the acoustic 
velocity perpendicular to the boundary is indeed nearly zero. However, 
we note that there are exceptional cases, notably one in which the Mach 
number is large at the entrance to the exhaust nozzle. 

Let 8p denote the maximum amplitude of oscillation in a longitudinal 
mode, so that the acoustic pressure is 

p = op coskez (4) 

The instantaneous energy ~ in the mode is the sum of the potential energy, 
proportional to p2; and the kinetic energy, proportional to u2

. Because the 
acoustic velocity and pressure are related, the time-averaged energy (~) 
can be expressed in terms of the pressure only and is given by the formula 

(~) = pLSc (~)2 
4-y P 

(5) 

where j5 is the mean pressure. Consider a motor having length L = 1 m 
and a cross-sectional area Sc = 0.02 m2 and operating at a mean pressure 
of 100 atm (1 x 107 N/m2). For -y = 1.2, the last formula gives (~) = 
41,666 (8plj5)2 1. If the amplitude op is 10% of the mean pressure, (~) == 
400 1. This may be compared to a representative value of the heat of 
reaction, say, 4 x 106 llkg of propellant. 

Thus, the energy in the acoustic field, even when the amplitude becomes 
comparable to the mean pressure, is a negligible fraction of the total energy 
available in the system. That is one reason why, as noted earlier, insta­
bilities are likely events in solid rocket motors. This result, however, bears 
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little relation to the matter of stability: we need an estimate of the rate at 
which energy is gained by the acoustic waves, and we need to compare 
that with the rate at which energy is actually made available by the com­
bustion processes. 

When a steady oscillation is present in a chamber, the rate at which 
acoustic energy is lost must precisely balance the rate at which energy is 
transferred to the waves from the combustion processes. If these rates 
differ, then the amplitude of the motion will grow or decay. Consider a 
wave that is growing, and suppose that the behavior is that of an unstable 
linear system. Then the amplitude of the pressure fluctuation is propor­
tional to exp( at), where a is the growth constant; but the energy is pro­
portional to (Op)2 and therefore varies as exp(2at). Hence, approximately, 
the time-averaged energy has the behavior ('is) ~ exp(2at), and its rate of 
change is 

d ('is) = 2a ('f,) 
dt 

(6) 

This relation is valid if nonlinear processes are negligible and providing 
that a is much less than the frequency (a « w). For the chamber con­
sidered earlier and for a = 1200 mis, Eq. (3) gives!! = 600 Hz. In practice, 
a is usually less than 100 s -1 and, for a frequency of 600 Hz, w = 3800 
rad/s. Hence, a « w. Then, with oplp = 0.1 and ('f,) = 400 J, the acoustic 
energy changes at the rate 8 x 104 J/s. 

Because the growth rate is, in fact, the rate at which energy is gained 
from the combustion processes minus the loss rate due to damping mech­
anisms, the result just given underestimates the power provided by un­
steady combustion. Typically, the net growth rate is the difference between 
two relatively larger numbers. In extreme cases, when large damping is 
present, the rate of energy supplied by the burning may be 5-10 times as 
large as the net rate at which the acoustic field gains energy. When this 
occurs, substantial increases in the average burning rate, chamber pressure 
and, therefore, thrust may be observed. 

The rate at which energy is released by combustion is the rate at which 
solid material is consumed, multiplied by the heat of reaction H, psrSbH, 
where Ps is the density of the solid, r the linear burning rate, and Sb the 
area of burning surface. For Ps = 1600 kg/m3 , r = 0.75 cmls, Sb = 0.5 m2 

for a circular cross section having area 0.02 m2 , and H = 4 X 106 J/kg, 
we find psrSbH = 2.4 X 107 J/s. Obviously, only a very small portion of 
this, less than 0.4%, is required to drive the acoustic waves at the rate 
estimated here. This striking result shows that we might expect acoustic 
waves to grow in a chamber with essentially no influence on the steady­
state performance unless unstable waves are driven in a highly damped 
system. Whether even the small rates of energy transfer commonly required 
to create an instability will actually be achieved depends on the interactions 
between the waves and the oscillations. Only weak coupling is required, 
and it is fortunate that, in practice, the interactions are as ineffective as 
they are; the potential is always present for catastrophic results. 

Another source of energy for unsteady motions is the mean flowfield 
itself and fluctuations associated, for example, with flow separation. There 
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are many examples of acoustic waves excited by these causes, both in 
laboratory devices and in motors. Experience has confirmed that, in those 
cases as well, the interactions responsible for the unstable motions are 
weak, and the amplitudes of the waves do not reach large amplitudes, 
although they may cause troublesome vibrations of the vehicle. 

We conclude that, for the theoretical purposes, we may regard com­
bustion instabilities as unsteady motions that are, in some sense, closely 
related to the classical acoustic modes. Perturbations of the acoustic modes 
are associated primarily with the combustion processes and the mean flow. 
The theoretical representation of instabilities conforms with this physical 
behavior. Specifically, the approximate analysis discussed later is founded 
on construction of a wave equation and boundary conditions having source 
terms arising from the various perturbations. The basic motions are the 
linear acoustic waves easily determined from classical acoustic theory. 

The source terms may be divided into two kinds: those that depend 
linearly on the fluctuating motion and those that are nonlinear. Linear 
contributions are responsible for unstable motions. If conditions produce 
an unstable wave, the amplitude grows exponentially in time. Because the 
system is self-excited, a limiting amplitude is reached-the system executes 
a periodic limit cycle-only if nonlinear processes are active. Thus, we 
may arrive at a full understanding of the phenomena only if we treat 
nonlinear behavior. 

A special advantage of the approximate analysis is that it displays ex­
plicitly the contributions of all physical processes. The results provide a 
clear framework for interpreting and predicting instabilities quantitatively. 
Moreover, the form of the results suggests the sorts of experiments we 
should perform to obtain the information necessary to allow analysis of 
practical systems. 

Purely numerical analysis also reproduces the physical behavior just 
described. However, it is then not easy to distinguish in detail the influences 
of the various processes acting. In principle, numerical methods may be 
applied to any system and any geometry but, in fact, even with recent 
advances in computing, the computations remain difficult and expensive. 
To date, results have been obtained chiefly for one-dimensional problems, 
with some limited treatment of two-dimensional problems. Some aspects 
of unsteady flows are better treated with numerical methods, even though 
the results are necessarily limited to particular cases. Later we shall examine 
some one-dimensional calculations to illustrate comparison with approxi­
mate results. Nevertheless, the numerical approach unquestionably has 
an important place in the analysis of practical systems and will no doubt 
be used increasingly as the cost of large-scale calculations continues to 
decrease. 

III. Equations of Motion and Formulation of the Analysis 

Analysis of flows in solid-propellant rockets must be based on the equa­
tions of conservation for a gas containing condensed species. Because of 
uncertainties in the actual flow properties, it is inappropriate to use a 
completely general formulation. We assume here a perfect gas and one 
condensed species present as small particles. The complete set of conser-
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vation equations then comprises those for the gas and those for the par­
ticulate material. We may combine the equations to form a set governing 
the motions of a single medium as, for example, discussed by Marblel ,2 in 
his papers on two-phase flows. Application of that idea to the sorts of 
problems treated here was developed by Culick,3 

A. Conservation Equations for a Two-Phase Flow 

Residual combustion of both the gas-phase and condensed material may 
occur within the volume. The first is accounted for as a heat source; the 
second may also involve a conversion of condensed mass to gas, denoted 
here as wp (mass/time-volume). We also assume, which is not quite correct, 
that the gases produced by the burned condensed material have the same 
velocity as their sources (up). For simplicity, we ignore viscous stresses and 
heat conduction in the gas phase, an approximation that can be easily 
improved. The conservation equations are 

Mass (gas): 

(7) 

Mass (particles): 

app 
- + V . (p u) at p p 

(8) 

Momentum: 

o (9) 

Energy: 

a at (pgeO + ppepo) + V . (PgueO + ppupepo) + V . (pu) = Q (10) 

Energy released in homogeneous reactions in the gas phase is represented 
by Q (energy/time-volume). For simplicity, we ignore the influences of 
viscous stresses and heat transfer internal to the gas, processes that usually 
have negligible effects in the problems we treat here. These can be accom­
modated within the approximate analysis, appearing as additional source 
terms in Eqs. (8) and (10). 

With simple manipulations, we can write the momentum and energy 
equations as 

aT 
pgC - + PgCvu . VT + pV . u at 

+ u . a + (up - u) . Fp 

(11) 

(12) 
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The force of interaction between the gas and particles is 

(13) 

and the heat release associated with chemical reactions and transfer of heat 
between the condensed and gaseous phase is 

[
aTp ] Qp = -PpC at + up· 'lTp (14) 

The momentum transfer to the gas associated with residual combustion is 

(15) 

It is important that the correct speed of sound appears to zeroth order 
in the wave equation deduced later, namely, the value for conditions near 
equilibrium for the gas/particle mixture. The manipulations carried out to 
insure that result are discussed by Culick. 3 As a result, the momentum and 
energy equations appropriate to the propagation of disturbances in the 
mixture are 

au 
P - + pu . 'lu + 'lp at 

- (aT ) pCv at + u . 'IT + p'l . u 

+ u . (T + oUp . Fp 

where 

(16) 

(17) 

(lSa) 

(lSb) 

and oUp = up - u, oTp = Tp - T. The density P for the mixture is 

P = Pg + Pp = pg(l + Cm) (19) 

andCm = pp/Pg is the mass fraction of particles. 
Strictly, Cm must be treated as a dependent variable. Any nonuniformity 

in the mean flowfield, or unsteady motions, will cause the particles to 
"slip" relative to the gas. Not only will oUp and oTp be nonzero, but also 
the temperature within an individual particle will not be uniform. A com­
plete treatment of the flow requires that the particle velocity and temper­
ature be calculated as functions of time and position within the chamber. 
That procedure requires solutions to Eq. (13) and (14), with the force of 
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interaction and the heat transfer specified. Simultaneously, the tempera­
ture field within the particle should be determined, an analysis rendered 
even more difficult for vaporizing and burning particles. Such matters are 
subjects of current research in the field of spray combustion and will not 
be discussed here. (See, for example, Refs. 4-6.) 

In the limit of infinitesimally small particles, the gas and particles are in 
equilibrium, in the sense that the local temperatures and velocities are 
equal: T = Tp; U = up. Then the particles follow the gas motion and, if 
the initial distribution of the particles is uniform, the Cm is constant throughout 
the chamber. The assumption Cm constant is normally made in analysis of 
the flows in solid-propellant rockets, and we shall follow that practice here. 
Although errors incurred can be estimated for typical flow conditions, 
nothing is to be gained by doing so here. The influences of unsteady motions 
and residual combustion can be accommodated within the approximate 
analysis, but the necessary calculations have not been done. 

The mass-weighted specific heats for the mixture are defined in the usual 
fashion 1

: 

(20) 

Now, add Ttimes Eqs. (7) and (8) to lIev times Eq. (17) to find an equation 
for the pressure: 

ap R [ - + U . "Vp + 'Yp"V . U = =- Q + oQ + oUp . Fp + U . (T 
~ ~ p 

(21) 

The perfect-gas law, p = PgRT, hasjJeenJlsed,~here R ~ t!!.e gas constant 
for the gas only. For the mixture, R = Cp - Cv , ;y = C/~, and 

p = pRT (22) 

The chief purpose of the preceding exercise is to establish the forms of 
the equations that account for the presence of condensed material and that 
will provide the most accurate value for the speed of sound for the un­
perturbed motions, namely, 

(23) 

The right-hand sides of the reformed conservation equations, in particular, 
Eqs. (16) and (21), contain the major contributions causing combustion 
instabilities. We are less concerned here with the details than with the 
construction of a general framework. Hence, to simplify writing, we rep­
resent the source terms in general form and write the equations for con­
servation of mass, momentum, and energy (written in terms of the pressure) 
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ap 
- + u . Y'p = 'W at 

au 
p - + pu . Y'u = - Y'p + '!:f at 

ap - + >ypY' . U = - U . Y'p + <;if' at . 

(24) 

(25) 

(26) 

For the circumstances treated earlier, 

'W = - pY' . u - Y' .(ppoup) (27) 

'!Ji = oFp + oUpwp (28) 

<;if' = ~ [ Q + oQp + oUp . Fp + {(ep - e) + ~ (oup? }wp 

- CJY' . (PpOUp)] (29) 

Equations (24-26) are suitable for two- and three-dimensional problems. 
Because of the sources of mass, momentum, and energy at the lateral 
boundaries of solid rockets, treatment of problems within the one-dimen­
sional approximation requires special attention. In effect, some of the 
processes that arise in the boundary conditions placed on these equations 
appear explicitly as source terms in the one-dimensional equations. The 
formulation was discussed first by Culick. 7

•
8 For a chamber having a non­

uniform cross-sectional area Sc(z) , the equations corresponding to Eqs. 
(24-26) are 

(30) 

au au ap 
p - + pu - = - - + g} 1 at az az (31) 

ap 1 a 
- + >yp - - (uSJ at Sc az 

ap 
-u - + <;if' az 1 

(32) 

where 

(33) 

(34) 
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(35) 

where 

(36a) 

~Is = ; J [(us - u)m}f) + (ups - up)m~)] dq 
c 

(36b) 

(36c) 

The terms containing integrals over the perimeter q represent the influences 
of material entering the chamber at the lateral boundary. Properties of the 
injected flow are denoted by subscript s, except that m}f) and m~) represent 
the mass flux of gas and particles respectively, normal to the boundary, 
with mb = m~g) + m~) the total mass flux. 

Note that, apart from the additional source terms at the lateral boundary, 
the one-dimensional equations may be deduced directly from the three­
dimensional equations [Eqs. (24-26)]. Replace u by u, up by up, u . TV by 
u(alaz), and TV . ( ) by (lISc)(alaz)(SJ. 

When particulate material is present in the flow, the properties up (or 
up) and Tp must be determined by solving Eqs. (13) and (14). The average 
force Fp and heat transfer Qp must then be specified. Those processes 
depend on oUp and oTp , coupling the particle and gas motions. Later we 
shall discuss that problem, showing how to obtain elementary results for 
the attenuation of unsteady motions from gas/particle interactions. 

B. Formulation of the Approximate Analysis for Second-Order 
Acoustics: Spatial and Time Averaging 

The sets of equations, Eqs. (24-26) and (30-32), may be used as the 
basis for numerical analysis of unsteady flows. Here we are concerned with 
construction of an approximate analysis, which we develop for the case of 
three-dimensional motions. The general results can readily be specialized 
to one-dimensional problems, with proper attention to the correct forms 
of the source terms 'WI' ~I' and !!Pl' 

To avoid preoccupation with details unnecessary at this stage, we shall 
not display explicitly the contributions to 'W, '*, and !!P. All dependent 
variables are written as sums of mean and fluctuating parts, p = p + p', 
etc.; to simplify the derivation, we assume that the average values do not 
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vary with time. That is not an essential assumption, but to correct it requires 
considerable elaboration not justified here. However, there are practical 
situations in which changes in the average values, particularly the pressure, 
are important. No thorough analysis of such cases has been given. 

Written to second order in fluctuations, Eqs. (25) and (26) become 

au' 
p- + Vp' 

at 
-p(u . Vu' + u' . Vu) 

au' 
-Nu' . Vu') - p' - + ';!f' 

at 

ap' __ , 
- + 'YpV . u = -u' \lp' - 'Yp'\I . u 
at 

- u' . \lp' - 'Yp'\I . u' + IJ" 

(37) 

(38) 

The mean velocity varies within the chamber, but the average pressure is 
assumed constant. That amounts to assuming that the average Mach num­
ber is small, and so terms of order lul2lu'l and lullu'12 are neglected. 

Equations (37) and (38) are, respectively, a vector and a scalar equation 
for the velocity and the pressure fluctuations. The density and temperature 
fluctuations are also dependent variables, and so the system of equations 
is completed by adding the equation for p' derived from the conservation 
of mass [Eq. (24)] and the perturbed form of the equation of state [Eq. 
(22)]. Those equations will not be written at this point but will be introduced 
when required. 

Now, differentiate Eq. (38) with respect to time, and substitute Eq. (37) 
for au' fat to find the nonlinear wave equation: 

1 a2p' 
\l2p' - -- = h 

zp at2 

where 7i2 = ;YRT is independent of position, and 

1 a' - a ' 
h = -pv·(u·Vu' + u' ·\lu) + -u·\lL + :iL\I·u 

zp at zp at 

t7 (_ , t7' ,au') 1 a ( , t7,) 'Y a (P't7 ') - v' pu' v U + p - + - - u . y p + =- - v . u at ztz at a2 at 

(39) 

1 alJ" 
+\I.';!f'--- (40) 

zp at 

The boundary condition is set on the gradient of p', found by taking the 
scalar product of the outward normal vector with Eq. (37): 

fz . \lp' = -f (41) 
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au' J = p - . n + p(u . \lu' + u' . \lu) . n + p(u' . \lu') . n 
at 

, au' , UT;' , +p-·n-';!Y·n 
at 

(42) 

In the first instance, the intent of the approximate method is to replace 
the partial differential equations of conservation by an equivalent system 
of ordinary differential equations. This is accomplished by averaging over 
the volume of the chamber, using a version of the method of least residuals, 
essentially Galerkin's method. The procedure begins with multiplication 
of the equations by a suitable weighting function, followed by integration 
over the volume. According to the remarks in Sec. II, an appropriate choice 
of weighting function is the mode shape for the unperturbed motions. In 
the limiting case in which all perturbations are ignored, the unperturbed 
waves are governed by Eqs. (39) and (41), with h = J = O. There may be 
circumstances in which a different choice is more effective (e.g., the average 
Mach number is high and the influence of the exhaust nozzle on the wave 
motions is substantial), but here we base our analysis on the limiting case. 
Hence, the mode shape ~n for the nth mode satisfies the following equa­
tions: 

\l2~n + k~~n 

n . V~n 

o 
o 

(43a) 

(43b) 

The procedure amounts to comparing the unperturbed problem with the 
actual problem to be analyzed. Multiply Eq. (39) by ~" and (43a) by p', 
subtract the results, and integrate over the chamber: 

f[ \l2' '\l2 ] d 1 f a
2
p' V ~" P - P ~n V - lP ~"at2 d 

- k~ f p'~" dV = f ~"h dV 

Apply Green's theorem to the left-hand side, substitute the boundary con­
ditions (41) and (43b), and rearrange the terms to give 

1 f a
2
p' f f J£ - li2 ~n at2 dV - k~ tjJnP' dV = tjJnh dV + Jj tjJnJ dS (44) 

We now take explicit advantage of the observational result that the 
oscillations usually occurring in rocket motors are not very different from 
the classical acoustic modes. The unsteady pressure field is expressed as a 
synthesis of the normal modes tjJm(r), with time-varying amplitudes T]mCt): 

p'(r, t) = P 2: T]m(t)tjJm(r) (45) 
m~l 
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Correspondingly, the velocity field is written as 

'() ~ Ttm(t) "",1, ( ) u r, t = L..J -k2 V'I'm r 
m~ 1 'Y m 

(46) 

These are clearly not exact representations of the true fields, for the bound­
ary conditions are not satisfied; Eq. (4S) gives 11 . 'Vp' = 0 because the \jim 
satisfy Eq. (43b) and, according to Eq. (46), the velocity fluctuation van­
ishes on the boundary. This means that Eqs. (4S) and (46) do not accurately 
reproduce the spatial structure of the unsteady motions near the boundary. 
Nevertheless, the errors are small when the perturbations contained in h 
and f are small, and because of the spatial averaging, the equations to be 
found for the amplitudes will provide a satisfactory basis for studying real 
problems. The boundary conditions influence the results through the func­
tion f appearing in Eq. (44) and eventually as a contribution to Fn [Eqs. 
(48) and (49)]. As we noted in Sec. I, the accuracy of the final results can 
be assessed quantitatively only by comparison with numerical solutions to 
the partial differential equations. 

The set of normal modes can be constructed so that the \jinCr) are orthogonal: 

J \jim\jin dV = E~omn (47a) 

E~ = J \ji~ dV (47b) 

Substitute Eq. (45) in the left-hand side of Egs. (44), and use the orthog­
onality property [Egs. (47a) and (47b)] to find the desired system of equa­
tions for the amplitudes: 

(48) 

Fn = - p~~ {J h\jin d V + f Nn dS} (49) --- ,.".,-"-'-'--" 

The functions hand f contain p' and u', which are to be replaced by the 
approximate forms [Eqs. (45) and (46)]. Hence, the "force" Fn depends 
on the amplitudes 11m. In general, both linear and nonlinear terms will 
appear, and the system of Eqs. (48) represents the time-dependent motions 
of a collection of nonlinear oscillators, one oscillator being associated with 
each classical mode. 

For the one-dimensional approximation, the equations corresponding to 
(39-42) are 

(SO) 

0, L) (Sl) 
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where L is the length of the chamber, and 

h = _ -' ~ ~(S auu') + u a
2
p' + 'Y ap' ~ ~ (S u) 

1 P Sc az C az li2 ataz liZ at Sc az C 

1 a (au' au') - - - Sc pu' - + pi -
Sc az az at 

(52a) 

au' a au' au' 
11 = p - + p -(uu') + pu ' - + pi - - ~~ 

at az az at . 
(52b) 

The normal modes for one-dimensional motions are found as the solutions 
to 

(53a) 

~~e = ° (z = 0, L) (53b) 

and the expansions for the acoustic field are 

" 
p'(z, t) = J5 2: 'l)j(tH/z) (54a) 

j~ 1 

u'(z, t) = i: ~(? d\(Jj(z) 
j~ 1 -ykj dz 

(54b) 

Orthogonality of the normal modes is expressed as 

f: \(Jj\(JeSc dz = E'iojl (55a) 

Ez = [L \(JzS dz Jo c 
(55b) 

With a procedure similar to that leading to Eq. (48), we find the equa­
tions for the amplitudes: 

(56) 

(57) 
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We note that the classical modes used here are true standing wave motions 
having well-defined frequencies and phase differences among the spatial 
distributions that are invariant with time. Yet the general motions described 
by the set (48) and (56) are not so restricted: standing waves with energy 
losses or gains, traveling waves, and discrete wave motions (pulses) can 
all be analyzed with this formulation. 

The progression from the partial differential equations to the ordinary 
differential equations [Eqs. (48)] is already a great simplification of the 
analysis. We could now apply Eqs. C 48) directly, as Zinn and Powe1l9 ,10 

did first in a similar treatment of combustion instabilities in liquid rockets, 
However, one further step applying the method of time averaging will 
replace the system of second-order equations by an equivalent system of 
first-order equations, This greatly reduc.es the cost of routine calculations 
and also provides a convenient basis for studying formally the general 
behavior of unsteady motions. The following argument applies to both the 
three-dimensional and one-dimensional formulations, 

Time averaging is a reasonable procedure for practical problems, based 
on the observation that the oscillations commonly have amplitudes and 
phases varying slowly in time: their changes are small during one period 
of oscillation. Hence, the amplitudes 'TlnCt) may be written in the form 

'Tln(t) = rnCt) sin[wnt + <PnCt)] = AnCt) sinwnt + Bn(t) coswnt (58) 

The time-varying phase <PnCt) is observed as a frequency shift, the actual 
frequency for the perturbed mode being d!dt( wnt + <Pn) = Wn + ~n' 
Construction of the equations for rnCt) and <PnCt) or, equivalently, AnCt) 
and Bn(t) may be done at least two ways. 

The first method ll is a modest variation of the method of averaging 
developed by Krylov and Bogoliubov.12 By analogy with a simple mass! 
spring system, the energy "t;n can be associated with the oscillator governed 
by Eq, (48): 

(59) 

The instantaneous velocity of the oscillator is T]n, so that the rate at which 
work is done on the oscillator is T]nFn- Averaged over an interval 'T at time 
t, the values are 

(60) 

Conservation of energy for the averaged motion implies that the rate of 
change of time-averaged energy should equal the time-averaged rate of 
power in 

(61) 

Because the single function 'Tln has been replaced by two functions, rn 
and <Pn, we are free to place a restriction; following Krylov and Bogoliu-



STABILITY PREDICTIONS IN ROCKET MOTORS 737 

bov,12 we require 

(62) 

Differentiating Eq. (58) and enforcing Eq. (62) gives the formula for the 
velocity in the same form as that for a classical conservative oscillator: 

(63) 

and the energy is 

(64) 

With Eq. (63), Eg. (61) gives 

(65) 

The equation for <Pn(t) is found by substituting Eqs. (58), (63), and (62) 
in the oscillator equation [Eq. (48)]; multiplication by sin(wnt + <Pn) and 
time averaging gives 

(66) 

It is often more convenient to use the equations for An(t) and Bn(t) , 
found by solving Eqs. (58), (62), (65), and (66) for An and En' to give 

(67a) 

dBn -1 f F' I d I - = - smw t t 
dt Wn l' n n 

(67b) 
t 

The assumption that the amplitudes and phases are slowly varying means 

(68) 

These inequalities imply that the functions An(t) and Bn(t) will be taken 
as constant under the integrals in Eqs. (67a) and (67b). 

The original motivation for developing the method of averaging in the 
form expressed as Eqs. (67a) and (67b) was to provide the basis for treating 
arbitrarily shaped chambers. Differences between geometries are reflected 
in the unperturbed mode shapes and frequencies. The mode shapes affect 
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the values of parameters that arise in Eqs. (67a) and (67b), but the fre­
quency spectrum, as we shall see, influences the qualitative structure of 
the equations. It appears that the derivation of Eqs. (67a) and (67b) is not 
restricted to particular geometries, but, to date, these results have been 
applied only to the simplest case of longitudinal modes for which the 
harmonic frequencies are integral multiples of the fundamental. Applica­
tion to other cases requires further calculations, which we will not pursue 
here; preliminary examination suggests some difficulties that have not been 
resolved. 

A second method has recently been applied to problems of transverse 
modes in a circular cylinder. 13,14 First we introduce a bookkeeping param­
eter E measuring the smallness of the right-hand side of Eq. (48): 

d2'lln 
dt2 + W~'lln = d'n (69) 

(In most problems, E is a Mach number characterizing the average flow­
field; for the second-order acoustics treated here, the Mach numbers of 
the average and oscillating flows are of the same order.) Now Fn is of the 
same order as 'lln' As before, write 'lln(t) in the form (58), and impose the 
condition (62) written in terms of An and Bn: 

dAn . dBn dt Slllwnt + dt coswnt = 0 (70) 

Substitute Eq. (58) in Eq. (69); the result can be solved with Eq. (70) to 
give 

(71a) 

dBn = _ ~ F sinw t 
dt Wn n n 

(71b) 

These equations still involve no approximations beyond those required 
to produce Eq. (69). We now introduce two time scales, a "fast" scale, 
lIwn , proportional to the period of the oscillation; and a "slow" scale, 
lIEwn , which characterizes the relatively gradual variations of the amplitude 
and phase. Correspondingly, the dimensionless fast and slow time variables 
are defined: tf = wnt and ts = EWnt. 

In terms of these new variables, Eqs. (71a) and (71b) are 

dAn 1 -
(72a) 

dts 
= 2 Fn costf Wn 

dEn 1 -
(72b) 

dts 
- 2 Fn sintf Wn 

The idea now is to average Eqs. (72a) and (72b) over an interval Tf in the 
fast variable; because the An and Bn are functions of the slow variable, we 
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Cf+Tf 

.!. J dAn dt' = dAn 
Tf dts f dts 

If 

tf+Tf 

= + J Fn(t" t;) cost; dt; 
WnTf 

If 

(73a) 

(73b) 

As shown, Fn is a function of both the slow and fast time variables, be­
cause 

(

W. ) (w \ 
l1i = Ai(ts ) sin w~ If + Bi(t,) CO\ w: tf) (74) 

When Fn is formed, terms linear and quadratic in the Ai' Bi are produced, 
weighted by sinusoids. Because they are functions of t" essentially constant 
during the interval Tf' all such factors can be taken outside the integrals in 
Eqs. (73a) and (73b). Hence, the averaging is performed on sinusoids 
having frequencies that are sums and differences of the natural frequencies. 
The terms that survive the averaging are then determined by the relative 
magnitudes of the periods compared with the period 2-rr/w n of the mode 
in question. Some terms have precisely zero frequency when the differ­
enced frequencies vanish. Others oscillate at nonzero but low frequencies, 
with periods long compared with the averaging period. Some experience 
with special problems13 ·14 has shown that, if the frequency is less than 
roughly half the frequency of the mode in question, those terms should be 
retained. They contribute modulating factors on the right-hand sides of 
Eqs. (73a) and (73b), which are meaningful, as comparison with numerical 
solutions to the second-order Eqs. (48) have shown. Open questions con­
cerning the use of time-averaging in general still remain. 

Culick ll has shown that Fn has the following form for second-order 
acoustics: 

- 2: [Dni1Ji + EniTl;] (75) 
i=1 

The constants D ni, En<' A nij , Bnij depend on the unperturbed mode shapes 
and frequencies; the Dni and Eni arise from linear processes and are usually 
proportional to the Mach number of the mean flow. (A notable exception 
arises with the presence of condensed material discussed in Sec. IV.D. The 
characteristic parameter then depends on the mass fraction of condensed 
material and on the properties of the particles.) Consider the linear terms 
only. Substitution of Eg. (75) in Eq. (73), or in Eqs. (67a) and (67b), with 
T equal to the period of the nth mode, leads to the following results: 

(76a) 
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(76b) 

Multiply the first of these by An and the second by Bn, and add the results 
to find the equation for the amplitude, Tn = - (Dn)2)rn, where ~ = 
A~ + B~. Thus, rn ~ exp(ant), with an = - Dnnl2, the growth constant 
for the nth mode, as defined generally by Eq. (6). 

Now, from the definition (58) of Tin(t), we find 

Substitution in Eqs. (76a) and (76b) leads to the identification Ennl2wn 
4>n- But 4>n can be interpreted as the frequency shift in the nth mode that 
is due to the perturbations because the perturbed frequency is 

Hence, we have established the two rules that the growth constant for 
the nth mode is 112 the coefficient of T]n in the form (75), and the frequency 
shift is 1I2wn times the coefficient of Tin: 

1 
--D 2 nn 

1 Enn ---

(77a) 

(77b) 

These rules are often conveniently applied after a representation of a 
particular process has been constructed. Examples are given in the follow­
ing section. 

IV. Prediction of Linear Stability 

Most contemporary predictions of linear stability are based on the anal­
ysis formulated in the preceding section. The results are readily pro­
grammed for routine computations; a widely used program is that pre­
pared originally by Lovine et al. 16 and recently in revised form by Nickerson 
et al. 17 

Whatever method is used, the starting point for three-dimensional prob­
lems is the pair of equations (37) and (38) with the nonlinear terms pu' . 
'Vu', etc., dropped. In general, one would expect to need the linearized 
forms of Eq. (24) for conservation of mass, and of Eq. (22), the equation 
of state. However, for problems of small-amplitude motions, it is an ad­
equate approximation to suppose that the fluctuations in the acoustic field 
are isentropic, so that p ~ p'Y. Then the pressure and density changes are 
related by 

p' 

15 
- p' 
"Y-=­

P 
(78) 
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Temperature fluctuations may arise in the source terms, and so we shall 
need the linearized form of the equation of state [Eq. (22)]: 

p' p' T' 
-=-+=-
J5 p T 

(79) 

Only the terms linear in h, Eq. (40), andf, Eq. (42), are retained. Hence, 
the forcing function Fn defined in Eqs. (48) and (49) is linear in p' and u'. 
We may therefore introduce the exponential time dependence familiar in 
linear problems, TIn ~ exp(iokt), 

f = fe'tikl (80) 

where k is the complex wave number: 

1 /-~ 

k = = (w - iex}) (81) 
a / 

-_/ 

The real part of ok is the frequency of the nth mode shifted from the 
classical value Wn by the perturbations proportional to the Mach number 
of the average flow. The imaginary part ex is the growth constant for the 
perturbed nth mode: ex > 0 if the mode is unstable. By construction, ex is 
itself proportional to the average Mach number. 

Thus, as far as linear behavior is concerned, the purpose of the approx­
imate analysis is to provide a systematic procedure for computing the 
frequency shifts and growth constants associated with each of the classical 
acoustic modes. The idea is that an arbitrary small-amplitude unsteady 
motion can be represented as a Fourier synthesis of the classical unper­
turbed modes, with time-dependent coefficients Tln(t) , as expressed by Egs. 
(45) and (46). If only one of the modes is unstable, then the general linear 
motion must be unstable. Hence, the linear stability of motions generally 
is established by determining the signs of all ex for the classical normal 
modes: the same formula for k applies to all modes, but the numerical 
values of wand ex depend on n. 

Because Eq. (48) is linear, after substitution of the forms (80), the 
common factor e'likl cancels, and we find the formula for P: 

(82) 

Taking real and imaginary parts, and using the fact that, because they are 
both proportional to the average Mach number, exlw, (w - wn)/wn « 1, 
we find the following formulas for the actual frequency and the growth 
constant: 

(83a) 

(83b) 
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where superscripts (r) and (i) denote real and imaginary parts, respectively. 
Thus, the entire problem of linear stability has been reduced to evaluating 
the integrals over hand f. This is a perfectly general result, restricted only 
by the assumption that the \jIn satisfies Eqs. (43a) and (43b) and by the 
modeling of the source terms in hand f. Note that the meaning of smallness 
here i~lies that w differs from Wn and a differs from zero by terms of 
order M. 

A. Evaluating the Integrals of hand f 
Some rearrangement leads to the following result for the linear parts of 

h and/: 

J h\jln dV + * fiJln dS = pk~ r (u . u)\jIn dV 

- P J (12 X V/ x Ii) . V\jIn dV 

+ i ~ J \jIn[u . V{1 + "{{1V . u] dV 

..).. i:n J \jIn@> dV - J ;f; . V\jIn dV + ipak" *, \jIn U . ri dS (84) 

The mean flowfield may be rotational (V x Ii =Fe 0), and sources are 
accommodated (V . Ii =Fe 0). Also, because the integrands are proportional 
to M and because k differs from kn by terms of order-.&, we have replaced 
k by k", thereby correctly neglecting terms of order M2. It is important to 
understand that this analysis of linear stability gives consistent results to 
first order in the mean flow Mach number. To study linear stability, only 
the nth term is retained in the series expansions (45) and (46). Moreover, 
to the order to which the equations have been constructed, the acoustic 
quantities on the right-hand side of Eq. (84) must be replaced by their 
classical unperturbed values; thus, set k = k" and 

(85) 

After some calculations and rearrangement, we find 

(86) 

Taking the real and imaginary parts of this result and substituting in Eqs. 
(83a) and (83b), gives the basic formulas for treating the problem of linear 



STABILITY PREDICTIONS IN ROCKET MOTORS 743 

stability: 

W = Wn + a~ 2 {~ J tVn ~(i) dV - J -:?-- <!fer) . V'tVn dV 
2wnpEn a 1)n 1)n 

- pakn f -:?-- (a . fi)(i)tVn dS} (87) 
1)n 

a
2 

{ k J ex = - _ 2 (-y - 1) .: J5 tV~(V'· u) dV 
2wnpEn a 

k J ~(r) J 1 ' 
-:' tVn -,- dV - --;:- :fj;(l} • V'tVn dV 

a 1)n 1)n 

We now examine the most important contributions to linear stability. 

B. Admittance and Response Functions 

The term -ya in the surface integral arises from the contribution paulat 
in f. Here a is not replaced by its unperturbed value (li . Ii = 0) at the 
surface because, in general, the boundary is not rigid. At burning surfaces, 
for example, the unsteady combustion process produces fluctuations of 
burning rate, and hence velocity, of the order of the average Mach number. 

It is a convention in classical acoustics that has become standard practice 
in this subject, to replace fluctuations of the velocity at the boundary by 
admittance functions. The idea is that, if a small pressure fluctuation is 
imposed on a boundary, the surface will move, at a velocity proportional, 
in first approximation, to the pressure fluctuation. In solid rockets, there 
are chiefly three classes of boundaries: inert impermeable surfaces; burning 
surfaces; and areas through which flow may pass, mainly the exhaust nozzle. 

No exposed surface in a solid rocket chamber is truly inert, but erosion 
of insulation material is slow compared with combustion rates. Thus, we 
may consider the material to be inert as a good first approximation. In 
that case, there is negligible motion of the surface, and the acoustic field 
is influenced primarily by viscous effects confined to an acoustic boundary 
layer, treated in the following section. 

Burning surfaces and regions of flow through the boundary may be 
treated together. From the definition of mass flux, mb = - psu . ii, and 
with the perfect-gas law, we have 

m 6.T' 
,ft b _ft S+P_ft -u·n=--u·n-=- -u·n 

Ps Ts 'YJ5 
(89) 

The minus sign appears on u . fz beca'-,!se fz is positive outward but u and 
mb are positive inward. The quantity 6.Ts represents the difference between 
the actual temperature change and the isentropic temperature fluctuation 
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associated with the pressure disturbance: 

"y - 1 p­
,1 t = t - -- - Ts 

"y J5 
(90) 

With :yp = paz, and pip = llnljJn, Eq. (89) can be solved for the combination 
appearing in the first integral of Eq. (86): 

(91) 

Analysis of the unsteady response of a burning surface produces most 
directly results for fluctuations of the mass flux mb , whereas measurements 
provide directly the combination on the left-hand side of Eq. (91). Hence, 
two functions have been introduced in the literature, the response function 
Rb and the admittance function A b, defined by the relations 

mb _ R P 
_ - b __ 

mb 'YP 
(92a) 

u'n_
A 

p 
a - b "YJ5 (92b) 

With these definitions, the combination (91) gives 

1 (_ U . Ii _ ') - - ( ,1t/fs) - 'V--+u'n ==-(A +M)==-M R +'V--_ 1, .1. b b b b 1, .1. 
a lJn'l'n lJn'l'n 

(93) 

where the subscript b has been introduced to indicate conditions at the 
burning surface. 

Because the processes at the burning surface are the source of the energy 
for instabilities, the problem of coupling to acoustical motions has received 
much attention. It is not possible to compute accurate values of the response 
function for a given propellant. Experimental methods carry considerable 
uncertainties but have advanced to the point of effectiveness for comparing 
propellants and for assessing trends of behavior accompanying composi­
tional changes. 

Denison and Baum18 first discovered an approximation to the response 
function now commonly used for correlating data and in computations of 
stability. Culick19 reviewed the available analyses of the response function. 
Because of common assumptions of the physical behavior, almost all results 
have the same form as Denison and Baum's: 

nAIYy 
Rb = -----------'----

A 
X. + - - (1 + A) + AB 

X. 

(94) 

The complex function of frequency X. is computed as the solution to the 
equation 

X.(X. - 1) = if! (95) 
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where D = Kpw1fb is proportional to the ratio of the period of the thermal 
wave in the solid to the period of the imposed acoustic oscillation. With 
n specified as the index in the burning rate law, the formula (94) gives 
values of Rb depending on the two parameters A and B, which themselves 
are functions of the properties of the propellant. Each analysis of the 
unsteady behavior produces explicit formulas for A and B, so that their 
values depend partly on the approximations used. However, with the broad 
assumptions commonly used (notably that the burning is one dimensional 
and the gas phase responds guasistatically), Eg. (94) is found. Figure 1 
shows the real and imaginary parts for typical values of the parameters. 

Similarly, the influence of the nozzle is represented by an admittance 
function, but with a sign change to account for the fact that the flow is 
outward from the chamber. Also, it is assumed that the flow is isentropic, 
and so corresponding to Eg. (93), we have 

'Y (11 . fl) Ii . fl -- - +-=(A +M) 
_ A .1, - N N a T)n'l'n a 

Substitution of the preceding results in Egs. (87) and (88) gives 

+ pkn f f Ag)l\J~ ~S - pkn f J A~N~ dS} 
burmng nozzle 
surface 

5.0 

2.5 

-2.5 

-----

A = 6.0 
n = 0.3 

B = 0.55 
i=1.I8 

/ 
/------

- 5.0 '--____ -.L. _____ .L--____ --' 

0.1 10 100 

n 
Fig. 1 Frequency spectrum of combustion response function. 

(96) 

(97) 
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- pkn f f (A};l +. Mb)t/I; dS + pkn f f (AK;l + MN)t/I; dS} 
. burmng nozzle 

surface . 
(98) 

Normally, A},'l and AKI, as defined here, are both positive: the burning 
surface tends to drive waves, and the nozzle tends to attenuate. Their 
contributions to the growth constant, extracted from Eq. (98), are 

Cl.c = 2~2 f f (A};l + Mb)t/l~ dS 
n burning 

surface 

(99) 

(100) 

Thus, in accord with the foregoing remarks, Cl.c > 0 and Cl.N < 0 in the 
usual case. 
_ Suppose that the nozzle entrance is located at z = L and that AK;l + 
MN is constant over its area SN; then Eq. (100) simplifies to 

(101) 

The ratio in square brackets is constant, or nearly so. This result shows 
that, for a given nozzle and entrance Mach number (i.e., ratio of burning 
surface area to entrance area), the attenuation constant due to the nozzle 
is inversely proportional to the length of the motor. 

Similarly, if A);l + Mb is constant over the burning surface, Eq. (99) is 

(102) 

in which the surface integral is over the burning surface. The ratio in 
brackets depends significantly on the location of the burning surface. If 
the geometry is fixed, so is the function t/I~. Consequently, Cl. c is larger if 
the burning surface is placed in the vicinity of antinodes of the nth mode. 
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This effect may cause the value of (Xc to be significantly different for the 
various modes in a given chamber. 

C. Attenuation at Inert Surfaces 

Losses of acoustic energy at an inert surface are due to the actions of 
viscous stresses and heat conduction. Those processes occur in a relatively 
thin layer near the wall but may be accommodated, in the general frame­
work constructed here, by suitable interpretation of the force <:!i' in the 
momentum equation (37) and of the heat source Q' in Eq. (38) for the 
pressure. The force is derived from a stress tensor '1, and the heat 
source is associated with the heat flux vector q; the fluctuations are 

<:!i' v 
t"7 ~, 
V • T 

Q~ V' . q' 

where subscript v denotes viscous effects. 

(103a) 

(103b) 

The contributions from these terms to the formula (88) for the growth 
constant are 

(Xv = a~ 2 {":!! J tVn -J- (V' . q)(r) dV 
2wn pE n a Cv lln 

+ J -J- (V' . ~)(i) . V'tVn dV} (104) 
lln 

Both q' and '1' are significant only in the thin acoustic boundary layer 
adjacent to the wall. If the layer thickness is sufficiently small compared 
to the radius of curvature of the wall, we may treat the viscous processes 
as in parallel flow past a flat plate. Let y denote the coordinate normal to 
the wall, measured positive inward, so that the element of volume near 
the surface is dV = dy dS. Within this approximation, only the y component 
of q' is nonzero, and so 

Q = aqy 
ay 

(105) 

The viscous stress is parallel to the surface and varies only in the y direction: 

(106) 

where k is the unit vector in the flow direction, say, z. 
Within the acoustic boundary layer, tVn and V'tVn are approximated by 

their values at the surface and depend only on z. Hence, the volume 
integrals in Eq. (104) may be written as 

(l07a) 
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(107b) 

Far from the surface, both q; and i; vanish so that the integrals may be 
extended to y ~ 00 as shown. The viscous stress at the wall is i w = - (l-1au/ 
ay)w, where u' is the velocity fluctuation in the direction of flow and the 
heat flux is qw = - (kaT/ay)w. Hence, the formula (104) becomes 

(12 {kn R II 1 ( aT)(r) 
C( = - - =- - k- \jJ dS 

v 2wnJ5E~ a Cv f)n ay w n 

II 1 ( au)(i) a\jJn } + -1-1- -dS 
f)n ay w dz 

(108) 

The solutions for the velocity and temperature fluctuations in the acoustic 
boundary layer are 

u' (109a) 

T (109b) 

where ux, Tx are the amplitudes far from the wall and 

1 . 
A = 5 (1 + I) (110a) 

(110b) 

Thus, 0 is roughly the thickness of the acoustic boundary layer, and the 
factor (1 + i) in A represents the existence of shear waves within the layer. 
From Eqs. (109a) and (109b), we have 

(111a) 

(l11b) 

Before these results are used in Eq. (108), the phases must be corrected. 
One way to do this is first to convert from the complex to real forms 
containing the time dependence "Tln or T]n. According to the definitions 
introduced by Eq. (46), the acoustic velocity outside the boundary layer 
is T]n "'il\jJn/'yk~. Here we use only the component parallel to the surface; 
hence, "'il\jJn ~ a\jJ)az. Thus, in Eq. (lIla), we must replace u",iwt by 
T]n(a\jJn/az)t'Yk~. The factor I introduces a time derivative, Iwei"'t = a(eiwt)/ 
at, so that iuxeiwt is replaced by iin(a\jJ)az)!'Ywnk~. But to the order required 
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here, lin = -w~Tln' and Eq. (lIla) becomes 

(112) 

Outside the boundary layer, the temperature is related to the pressure 
by the formula for isentropic variations and 

T~ "'Y - I p' 
-=---
T "'Y P 

with p' = PTlnljJn- Accordingly, Eq. (l1Ib) is written as 

( k aa:'t = ~ VPr("'Y ; 1)1'( TIn + : lln )ljJn (113) 

Now, set Tln = llneiwnt in Eqs. (112) and (113), take the real or imaginary 
parts as required, and substitute in Eq. (108) to find 

vw:%12 II [(~)2 + "'Y - I 2J dS 2E~ k n VPi- IjJn 
inert 
surface 

(114) 

For generality, aljJ)az has been replaced by the gradient VII of IjJn parallel 
to the wall. For a longitudinal mode in a straight cylindrical tube, IjJn = 
cosknz, and Eq. (114) gives the well-known result for the decay constant 
for a standing wave: 

(115) 

where D is the diameter of the tube. 
Figure 2 shows one way of presenting the content of Eq. (115). The 

decay constant for a standing wave in a tube is made dimensionless by 
referring its value to the frequency. Note that the dependence on Prandtl 
number is very weak; the value -;y = 1.2 is typical for combustion products 
in a solid rocket. 

The dimensionless combination wla is 2'1T times the number of cycles 
required for the amplitude of oscillation to be reduced to lie of its initial 
value. That interpretation is readily established from the definition of a, 
the p' - e- Q/

• The number of cycles executed in the time interval tJ.t is 6.tl 
T and T = 2'1Tlw. Hence, one can write 

6.t a 6.t 
a6.t = aT - = 2'1T - -

T W T 

The amplitude is reduced by the factor lie if a6.t 1; the last equation 
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Fig. 2 Attenuation of acoustic waves by viscous damping. 

then gives 

w ~t 
- = 21T - = 21T x (number of cycles) 
Q 'I" 

D. Attenuation Due to Condensed Material 

(116) 

Particularly if the propellant contains metal, some of the combustion 
products appear as condensed liquid or solid particles. Under suitable 
circumstances, the viscous interactions between the particles and the gas 
may provide a significant dissipation of acoustic energy. For rockets using 
metallized propellants, this is often the largest contribution to stability of 
small-amplitude oscillations. The amount of damping depends mainly on 
three quantities: the mass fraction em of condensed material, the size of 
the particles, and the frequency of the oscillations. Perhaps the most sig­
nificant practical consequence of the analysis summarized here is the result 
that, for a given frequency, there is a particle size (diameter) for which 
the attenuation per particle is maximum. That conclusion has been con­
firmed in practice and is the basis for one important means of treating 
instabilities in motors. 

Attentuation of sound by suspended particles in a gas was first treated 
theoretically more than 75 years ago. The modern theory began with the 
work of Epstein and Carhart. 20 A simplified analysis and experimental 
confirmation of the results have been provided by Temkin and Dobbins. 21,22 

The calculations discussed here constitute an alternative method fitting 
naturally in the approximate analysis. Extensive work by Kraeutle et alY 
has shown that this approach works in practice. 
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The linear gas/particle interactions arise from Eqs. (18a) and (I8b) writ­
ten to first order in the fluctuations: 

oF~ = 
_ aou~ 
PPat (117a) 

aoT' 
oQ~ = - p C--P (117b) 

P at 

The parts of '*' and P' due to these terms only are found from the linearized 
forms of Eqs. (28) and (29): 

aou' 
'*' = 0'*; - P (118a) P PPat 

!J>' R Q' = C
v 
0 P = 

_ - R ~ aoT~ 
Pp Cv at (118b) 

Thus, Eqs. (97) and (98) give the contributions to the frequency shift and 
the growth constant: 

(119) 

(120) 

We have assumed, a good approximation in most practical cases, that 
the mass of particles per unit volume, PP ' and the mass fraction are nearly 
independent of position in the chamber. 

To find ou~ and 0 T~, we treat the motions as locally one dimensional 
and solve the problem of single particle motion, u~(t) and T~(t) being the 
velocity and temperature, respectively, of a particle located in a gas having 
oscillatory velocity u'(t) and T'(t). Temperature gradients within a particle 
are ignored. See, for example, Rangal and Sirignan05 for a discussion of 
problems in which this assumption is not made. Moreover, we also ignore 
the effects of vaporization and combustion of the particles. In the absence 
of combustion, condensation or vaporization causes increased attenuation 
of acoustic waves. 24 ,25 We assume tentatively that the motions are such 
that the Reynolds number based on the relative speed, lu; - u'/, is less 
than unity. The approximation of Stokes' flow then applies, and the equa-
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du' 
-p 

dt 

dT 
_P 

dt 

_ 18f.L (u' _ ') U 
Ps(J2 P 

-~ (T - T) 
Ps C(J 2 

P 

where u; is the velocity in the same direction as u' and (J is the particle 
diameter. These equations can be rewritten as 

The relaxation times are 

dou; 1 
-- + - ou' 

dt Td P 

PS(J2 Td =-
18f.L 

T, = G C:)Td 

du' 

dt 

dT 

dt 

(121a) 

(121b) 

(122a) 

(122b) 

With u' = (TJJ'Yk~)v\jJn and TIT = C::; - I)TintVnl;Y, the steady-state 
solutions (t ----?> x) to Eqs. (121a) and (121b) are 

1 ou; = XI(T)n - TdTJn) -k2 \\Vn (123a) 
'Y n 

"T' X ( TJn) 'Y - 1 -T;I, U P = - 2 T,Tin + ---:2 -_- 'l'n 
Wn 'Y 

(123b) 

Dependence on frequency and particle properties is contained chiefly in 
the two functions Xl and X 2 : 

Xl 
w)1d 

(124a) 
1 + D~ 

X 2 = 
wnD, 

(124b) 
1 + D~ 

where Dd = WnTd and D, = WnT,. For use in Eqs. (119) and (120), the time 
derivatives of Eqs. (123a) and (123b) are required. This produces terms 
containing TJn and lin' To be consistent, we replace lin by - W~TiIl and, 
after setting Tin = T]ne'wn" we eventually find the results 

(125a) 
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(12Sb) 

Equations (12Sa) and (125b), normalized to the angular frequency Wm 

are plotted in Figs. 3 and 4 for longitudinal oscillations. The independent 
variable is Wn'Td, 21T times the ratio of the relaxation time for relative motion 
[see Eq. (122a)] to the period of the motion. According to Eq. (122a), the 
dominant influence on the relaxation time is the particle diameter 'Td - (12. 

For typical solid propellants and operating conditions, the diameters of 
particles may range from fractions of a micron to tens of microns. The 
results shown in the figures have been computed for longitudinal oscilla­
tions in a chamber of constant cross section, and so ljin = cosknz = cos( 1Tnzl 
L). In this case, Eqs. (125a) and (125b) reduce to 

(126a) 

1 Cm [ (_ C ] 
oWp = "21 + C

m 
o'dXl + "I - 1) C

p 
o'tX 2 (126b) 

The most striking feature of the curves in Fig. 3 is that, for a fixed value 
of mass loading Cm, the dimensionless attenuation constant has a maximum 
value. That is, according to the interpretation expressed by Eq. (116), the 
number of cycles of oscillation required to reduce the amplitude by lie is 
minimum. Thus, for a fixed frequency, there is a best value of relaxation 
time, that is, particle size, for obtaining maximum attenuation. This result 
has served as a successful practical guide to treating combustion instabilities 

0.20.--------.---------,--------, 

1 = 1.2 

0.15 Pr = 0.82 
Cp= 0.3 Col/gm-K 

3c C = 0.275 Cal/gm-K 

'a. 0.10 
l:J 
I 

0.05 

Cm = 1.0 

Fig. 3 Attenuation of acoustic waves by small particles suspended in a gas. 
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Fig. 4 Frequency shift of acoustic oscillation by small particles suspended in a 
gas. 

in motors. Addition of inert particles having appropriate sizes, or altering 
the propellants in other ways, has reduced the amplitudes of oscillations. 

Figure 4 shows a strong dependence of the frequency shift on both 
particle mass loading and on WnTd or, as reasoned earlier, on particle size. 
The behavior is better understood by recognizing that, in a fixed geometry 
(here a tube, length L), the wavelength is fixed so that, from the funda­
mental relation a '= fA = WA/2TI, a frequency shift is equivalent to a change 
in the speed of sound: 

Ow oa 
W a 

(127) 

Note especially in Fig. 3 that, as Wn T d approaches unity, when the atten­
uation constant is maximum, the change in the speed of sound is not a 
small perturbation if the particle mass loading is greater than 0.5. The mass 
loading as a function of aluminum content fJ. in the solid propellant is given 
by the formula 

c = 1.89fJ. 
m 1 - 1.89fJ. 

If the propellant contains 15% aluminum (fJ. = 0.15), Cm = 0.4, sub­
stantial shifts in the speed of sound occur. That is why this effect of particles 
was included in the formulation of the conservation equations [Eqs. (24-
26)]. The speed of sound given by Eq. (23), has the value shown in Fig. 
4 for WnTd ~ 00. 

The dependence of the frequency shift on Wn T d may be interpreted as 
follows. According to Eq. (122a), the relaxation time is proportional to 
the square of the particle diameter, and so Wn T d ~ W n(J2. For low frequencies 
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or small particles, WnTd ~ 0; according to Fig. 4, the frequency shift and 
change in the speed of sound, Eq. (127), vanish. In either case-slow 
unsteady motions with finite particle sizes or vanishingly small particles 
exposed to unsteady motions-the viscous losses in the flow about the 
particles become negligible. Hence, there can be no frequency shift, a 
result to be expected by analogy with the behavior of the resonant fre­
quency of a classical mass/spring/dashpot system. 

On the other hand, if the frequency is relatively high, even with small 
particles, or the particles are large, the viscous stresses cause substantial 
motions of the particles. When Wn T d is sufficiently small, the particles follow 
the gas motion very closely. The gas/particle mixture then behaves as a 
single fluid having density equal to the sum of the mass of gas and con­
densed material per unit volume, Eq. (19), but the compressibility is pro­
vided by the gas. Hence, the speed of sound assumes the equilibrium value 
given as Eq. (23), with mass-averaged thermodynamic properties. 

The preceding results rest crucially on the assumptions of Stokes' flow 
and rapid decay of transient motions so that Eqs. (123a) and (123b) apply. 
It is an easy calculation to show that the Reynolds number based on the 
relative velocity exceeds unity for realistic particle sizes (1 - 10 fl) and 
quite modest amplitudes of oscillation. Hence, it appears that a nonlinear 
analysis of gas/particle interactions is required to cover conditions arising 
in practice. However, in all current applications, including the SSP pro­
gram,17 the linear results are used. Kraeutle et al. 23 based their experi­
mental confirmations on the assumption of linear behavior, and it is likely 
that nonlinear effects cannot be detected within the experimental 
uncertainties. 

The only calculations of the attenuation constant including nonlinear 
effects26 show that the linear results tend to be conservative. For a fixed 
frequency, increasing the amplitude of oscillation broadens the curves in 
Fig. 3 and moves the peak to slightly larger particle size; the maximum 
value of the attenuation is practically constant with amplitude. More re­
cently, Levine et al. 27 have produced some interesting results for the damp­
ing of nonlinear waves but with linear gas/particle interactions. The problem 
of nonlinear attenuation probably merits careful analysis, but the prospects 
are not especially promising for experimental verification. 

E. Mean Flow/Acoustics Interactions 

In classical acoustics, the presence of a nonuniform flowfield has usually 
been examined in connection with refraction of sound waves. For a sta­
tionary observer, the flow speed appears as a change in the speed of sound, 
which may be interpreted as a shift in the index of refraction. That effect 
must be present in a combustion chamber, but when the acoustical motions 
are approximately stationary waves, it has not been helpful to try to isolate 
that influence. In addition to refraction, there are several phenomena of 
mean flow/acoustics interactions that, after spatial averaging, combine to 
provide the term tjJ~u . fl in the last integral of Eqs. (86) and (88). 

The term in question appears to be simply the convection of acoustic 
energy by the mean flow through the boundary surface. It leads eventually 
to the contributions Mb in Eq. (99) for the burning surface and MN in Eq. 
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(100) for the exhaust nozzle. However, it is important to realize that the 
term ljJ~u . Ii arises from several parts of Eq. (84) and includes contributions 
from interactions of both the acoustic velocity and pressure with the average 
flow. They may be traced back to terms like u . 'Vu' + u' . 'Vu, u . 'Vp', 
etc., in the linearized conservation equations. That is, there are losses and 
gains of acoustic energy associated with processes within the volume as 
well as at the boundary. The final result is simple but has a complicated 
ancestry. 

On the other hand, as Cantrell and Hart28 have shown, the same result 
is obtained if one formulates the global balance of acoustic energy for the 
chamber: the rate of change of acoustic energy within the volume equals 
the net flow of enthalpy through the boundary. The advantages of this 
approach is that the formula for the' growth constant is obtained more 
directly; and it is quite easy to obtain the result valid to higher Mach 
numbers of the mean flow. The disadvantages are that the result for the 
frequency shift is not found; and, more important, other volumetric pro­
cesses involving exchange of energy between the acoustic and mean flow­
fields are not easily included. Moreover, that formulation does not provide 
a basis for analyzing the dynamical nonlinear behavior of instabilities. 

The mean flow/acoustics discussed so far are those associated with the 
existence of standing (or slowly varying) waves in a nonuniform but con­
tinuous mean flowfield. If the chamber contains obstructions or rapid changes 
of the boundary shape, the mean flow may separate, causing shear layers 
that are usually unstable and produce vortex shedding. Interactions be­
tween the vortices and the acoustic field are another source (or sink) of 
acoustic energy. Direct coupling between vortices and the acoustic field 
was first suggested by Flandro and Jacobs29 as a possible cause of insta­
bilities. However, the coupling is weak-the vortices appear as quadrupole 
sources-and this is probably not an important mechanism in practice. 
Culick and Magiawala30 used simple apparatus to show that, if the vortices 
strike a barrier downstream, resonances are easily excited in a duct. This 
mechanism was investigated further by Nomoto and Culick,31 Flandro and 
Finlaysen32 and Aaron and Culick,33 and was confirmed by Dunlap and 
Brown34 for flow in a scale model of an operational rocket. Extensive 
results have been reported by Schadow et a1. 35 for flow in geometries 
appropriate to ramjet combustors. The most recent and thorough analysis 
of this phenomenon has been given by Flandro. 36 

It appears that interactions between vortices and the acoustic field will 
not produce instabilities having large amplitudes. The likely reason is that 
the source of energy (the mean flow) is relatively small compared with 
that associated with combustion processes, and the coupling between the 
vortices and the acoustic field is weak. However, the point has not been 
proved-not even upper bounds on the possible amplitudes have been 
established. Vortex/acoustics interactions can cause instabilities, which may 
be troublesome even at low amplitudes if they fall in an undesirable fre­
quency range. We shall not discuss them further because the subject still 
contains unresolved issues not suitable for discussion in this brief survey. 

There is another contribution from mean flow/acoustics that does not 
arise in the three-dimensional analysis given earlier and that is often a 
significant contribution to stability. It is associated with interactions near 



STABILITY PREDICTIONS IN ROCKET MOTORS 757 

the lateral boundary when the acoustic motions are parallel to the surface 
and the mean flow is perpendicular. First discussed by Culick,8 it has since 
acquired the name "flow-turning." This contribution to the loss of acoustic 
energy follows as a natural consequence of the one-dimensional analysis. 
It may be regarded, approximately, as the unsteady counterpart of the 
pressure loss accompanying flow in a duct with mass addition at the bound­
ary (see, for example, Ref. 37, p. 234). 

The formula for the complex wave number with the one-dimensional 
approximation is found by assuming the time dependence eiiikl and using 
Eqs. (56) and (57). Corresponding to Eq. (82) for three-dimensional mo­
tions, we find 

(128) 

° 0 (129) 

(>l\I' (>l\' R 1 J [ ,- R7J" RAT] d 
::T = ::TIs = -C s- -yRT mb + -y ~mb + -y '-1 ~mb q 

v c~ 
(130) 

where ilTs = Ts - T is the difference between the temperature of the 
flow injected at the boundary and that of the bulk flow. The value of 
il T; depends theoretically on the model chosen for unsteady combustion 
of the solid (see, for example, Culick19 and Krier et a1. 38). Its value for 
actual systems is not known. The temperature fluctuation in the ~amber 
is approximated by the value for isentropic motions, T' = (-y - l)(TI-yp)p', 
so that the definition (90) is recovered. 

Without the nonlinear terms in the definitions (52a) and (52b), the for­
mula (128) becomes 

k' ~ k, + p~ {,Pak, [ (~, + ~ ,,*,)*,51 

(131) 
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The last term in brackets represents the effect of injecting flow having 
axial speed at the boundary; for a burning solid propellent, this should be 
close to zero and will not be included here: we set as = Us = O. 

The first term in brackets, in Eq. (131), corresponds exactly to the first 
term of Eq. (86). It represents the influences of fluctuating flow normal 
to the boundary, and the net effect of several mean flow/acoustics inter­
actions, including convection through the boundary. The second term can 
be put in the same form with the following calculations. From the definition 
of mass flux, we have mb = psab + Psub, and with the perfect-gas law, 
p/Ps = p/p - tit. Then, replace r, by the definition (90) of ilr" and 
rearrange the result to find the identity 

1 (mb _ ilt) ab 1 _ - - + u - == - + - U .I. 
A - b T b't'e 

TJe Ps s TJ( 'Y 
(132) 

We assume Ps = P and, after the preceding observations have been ac­
commodated, Eq. (131) becomes , 

L 2 } keP 1 dljJe 1 
+ i - J - (-) - J U dqS dz - k 2 d S b c a 0 t Z c 

(133) 

This result should be compared with Eq. (86) for the three-dimensional 
case. The first two terms here may be deduced directly from the surface 
integral in Eq. (86). Careful analysis shows that there is one-to-one cor­
respondence between all terms in the two cases, including those repre­
senting the influences of particulate material, except that the last term in 
Eq. (133) is new. That is what has come to be called the "flow-turning" 
effect. 

The term "flow-turning" has been used because the term in question 
arises from the inelastic acceleration of injected fluid from its initial di­
rection perpendicular to the surface, to its final state paraliel to the surface. 
This process necessarily involves viscous stresses in the actual flow and 
therefore produces losses of energy (see Culick39 for further comments). 
The formulation within the one-dimensional approximation is indeed merely 
an approximation to the correct representation. No more precise analysis 
of the phenomenon exists although some relevant numerical analysis is in 
progress. 40 Attempts to measure the associated losses have produced only 
qualitative confirmation. 41 . 

It is particularly important to emphasize two points: the acoustical energy 
loss associated with the flow-turning effect is often a substantial contri­
bution to the stability of longitudinal motions in a motor, and the flow-
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turning losses are distinct from those associated with the acoustic boundary 
layer discussed in Sec. IV.C. The second item has often been misunder­
stood. Flandro61 carried out an analysis that essentially accounts for the 
influences of injected flow on the acoustic boundary layer. Because the 
flow far from the surface is in the perpendicular direction, in that calcu­
lation, there is no possibility of capturing the flow-turning effect. 

The real and imaginary parts of Eg. (133) give the shift of frequency 
and attenuation constant corresponding to Egs. (87) and (88): 

00 00" + 2w:;Ei { -pak{ C~: ~ )sl 

(134) 

CI' 

, , 

(135) 

These formulas show that the flow-turning effect, represented by the 
last term in Eq. (135), does not contribute to the frequency shift. Like the 
surface terms proportional to utjII, it affects only the attenuation constant. 
Culick3 has argued that the energy losses due to flow-turning must arise 
whenever the acoustical velocity is parallel to the burning surface. Con­
sequently, the term should be interpreted as an energy loss per unit area 
of surface and should be included in the analysis of all combustion insta­
bilities. The reason it does not appear in the usual three-dimensional the­
ory, developed earlier, is that viscous effects have been ignored. As we 
noted earlier, the flow-turning loss arises within the one-dimensional anal­
ysis as an approximation to essentially viscous effects. The point is not 
universally accepted: see, for example, Van Moorhem,42 who seems to 
have misinterpreted some of the essential aspects of the analytical frame­
work described here. 

F. Influence of Geometry on the Classical Mode Shapes, 
One-Dimensional Motions 

Although unsteady physical processes contribute to frequency shift and 
distortion of the mode structures, the first-order influences are generally 
due to the geometry of a combustion chamber. For practical applications, 
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computation of the classicai mode shapes is a necessary and often expensive 
part of a stability analysis. It is possible to obtain accurate results using 
finite difference or finite element methods. The expense is associated chiefly 
with constructing a suitable grid. To illustrate the matter here, we restrict 
ourselves to examples of one-dimensional motions. Laboratory tests have 
shown that the approximation works well for practical configurations. 43 ,44 

We consider the case illustrated in Fig. 5, a chamber in which there is 
a single abrupt change of cross-sectional area. The geometry is character­
ized by two parameters: the area ratio SI/S2, and the location LIIL, at 
which the area changes. Often, the exhaust nozzle may cause a significant 
frequency shift, an effect that can be interpreted in first order as a shift 
t:.L of the velocity node at the exit of the chamber. We account for this 
contribution without extra labor by considering the length of the chamber 
to be slightly increased. The total length L is measured from the rigid head 
end to a position displaced by the amount t:.L in the convergent section 
of the nozzle, as sketched in Fig. 5. 

Purely longitudinal modes may be constructed by superposing leftward­
and rightward-traveling waves. The amplitudes are constant in a uniform 
section but suffer abrupt changes at a discontinuity of area. At a discon­
tinuity, the acoustic pressure and mass flux must be continuous. The bound­
ary conditions are that the axial velocity must vanish at the forward and 
aft ends, Z = O,L. Within the jth uniform section, we represent the acoustic 
pressure and velocity as 

pj 
[P/ e- ikz + Pj- eikz ] eiw1 (136a) 

-(j5 

.....L = P+e-ikz u' [ 
a J 

_ P
j
- eikZ ] eiw1 (136b) 

where the superscripts denote rightward ( ) + and leftward ( ) - traveling 
waves. The coefficients P/, - Pj- in the formula for the velocity are set 
by satisfying the unperturbed acoustic momentum equation. 

u' = a at z = 0, L 

Fig. 5 Schematic of a rocket motor with two segments of propellant grains. 
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To satisfy u~ = 0 at z = 0, PI = Pt in Sec. I, and to meet the condition 
u~ = 0 at z = L, P 2- = Pie- i2kL in Sec. II. Continuity of pressure at 
z = L1 requires 

pne- ikLt + e ikLt ] = Pi[e- ikLt + e ik(Lt-2L)] (137) 

For continuity of acoustic momentum at z = Ll> U~51 = U~52 because the 
average density is uniform. This condition is met if 

pne- ikLt - eikLt]51 = Pi[e- ikLt - e ik(Lt-2L)]52 (138) 

Equations (137) and (138) have nontrivial solutions for Pt and P 2- if 

1 + ei2kLt 

1 - ei2kLt 

51 1 + e i2k(Lt- L ) 

5
2

1 - e i2k(Lt-L) 
(139) 

This is the equation for determining the dimensionless wave number kL 
as a function of the two parameters LjlL and 52151 , 

Some numerical results for kLhr are shown in Fig. 6. Note that these 
have been computed for the fundamental mode: kL = 'IT for all L/L when 
52 = 51' On physical grounds, the value of kL for particular values LjlL 
= f..., 5/52 = cr must also be obtained for L11L = 1 - f... and 51/52 = 
lIcr. That constraint helps explain some of the behavior shown by the 
curves. Similar plots can of course be prepared for higher modes. This 
example has been chosen to be a simple illustration. The idea has been 
elaborated in more detail for, among other things, application to T­
burners.43 ,45 
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Fig. 6 Acoustic wave number of the fundamental mode. 
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It is equally easy to show the influence of the exhaust nozzle. Now we 
consider a uniform chamber. Suppose that the head end admits flow through 
a choked porous plate that imposes the boundary condition u' = 0 at 
z = O. The entrance of the nozzle is assumed to fair smoothly to the 
chamber, as shown in Fig. 7, and sets a boundary condition expressed in 
terms of its admittance function, AN = (u ' /a)/(p' /"ip) at z = L. We assume 
that the flow is uniform in the chamber, with Mach number M. Then a 
stationary longitudinal mode can again be represented as the sum of right­
ward- and leftward-moving waves: 

L' = [P+e-iKz + P-eiKz]ei(Ot+MKz) 

"1]5 
(140a) 

(140b) 

Satisfaction of the boundary conditions at z = O,L again gives two equa­
tions for P+ and P- . Nontrivial solutions exist if the wave number satisfies 
the equation 

where 

1 - ei2KL 
---- = AN 
1 + ei2kL 

k 
K = -----,=-

1 - M2 
1 w - ia 
71 1 - M2 

Because AN is complex, so too is K. 

(141) 

(142) 

The result Eq. (141) must be solved numerically, giving exact results 
affording useful comparison with the approximate results found earlier. 
With only the contribution of the nozzle retained, Eq. (97) gives the fre­
quency shift 

w - w = - 71
2 

]5k II A (i)tjJ2 dS 
n 2wnJ5E~ n N n 

I M --------- -----.. z 

i~ ____________________________ ~~ 
r-I·------ L -------·1 
Ae=O at z=Oj AN=A~)+iA(~) at z=L 

Fig. 7 Schematic of a combustion chamber with uniform mean flow. 
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For a straight tube, IjIn = cos(wrrzIL) , giving E~ = SNLf2, and for AN 
uniform over the nozzle entrance, 

w - w = -~ A(i) 
. a n L N 

where subscript a shows this to be an approximate value. 

(143) 

Equation (100) contains only those terms associated with the nozzle and 
entrance plane, 

aN = - 2~2 J J [AW + MNN~ dS - 2~ J J Meljl~ dS 
n Nozzle entrance 

We assume that the admittance is zero at the head end. Again, E~ = SNLf 
2; the flow is inward at the entrance, and so the terms containing the Mach 
number cancel and we find, for the decay constant, 

a 
a = -- A(r) 

a L N 
(144) 

Figures 8 and 9 show comparisons of Eqs. (143) and (144), with the 
corresponding results computed with Eq. (141). The error accompanying 
the approximations is less than about 5% for Mach numbers less than 0.20. 
This is confirmation, with an elementary example, of course, that indeed 
the approximate analysis is very effective. 
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Fig. 8 Dependence of frequency on the imaginary part of acoustic nozzle 
admittance function. 
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Fig. 9 Dependence of growth constant on the real part of acoustic nozzle 
admittance function. 

V. Some Elementary Aspects of Nonlinear Behavior 

We emphasized in the Introduction that combustion instabilities are a 
likely occurrence in solid-propellant rockets. Linear analysis provides a 
basis for assessing whether a particular system is unstable. The primary 
result is that small-amplitude motions are stable if and only if the losses 
of acoustic energy dominate the gains. If that is not true, then the expo­
nential growth rate is a measure of the excess of gains over losses. 

However, linear theory provides no information about the ultimate am­
plitudes of unstable motions. As far as these disturbances are concerned, 
the combustion chamber appears as a self-excited system. An unstable 
motion will settle down to a stable limiting amplitude only through the 
action of nonlinear processes. Given the circumstance that instabilities are 
likely, it is therefore necessary to pay attention to nonlinear behavior. For 
practical purposes, the objective is to understand what controllable param­
eters determine the limiting amplitudes of unstable motions. 

There are actually two classes of nonlinear problems to be studied: 1) 
the conditions for existence and stability of finite oscillatory motions or 
limit cycles in a linearly unstable system; and 2) the form (e.g., amplitude 
and spectral content) of the initial disturbance that will cause a linearly 
stable system to execute limit cycles, a phenomenon sometimes called 
"triggering." Here we shall consider only the first sort of problem. 

General nonlinear behavior is an active area of research. Here, to sim­
plify matters, we treat only the case for purely longitudinal modes in a 
chamber having a rigid head end and a choked exhaust nozzle. Then the 
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classical unperturbed modes are those for a closed-closed chamber, having 
frequencies that are integral multiples of the fundamental, Wn = nw!. Also, 
the nonlinearities are carried only to second order in the fluctuations. The 
gasdynamic nonlinearities to this order are shown explicitly in the functions 
hand f, Eqs. (40) and (42). Because there are really two parameters 
characterizing the gasdynamic motions-the Mach numbers of the average 
and fluctuating flows-there is no unique set of nonlinear equations, a 
fact that becomes apparent when the expansion is carried t~ third order. 
We must then decide, for example, whether terms of order M(A·r)2 are of 
the same order as those of order (M')3. Such questions, as well as possible 
difficulties in analysis of motions not purely longitudinal, lie outside the 
scope of this discussion. We shall ignore all other nonlinear processes, 
although the framework developed in Sec. III will accommodate any non­
linear contribution arising in practice. 

The nonlinear terms in the functions h andf, Eqs. (40) and (42), must 
now be retained. After the expansions (45) and (46) have been substituted, 
the forcing function Fn , defined by Eq. (49) becomes a nonlinear function 
of the amplitudes lln' Hence, Eq. (48) represents a set of coupled nonlinear 
oscillators. Because only terms of second order have been retained, here, 
in hand f, the equation for lln is only of second order, with Fn given 
explicitly by Eq. (75). 

In general, the coupled equations are further complicated because Fn 
contains a double series. A great simplification accompanies the assumption 
of purely longitudinal modes; for then the double series becomes a single 
series. After time averaging, the equations for An(t) and Bn(t) are ll 

(145a) 

(14Sb) 

For N modes, there are 2N equations to be solved; a simple transformation 
of the dependent variables reduces the number to 2N - 1, a consequence 
of the freedom to set one phase arbitrarily.46 Thus, for two modes, there 
are only three equations, and exact solution can be obtained for the limiting 
amplitudes forming the limit cycle. The same results were found previously 
with a different calculation by Awad and Culick. 47 It is apparent from Eqs. 
(145a) and (145b) that the only nonlinear parameter, 13, arises as a scaling 
parameter; the values of the limiting amplitudes depend only on the linear 
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parameters (an' 8n) and are given by the formulas 

rj = ~ { -ala2[ 1 + G~: ~ ~:rJ}W (146a) 

r
2 

= a l {I + (281 - 82)2}I/2 
13 2aI + a z 

(146b) 

where rn = (A~ + B~)I/2. 
For a limit cycle to exist, a l a 2 must be negative; that is, when the 

oscillations are steady, the energy in the motion is constant, so that one 
mode gains energy from the environment and the other loses energy. Non­
linear processes associated with the gasdynamics have a natural tendency 
to cause energy flow from lower to higher modes. Thus, in general, smoother 
transient growth of the oscillation occurs when the first mode is unstable 
(al > 0) and the second is stable (a2 < 0). 

This formulation of nonlinear acoustics seems to contain much of the 
behavior observed in practice and, under the conditions for which it is 
valid, accuracy is high. Examples are discussed in the following section. It 
is beyond the intent of this chapter to treat nonlinear problems in greater 
detail. Nonlinear behavior of combustion instabilities is an important prac­
tical and theoretical matter that remains a subject of current research. 

VI. Numerical Analysis of Combustion Instabilities 

So far, we have examined various aspects of linear and nonlinear com­
bustion instabilities in solid-propellant rocket motors as well as a method 
of approximate solution. Although these analytical methods provide direct 
and economical means of assessing the influence of each contributing mech­
anism in a formal and systematic manner, they sometimes suffer from 
lengthy formulation and cannot represent with full precision the detailed 
physicochemical processes involved. This is particularly true for cases in­
volving complicated geometry, steep-fronted waves, and nonlinear com­
bustion response. On the other hand, numerical analysis is intended to 
obtain the "exact" solution to the set of conservation equations [Eqs. (7-
10)], subject to the appropriate initial and boundary conditions. The results 
can therefore be used to check the accuracy of the approximate analysis, 
which is more conveniently used for routine calculations and for formal 
theoretical work. Thus, a complete treatment of motor stability charac­
teristics should include both analytical and numerical approaches. In this 
section, a brief review of the numerical calculations of longitudinal oscil­
lations is given. 

Several studies (Refs. 48-51) have been devoted to the numerical anal­
ysis of longitudinal combustion instabilities in a solid-propellant rocket 
motor. All of the formulations in these studies are based on the unsteady 
one-dimensional equations of motion for a two-phase flow. Levine and 
Culick48 appear to have been the first to treat a problem of this sort, using 
the method of characteristics. The purposes of the original works were to 
assess the feasibility of obtaining complete nonlinear numerical solutions 
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to longitudinal instability problems and to compare the results with those 
of the approximate analysis. Therefore, the model was deliberately kept 
simple, with linear analysis of the transient propellant burning rate re­
sponse. After successfully demonstrating several salient characteristics of 
a nonlinear system, in particular, the existence of limit cycles, some of the 
assumptions and restrictions of the model were relaxed in order to establish 
an analytical capability to analyze or predict the stability behavior of a 
wide range of solid rocket motor configurations. The analysis then pro­
gressed in several areas. 49 First, for reasons of computational efficiency 
and accuracy, a finite difference technique was adopted in place of the 
method of characteristics. Second, more complete treatments of particle 
size distribution, nozzle flow, and nonlinear combustion response were 
included. Third, in order to accommodate more general and realistic grain 
geometry (such as variable cross-sectional area and arbitrary cross-sectional 
shapes) within the structure of the instability model, the equations of mo­
tion and boundary conditions were generalized. Thus, with an appropriate 
treatment of the unsteady burning mechanisms of propellants, the analysis 
offers the potential to predict motor instability behavior. As part of the 
verification, a series of motor instability calculations was carried out and 
compared with experimental data obtained with small laboratory pulse 
motors. The influences of pulse strength and propellant combustion re­
sponse on the limiting amplitude of pressure oscillations have been ex­
amined at considerable length. 

The analysis developed by Levine and Culick49 provides a firm basis for 
studying longitudinal combustion instabilities and has been successfully 
applied to other related problems, including nonlinear particle damping 
and nozzle flows. However, as a result of the numerical scheme used, the 
program was incapable of treating pulse-triggered combustion instabilities, 
or the multiple-shock, steep-fronted type of instabilities that often occur 
in reduced and minimum-smoke tactical motors with variable cross-sectional 
area. In order to study these problems faithfully, a suitable numerical 
scheme must be developed to preserve the complete spectral information 
of the waveforms, minimize the numerical dissipative and dispersive errors, 
accurately describe shock and rarefraction waves without generating non­
physical oscillations in the vicinities of discontinuities, and properly treat 
the wave reflection and transmission at area discontinuities. For quasi-one­
dimensional longitudinal instabilities, the self-adjusting hybrid scheme with 
an artificial compression correction52,53 appears to be the best option to 
fulfill these requirements, and has been incorporated in improvements of 
the original nonlinear analysis. 51 The scheme consists of a second-order 
Lax-Wendroff scheme and a hybrid operator that switches automatically 
and smoothly to a first-order approximation in narrow shock regions, in 
accordance with the local density gradient. It therefore possesses the merits 
of both first- and second-order schemes, yielding nonoscillatory shock tran­
sitions and accurate results in smooth regions. The spurious pre- and post­
shock oscillations produced by second-order finite difference approximations 
can be completely eliminated. 

This approach has proved robust and can treat the propagation of a 
traveling shock wave over many wave cycles without introducing significant 
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diffusive or dispersive errors. Because of its remarkable shock-capturing 
feature, the hybrid scheme has been widely used by Levine and Baum in 
their study of pulse-triggered combustion instabilities. 54-56 Later, Levine 
et al. 27 also employed this program to calculate the nonlinear particle 
damping produced by traveling longitudinal shock waves in a simulated 
motor environment. 

Although the one-dimensional analysis developed by Baum and Levine51 

appears to accommodate most of the essential features of nonlinear lon­
gitudinal combustion instabilities (e.g., waveform evolution, growth and 
decay rate, dc shift, limiting cycles), it requires empirical adjustment of 
the velocity-coupled combustion response to obtain the best possible agree­
ment with the experimental observations. To enhance the basic under­
standing of the problem and therefore improve the predictive capability 
of the analysis, further research is required on the multidimensional in­
teractions of propellant combustion response and the oscillatory flowfields 
in a motor environment, since velocity coupling is a multidimensional local 
phenomenon that depends on mean flow properties, characteristics of flow 
oscillations, and thermochemical properties of propellants. The conven­
tional one-dimensional approach does not provide meaningful results for 
this subject. 

To date, multidimensional numerical analysis of motor instability has 
not been worked out although most of the groundwork has been set. The 
major difficulty lies in the lack of computational capability and the mod­
eling of various physical mechanisms. With the exception of the works by 
Yang et alY and Yuillot and Avalon62 for studying the velocity-coupled 
flow oscillations in a simulated rocket motor environment, most of the 
numerical efforts have been limited to investigation of internal flowfields 
under steady-state conditions. 57 ,58 Yang and his co-workers considered a 
case involving a two-dimensional porous chamber with air injected through 
the walls to simulate the evolution of combustion products of solid pro­
pellants. The theoretical model is based on the full time-dependent com­
pressible Navier-Stokes equations and is solved numerically by means of 
finite difference algorithms. The results indicate that the multidimensional 
effects play important roles in determining oscillatory flow characteristics, 
The waveform and phase distribution of acoustic oscillations depend greatly 
on the local flow structures. The classical one-dimensional theory failed 
to describe several important mechanisms associated with acoustic wave­
induced flow instabilities. Extension of the work to cases including burning 
propellants is given in Ref. 63, 

I t is inappropriate here to reproduce the details of the numerical analysis, 
which is thoroughly discussed in the references cited. However, to complete 
this brief survey of methods for predicting combustion instabilities, it is 
useful to give the results of an example illustrating comparison with the 
approximate analysis, The example chosen is a straight cylindrical motor 
with port fairing smoothly into a choked nozzle. Values of the geometrical 
and physical properties are listed in the Appendix. The conditions have 
been chosen so as to cause the fundamental mode to be unstable; all higher 
modes are stable. 
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Numerical analysis of the transient development of the motion following 
an initial disturbance was computed with the computer program developed 
by Baum and Levine, as reported in Ref. 51. Two cases have been treated: 
with and without flow-turning losses included. The initial disturbance has 
the form of the fundamental classical mode of the chamber, having an 
amplitude 5% of the mean pressure. Figure 10 shows that the unstable 
oscillations eventually reached a limiting amplitude of about 15% of the 
mean pressure, computed for the case in which flow-turning losses are 
absent. The waveform, of course, contains all normal modes of the cham­
ber. However, the Fourier analysis of the limiting waveform (Fig. 11) 
confirms that the amplitudes of the lowest modes dominate. 

For comparison, the same problem has been solved with the approximate 
analysis. Solution of Eqs. (145a) and (145b) requires calculation of the 
classical mode shapes and frequencies; then the values of the linear pa­
rameters (an, en) can be determined by summing the contributions from 
the various physical processes. Only two modes will be considered. For 
the straight cylindrical chamber considered here, I\Jn = cos(mrzIL) , and 
the calculations are easily done. We assume that the response function for 
the burning solid is constant. Equations (102) and (97) then give 

(147a) 

-u R(i) 
bOb ee = - - Rb = - R(r) (Xc 

rc b 
(147b) 

where Be = - (w - wn ), as defined in Eq. (77b). The combustion response 
is calculated using the approximate result obtained by Denison and Baum18 
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Fig. 10 Time history of acoustic pressure based on the numerical analysis. 
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and reviewed by Culick19
; the numerical values used here are shown in 

Fig. 1. 
We assume that the area of the entrance to the nozzle equals the port 

area and that the nozzle responds quasistatically, so that its admittance 
function is real: A~) = (V - 1)MN12 and AX! = 0. 59,60 Hence, eN == 0, 
according to Eq. (97), and Eq. (100) gives 

aN = -~(~ ; l)MN (148) 

Condensed aluminum oxide is distributed uniformly in the combustion 
gases, with uniform average particle size. For longitudinal modes, the 
formulas (12Sa) and (12Sb) become 

_ _ Wn Cm [Od (- _ 1) ~ Ot ] 
ap - 2 1 + C 1 + 0 2 + 'Y C 1 + 0 2 

m d p t 

(149a) 

(149b) 

With the data given in the Appendix, we find in Table 1 the values for 
an and en characterizing the first five modes jn the abse~ . .mJlo~-tuIDing 
losses~~ All values of (an, en) have units s -1. The total values are listed in 
Tabl~ 2. 

Solutions have been obtained for the transient behavior following an 
initial disturbance having the spatial distribution of the first mode: B 1(0) 
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Table' Linear growth constants and frequency shifts 

Mode a c Oc aN ON ap 

1 288.1 32.2 -160.1 0 -46.6 
2 28.5 80.5 -160.1 0 -184.8 
3 16.7 48.5 -160.1 0 -417.7 
4 13.6 36.0 -160.1 0 -727.4 
5 12.0 29.3 -160.1 0 -1107.5 

0.05, and all other values of An(O), Bn(O) are zero, so that 

p'(z, O) 

u'(z, O) 

0.0515 cos( 'ITz/ L) 

o 

771 

Op 

2.6 
20.5 
69.1 

160.5 
305.5 

(lS0a) 

(lS0b) 

Figure 12 shows the evolution of the oscillation for comparison with Fig. 
10, and Fig. 13 shows the growth of the amplitudes rn = (A~ + B~)1/2 for 
the first five modes, found as the solutions to Eqs. (14Sa) and (145b) with 
n = 1 through 5. 

For .~ direct comparison of the numerical and approximate results, 
Table~ontains the values of the frequencies and amplitudes computed 
for the first two modes. A few cycles of the limiting waveforms are plotted 
in Fig. 14. 

Note that the approximate analysis produces quite accurate values of 
the frequencies (within 3%) and that the approximate total waveform is 
reasonably close to the "exact" result except for some rippling due to the 
absence of higher frequencies. Even so, the amplitudes of the individual 
modes found with the approximate analysis agree well with those computed 
with the numerical analysis except for the highest (n = S) mode. The 
reason for the high value (even larger than that for n = 4) is that there is 
no transfer of energy to higher modes. Because the rate of energy dissi­
pation from the highest mode considered, represented by its attenuation 
constant, must be such that the total energy loss equals the total rate of 
energy gain, the amplitude of the highest mode must be such as to satisfy 
this condition. Even with only two modes accounted for, the frequencies 

Table 2' Total values of j 

linear growth constants and 
frequency shifts 

Mode an On 

1 81.4 34.8 
2 - 316.4 100.9 
3 -561.1 117.6 
4 -873.9 196.6 
5 - 1255.6 334.8 
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Fig. 12 Time history of acoustic pressure based on the approximate analysis. 
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Fig. 14 Comparison of calculated acoustic pressures based on the numerical and 
approximate analyses. J " J ;, 

and total waveform are quite well predicted. The frequencies are the same 
as for the case of five modes; Ffg;=15 show~ the waveformf,.,However, the 
approximate amplitudes of the individual modes differ considerably from 
the exact values. Apparently, the phases of the two modes in the approx­
imate solution assume values that compensate for the consequences of the 

jna,ccurate amplitudes. 
-------- Stnlte'preliminary results have been computed for essentially the same 

problem but with flow-turning losses accounted for. For reasons that are 
not known at this time, the limiting behavior predicted with the approxi­
mate analysis is markedly different from that found numerically. The fre­
quencies are as close as those found earlier, but the approximate amplitudes 
are only about half those of the "exact" values for the case in which only 
two modes are included. The restriction to two modes may be an important 
reason for the discrepancy. The consequences of this assumption are dif-

Table,,3' Frequencies and amplitudes of acoustic pressures 

Frequency, Hz Amplitude,lp'/pl 

Mode 1 2 3 4 5 1 2 3 4 5 

Numerical 926 1824 2698 3595 4491 0.151 0.042 0.0234 0.0203 
Approximate 895 1785 2683 3571 4449 0.151 0.0478 0.0280 0.0153 0.0188 
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Fig. 15 Comparison of calculated acoustic pressures based on the numerical and 
approximate analyses. 

ferent when flow turning is included because this contribution to the losses 
is independent offrequency (-73.5 S-l for this problem). In contrast, the 
loss due to particle damping increases rapidly with frequency. Hence, for 
an accurate comparison, it may be necessary to account for more modes 
in the approximate analysis. The problem is a subject of continuing 
investigation. 

The influence of the flow-turning losses is an important matter to clarify. 
Its contribution to the decay constant is often large, but its value is known 
only by analysis based on the one-dimensional approximation to the un­
steady motions. Here the result for a cylindrical grain is obtained from the 
last term of Eg. (135): 

(151) 

Neither computational nor experimental methods have yet established the 
accuracy of this formula. 

VII. Concluding Remarks 

The approximate analysis covered in this chapter seems to provide sat­
isfactory results for linear stability. It is not possible to place any general 
bounds on expected inaccuracies for two reasons: uncertainties in the re­
quired input data depend on the case considered, and comparisons with 
experimental results are scarce and always contain errors difficult to assess. 
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The greatest obstacle to improving this situation is obtaining good data for 
the propellant response function. 

Comparison with "exact" numerical solutions to the complete conser­
vation equations is the only way to determine the truth of the approximate 
predictions for nonlinear behavior. Although only limited results have been 
obtained, it appears that nonlinear gas dynamics is commonly the process 
most influential in limiting the amplitudes of combustion instabilities in­
volving longitudinal modes. The approximate analysis has been applied 
elsewhere to transverse modes of oscillation, giving formal results corre­
sponding to those discussed here. However, no nonlinear numerical anal­
ysis is currently available to treat those problems, and so no comparisons 
exist. 

Appendix 

The numerical values of the quantities required in the example discussed 
in Sec. VI are listed in the following. 

Geometrical properties: 
length 
radius of cylindrical port 
throat radius 

Combustion properties: 
mean pressure 
linear burning rate 

parameters in the 
combustion response 

chamber temperature 
mass particles/mass gas 
particle diameter 

Physical properties: 
Prandtl number 
thermal diffusivity of 

propellant 
specific heat of gas 
specific heat of condensed 

material 
viscosity 

particle density 
propellant density 
gas density 
-y (gas only) 
:y (mixture) 

gas constant 

L = 0.5969 m 
rc = 0.0253 m 
r t = 0.00936 m 

p = 1.06 x 107 Pa 

rb = 0.0078 [P/(3.0 x 106)]°3 
0.01145 mls 

A = 6.0 
B = 0.55 
T = 3539 K 
Cm = 0.36 
IJ = 2 X 10- 6 m 

Kp = 1.0 X 10- 7 m2/s 
Cp = 2020 J/kg K 

C = 0.68 Cp 
fl. = 0.8834 x 10 -4 (TJ3485)066 = 

8.925 X 10- 5 kg/m-s 
Ps = 4.0 g/cmJ = 4 x 10.1 kg/m3 
Pp = 1,766 kg/m3 
Pg = 7.97 kg/m3 
-y = 1.23 
:y = b(l + CmClCp)]/(1 + Cm -yClCp) 

1.18 
R = C'Y - l)Cj"y = 377.72 J/kg K 
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speed of sound in gasl 
particle mixture 

speed of combustion 
products at the burning 
surface 

Mach number at the 
burning surface 

Ub = (Pplp)rb = 1.86 m/s 

Mb = 0.00173 
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