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PREFACE 

This Memorandum Is one In a continuing series of RAND 

publications dealing with theoretical computational ques- 

tions arising from the RAND program cf research In biology 

and physiology.  The Memorandum contributes to our ability 

to apply computer technology to the analysis of complex 

chemical systems by considering the "chemical equilibrium 

problem," the problem of determining the distribution of 

chemical species that minimizes the free energy of a system 

while conserving the mass of each of the chemical elements. 

Solutions to the chemical equilibrium problem pub- 

lished up to this t .me [4,5] apply to those problems for 

which an estimate of the solution exists.  This Memorandum 

considers a problem for which no estimated, solution exists 

and solves that problem with the maximum precision now 

available. 

The mathematical aspects of this Memorandum should 

also be of Interest In other fields where computational 

analyses of complex chemical systems are under considera- 

tion, e.g.. In studies of rocket propulsion systems, 

planetary atmospheres, re-entry problems, etc. 
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SUMMARY 

In physical chemistry, the "chemical equilibrium 

problem" is the problem of determining the distribution 

of chemical species that minimizes the free energy of a 

system while conserving the mass of each of the chemical 

elements.  The reactions occurring within the chemical 

system may be quite complex.  However, in a great number 

of cases, the mathematical statement of the problem can 

be simplified to a particular mathematical form [7,8] 

involving the minimization of a nonlinear objective func- 

tion over a set of linear constraints. 

This Memorandum presents the numerical solution of 

the chemical equilibrium problem by describing methods 

for starting the solution when an initial estimate is not 

available, and for improving an initial estimate to make 

it feasible.  It presents a first-order method and a 

second-order method for solving the chemical equilibrium 

problem in the context of the linear-logarithmic program- 

ming problem [4] and provides convergence criteria for 

the majority of problems of this type that are likely to 

be attempted. 
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FOREWORD 

In deciding between the languages of mathematics and 

physical chemistry, we have chosen in this Memorandum to 

use that of mathematics.  The disadvantage of this choice 

is that the physical chemist may experience some difficulty 

in immediately identifying certain concepts.  The advantage 

is that mathematical language divorces the methods from 

the physical assumptions involved in constructing a mathe- 

iraticaJ. model of a physical system.  The mathematical 

methods are, hence, free to transcend their specific 

chemical applications. 

The methods given here do not solve every problem that 

is specified in the given mathematical form.  The solution of 

a problem in which some phase vanishes (a degenerate problem) 

requires further work.  Some work has been done on particular 

degenerate systems [13], but the accurate numerical solution 

of a large general system of this type has yet to be accom- 

plished.  Until recently, a skilled physical chemist could 

intuitively eliminate the degeneracies of his model and 

The reader is referred to other works for the pro- 
cedure of constructing the mathematical models of bio- 
chemical systems [9-121. 
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obviate the need for solving a degenerate system.  But, 

as problems grow, eliminating degeneracy becomes increasingly 

difficult.  Frequently, the point at which the problem be- 

comes too large for the physical chemist to decide whether 

or not to include a phase coincides with the point at which 

the problem becomes numerically unwieldy.  Hopefully, the 

future will eliminate these difficulties. 

Statements about, convergence and convergence tests 

exist, unless otherwise indicated, in the context of finite- 

accuracy numerics.  Statements of this kind do not mean, 

in the absence of qualification, that no problem exists 

nor that no machine would serve as a counter example. 

Rather they are simply descriptions of what was found to 

occur in actual practice. 

No attempt has been made to describe those methods 

which were tried and found wanting.  The methods presented 

are those which are best for the largest number of cases. 

Finally, it should be pointed out that although 

computing time was a factor, it was consioered secondary 

to accuracy of results. 
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1.  INTRODUCTION 

For the purposes of this Memorandum, the chemical 

equilibrium problem is merely a name we use for a par- 

ticular mathematical programming problem, i.e., the prob- 

lem of minimizing a particular nonlinear function FCx^x«, 

...,x ), defined below, while satisfying the linear re- 

straints or constraints 

n 

y a., x. = b.        i-1,2,3,...,m      (1.1) 

j-X 

with x. ^ 0 for j=l,2,...,n and a.,., b. given constants. 

Assuming that the equations of (1.1) are linearly inde- 

pendent, then in order to have a non-trivial problem it can 

be assumed that m<n.  The variables x. ,x,,,.. . ,x can be 
i z     n 

considered components of a vector (x.,x9,...)x ).  Solving 

the chemical equilibrium problem then is the problem of 

determining this vector. The variable x, will be referred 

to as the "j  component"; also the numerical value of x. 

may be referred to as the "component" rather than using 

the perhaps linguistically correct but cumbersome term 

"component value." 
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The components are partitioned into p non-empty 

subsets called compartments.  Let us denote these compart- 

ments by <1), (2),..., (p).  Then if the j  component is 

in the k  compartment, we will say jc(k), where each 

component is in exactly one compartment.  The number of 

the compartment that the j  component is in is denoted 

by [j].  Hence jc(k) implies [j] = k, and conversely. 

Each compartment has associated with it a sum defined by 

Sk = I    x. . (1.2) 
jc(k> 

A A     X' 
The component fraction x. is defined by x. ■ ■=-"— whenever 

J J        !>[j] 

S[j]>0. 

The objective function  to be minimized over  (1.1) 

is 

n 

F(x1,x2,. . . ,xn)   -    ^ Mci  +  lo8  '^p ^1*3^ 
j-l 

where c,,c0,...,c are given constants, called objective 
1  2     n —J  

constants. 

When an x. is zero, log x. is undefined: but we de- 
j j 

fine 0 log 0 to equal 0 so that we may evaluate F when 
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some components are zero.  A feasible solution to the 

chemical equilibrium problem is defined to be any set of 

non-negative components that satisfies (1.1).  The problem 

is said to be feasible if it has feasible solutions.  If 

no feasible solution is arbitrarily large in any component, 

the feasible problem is said to be bounded feasible; all 

practical problems with which one might have occasion to 

deal are bounded feasible. 

A solution or optimal solution to a bounded feasible 

problem is any feasible solution in which F(x.,...,x ) 
1   ' n 

attains the minimum value over all feasible solutions.  A 

problem which has optimal solutions in which some component 

is zero is called degenerate, and a bounded feasible prob- 

lem in which the components in any optimal solution are 

all strictly positive is called a non-degenerate problem. 

It has been shown [1, Theorem 12.1] that a non-degenerate 

problem has exactly one optimal solution.  Hence, we may 

speak of the solution to the problem.  Furthermore, it has 

also been shown  for the non-degenerate problem that the 

inimlzatlon of F is equivalent to the existence of numbers 

TT.. jTT-, . . . ,7r , called Lagrange multipliers, which satisfy: 

m 

Ref. 1, p. 18. 
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m 

I 
1-1 

ff.a.. ■ c. + log x. 
i ij   J       J 

j-l,2,3,...,n  (1.4) 

In the following sections we derive conditions, 

analogous to (1.4), which are useful in solving the problem, 

In Sec. 2 we are interested in finding a solution to (1.1) 

with all x. > 0.  A set of x. which satisfies these con- 
J J 

ditions is called a positive feasible solution.  If (1.1) 

is satisfied with x. * 0, we have called such a result a 
J 

feasible solution.  The theory of linear programming gives 

us methods of finding feasible solutions to problems with 

linear restraints.  In Sec. 2, we use a linear programming 

technique to find a positive feasible solution.  In Sec. 4 

we show how to modify the initial ositive feasible solu- 

tion to get the solution to the problem. 
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2.  THE INITIAL SOLUTION 

The algorithms presented in the following sections 

require an initial positive feasible solution in order that 

the procedure for solving the problem can be initiated. 

Frequently, an individual with a problem to solve will be 

able to give a rather accurate estimate of its optimal 

solution.  This estimate may be the exact solution of 

another problem which differs from the one being considered 

in relatively minor ways. 

THE PROJECTION METHOD 

Let us suppose that such is the case, and let us de- 

note the estimate of the components by y,,y~,...,y .  These 

values, substituting y. for x. in Eq. (1.1), will not 

generally satisfy (1.1), being somewhat in error.  Let us 

denote these errors by g,,g2i...,g ; that is, let 

n 

8i " bi ' Z aijyj '     i-1.2,...,m      (2.1) 
j-l 

Then, we wish to find corrections to y. such that, denoting 

the corrections by 9., we have 
J 

n 

bi " 1  aij(yj + V " 0  i-1.2,...,m 
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n 

g. = ) a..6. 1=1,2 ,... ,111 (2.2) 

The 9. must also be chosen such that y, + 9. > 0, for all 
J                           J   J 

j.  We cannot guarantee this condition, but we can attempt 

to choose small values for 9..  One way to do this is to 

minimize 

n 

I 
j-i 

w.O2 
J  J 

subject to (2.2), where w. is the "weight" or relative 
j 

importance of minimizing 9,.  This reduces to the problem 

of finding Lagrange multipliers TT »TT. , . . . .TT , such that 

with 

n        m   / n 

j-l      i-1  \j-l 

(2.3) 

we have 

dL 
d9 

- 0 . j-1,2,...,n (2.4) 
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Equatlon (2.4) becomes 

m 

w.o. - Y a..n. 

1-1 

j-l,2,...,n      (2.5) 

and substituting (2.5) into (2.2) we have 

tn 

gi I "'A L   w 
at.a.. 

0-1 

. 1-1,2, . . . ,in      (2.6) 

The terms 

n 
a..a. . u 

ZJ    W. 

j»l 

can be immediately evaluated; let us denote' these terms 

by 

n 

ti ~ Z  w 

ao.a.. 
(2.7) 

j = l 

No te that q . = q. .  Then, (2.6) becomes 

m 

gi " 1^1% 
A = l 

1=1,2,...,m      (2.8) 
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Equation (2.8) is a set of m simultaneous equations in 

the m unknowns, ff, .tr_ ,. .. ttr .  These equations may be 
12m 

solved for ir. ,v„y . . . yv   , and then these values may be sub- 
12m 

stituted in (2.5) to get O-.O-,...,© .  There remains the 

question of choosing values for the weighting factors 

w..  In tests of this method, it has been found that 
J 

using 

w. = — 
j  y 

j 

yields satisfactory results.  The choice of the weighting 

factors depends, to some extent, on the available com- 

puters.  Using these weighting factors, we can summarize 

the computation of 9. in the following three equations: 

n 

q,• " ) a .a..y• 
i"l,2,...,m 
^„"l, 2, . . . ,m 

(2.9) 

m n 

l\i«< 'hi- laiiyi 
f-i j-i 

i"l,2,...,m (2.10) 

m 

9 ry3 I aijffi 
i«l 

where 

j-1,2,...,n (2.11) 
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XJ * yj + ej "        J*1,2 "       (2,12) 

The x from (2.12) will satisfy (1.1).  However, the 

x. need not all be strictly positive. If any x. is zero 

or negative, this method of obtaining the initial solution, 

which we shall call the projection method, has failed.  If 

the projection method fails, or if no initial estimate is 

provided, then a linear programming method may be used. 

THE LINEAR PROGRAMMING METHOD 

The terminology used in linear programming is similar 

to the terminology used above in describing the chemical 

equilibrium problem. The statement of a linear program- 

ming problem includes a set of linear restraints 

n 

V a^x. - bj^ 1-1,2 m     (2.13) 

J-l 

together with a set of constants C,,C*,C.,...,C , called 

costs. A feasible solution to a linear programming problem 

is any set of non-negative x. such that (2.13) is satisfied. 

The costs are used to form the following expression, L, 

which is called the objective function 
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n 

L = V C.x. . (2.14) 

For every set of feasible x., we can evaluate L.  The set 
J 

of feasible x. for which L has the minimum value that it 
J 

can have with any set of feasible x., is called a solution 

of the linear programming problem.  A problem which has 

sets of feasible x. is called a feasible problem, and a 

problem in which there are no sets of feasible x. is called 
J 

an infeasible problem.  An infeasible problem has no solu- 

tions, while a feasible problem has at least one solution. 

In this discussion, we will not be concerned as to whether 

a problem has moi i than one solution:  we will only be 

concerned with finding a solution to the problem.  Since 

the means of finding a solution to a linear programming 

problem has been the subject of many papers and books, we 

will not give an actual method of solving the linear pro- 

gramming problem here.  The reader may refer to Dantzig 

[2] for a complete discussion of the problem. 

The problem of finding a feasible solution to a 

linear programming problem is itself a linear programming 

problem--that is, it involves finding a solution to the 
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problem wich all C. equal Co zero. Wich all C. - 0, L In 

(2.14) is zero for any sec of feasible x.; hence, L is ac 

iCs minimum value for any sec of feasible x..  Since L is 

ac iCs minimum value for any feasible sec of x., any 

feasible sec of x. is, by Che above definicion, a soluCion 

Co Che linear programming problem. 

However, we musC noC only find a feasible soluCion Co 

Che linear programming problem, we musC also find a posicive 

feasible soluCion Co Che problem.  In order Co do Chis, we 

lec 

Xj - yj + yn+1 . j-l,2,...,n    (2.15) 

If we can find non-negacive values of y-py-.-.-.y  ., 

which sacisfy 

n 

Z alj(yj + V^  ' bi i-l,2,...,m (2.16) 

Chen x., as defined by (2.15), will be a feasible soluCion. 

If we can somehow assure Chac y . is posicive. Chen all 

x. will be posicive.  Rewriting (2.16), we have 
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IaiJyj  M   Zaij)yn+l=bi 
j-1 \j-l      / 

1-1,2,...,m  (2.17) 

If we now specify C ,C2,...,C -, we have a linear program- 

ming problem in n+1 unknowns.  In order to guarantee that 

y . is positive, if it is possible for it to be positive, 

we can maximize y .-i .  It is easy to see that we can maximize 

yn+l by set:t:in8 

L = - yn+1 (2.18) 

which is equivalent to setting C,=C=C~=...=C  =0, C ,, = -1. 
^ 0 1 2 3     n    n+1 

If the solution to the resulting linear programming problem 

is feasible and y .1 
> 0, then we have, by (2.13), a positive 

feasible solution to the analogous chemical equilibrium 

problem (1.1).  If the linear programming problem is feasible 

but y .-i := 0, then the analogous chemical equilibrium problem 

is degenerate, since there is no strictly positive solution 

to the problem.  However, this is a rather trivial kind of 

degeneracy, and its occurrence usually indicates that a 

mistake was made in setting up the problem.  Hence, this 

linear programming method gives us a way of finding a positive 

feasible solution to the chemical equilibrium problem if 

the chemical equilibrium problem is non-degenerate. 
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The positive faasible solution that we obtain by this 

method will generally not resemble the final solution of 

the chemical equilibrium problem.  The initial positive 

feasible solution can be improved by the following tech- 

nique.  Define b 1 to be some multiple, between zero and 

one, of the value of y .. that was obtained above.  Then, J n+1 

adjoin to the linear restraints (2.17) one more restraint 

of the form y .-. * ^4.1 • Ne. t, solve the linear program- 

ming problem with these restraints and with C -c., C »c«, 

..., C »c , C ,,"0 (recall that the lower-case c's here 
n n'  n+1 

refer to the c's in the chemical equilibrium problem (1.3)). 

The solution to this linear programming problem will give a 

set of components more nearly resembling the solution to the 

chemical equilibrium problem than did the components calcu- 

lated from Eqs. (2.17) and (2.18).  This new solution, in 

turn, may be improved by solving another linear programming 

problem (the details of which can be seen in SUBROUTINE LP in 

Appendix A) and averaging the new solution with the old solution 

In order to solve an elaborate chemical equilibrium 

problem it is not sufficient to simply use a method which 

we can prove converges to the correct solution. Proofs 

of convergence generally assume infinite computational 

accuracy, but since we are usually limited in practice to 
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about eight significant digits, the numerical solution will 

not always converge.  However, it has been observed that 

the closer we can get to the solution by the initial solu- 

tion methods described above, the greater will be the 

probability that the numerical procedure will converge. 

Furthermore, not only will the probability of convergence 

be greater, but the number of iterations to get co  the 

solution will be fewer, and hence--when an improved initial 

solution is used--the computation time will be shorter. 

Unfortunately, the mathematical methods that are available 

for analyzing convergence of iterative processes do not, 

in the case of the chemical equilibrium problem, enable us 

to prove convergence when we are limited to finite mathe- 

matical accuracy.  Only experience with a particular method 

will tell us whether it is a useful numerical procedure 

to use. 

In the next section we consider a somewhat more general 

problem than the chemical equilibrium problem.  This prob- 

lem is considered first because the numerical results take 

on an especially simple form when the additional generality 

is admitted. 
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3.  THE LINEAR-LOGARITHMIC PROGRAMMING PROBLEM. 

FIRST-ORDER METHOD 

In this section we consider the problem of minimizing 

N 

F(x1,x2,...,xN) = ^ x (c + d  log x ) (3.1) 

j-l 

while satisfying the linear restraints 

N 

7 ai.x. = hi   . 1-1,2,3,...,M    (3.2) 

j-l 

The symbols a.,, b,, c., and d. denote constants, and J ij  1  j     j 

x1,x„,...,xN are the unknowns that we seek. We restrict 

the problem to the case that d, ^ 0 for j ■ 1,2,3,...,N. 

We note that if x. < 0, the term in (3.1), x.(c. + d.log x,), 
J J  J   j    j 

is undefined, whereas if x. > 0 this term is defined.  If 
J 

x. » 0 we define x.(c. + d.log x.) ■ 0, since this expression 

approaches zero as x. > 0 approaches zero.  From this dis- 

cussion, we see that, In order for a solution of Eqs. (3.1) 

and (3.2) to be defined, we must assume that x. ^ 0 for 
J 

j = 1,2,3,...,N. 
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We may attempt to solve this problem using Lagrange 

* 
multipliers.   In this method we let 

M 

i-1 

N 

TT. [ ) a. .x. - b. 

and then set 

dL 
ox 

= 0 

for j = 1,2,3,...,N.  Performing the partial differentia- 

tion, we get 

M 

:. + d. log x, + d. -  ) Ti.a.. = 0 , 

1-1 

j=l,2,3,...,N 

or, when rearranged. 

log x, = d. 
J   J 

M 

Zir.a, . - c, - d, 
1 ij   J   J 

1=1 

j=l,2,3,...,N 

(3.3) 

(3.4) 

See Kaplan, Ref.- 3, p. 128, or Dantzif, Rjf. 2, 
p. 140. 
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Exponentiating both sides of (3.4), we.get 

x. ■ exp 

M 
,-1 .-1 J. c , 

ij    J  J 
Zu.a,.   - d.'c. - 1 

i=l 

(3.5) 

j=l,2,3,...,N 

Note that for (3.5) to be a solution to the problem, we 

must have all x, > 0.  We assume, in the remainder of this 
J 

section, that the solution does have all x. > 0.  Then, 
J 

the problem reduces to the problem of determining the M ir. 

so that the x. from (3.5) satisfy (3.2)  Equivalently, 

the M + N equations (3.2) and (3.5) must be satisfied simul- 

taneously by the proper choice of the M + N unknowns, 

ff, »TT«, . . . ,Tr , x. ,x«,. . . jX,..  We now consider two methods 

of approximating the solution. 

In the first method, we suppose that we have an esti- 

mate of the x. which may or may not satisfy (3.2). We 

denote this estimate by y., and, in this method, solve 

Eqs. (3.2) and (3.4) simultaneously by making a linear 

approximation to log x.. Since we have the estimate that 

x. is near y., we note that the first-order Taylor ex- 

pansion of log x. about y. is 
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x.-y. 
log x.   =  log y.  + —J—* +  (higher-order  terms)   .    (3.6) 

j     J   yj 

Dropping the higher-order terms, and substituting (3.6) into 

(3.4) and solving for x., we have 

x. = y, 
J   j 

M 
.-1 -1 

) TT.a. . - d. c. - log y. 

i=l 

(3.7) 

j-l,2,3,...,N 

Now, if we substitute these x, into (3.2), we get 

M / N \ N 

Z( V dT a..a,.y. 1 ff, - b. + ya,.y.(log y. + dT c.) . 

l-l  \j-l ^ j-1 

i"l,2,3,...,M 

Denoting 

i^ 

N 

I 
j-l 

,-1 d. a.,a .y. lml,2,3,...,M 
i"l,2,3,...,M (3.8) 

and 

N 

8t "bi+ Zaijyj(log yj+ dj cj) 

j-l 
i"!,2,3,...,M 

(3.9) 
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we have 

M 

Z rU% " 81 • i-1.2,3,...,M   (3.10) 

Equation (3.10) is a set of simultaneous equations which 

can be solved for ir, ,tr_ ,. .. .ir... 

With the above results, we can now define the iterative 

process for the first method.  At each iteration we have a 

set of values for x,tx«,...,3c..  At the beginning of the 

iteration these values are called y,,yo,...,yN, and at the 

end of the iteration the values are x1,x-,...,x^.  If 

is small for each j, then we say we have converged.  The 

magnitude of "small" depends on the nature of the problem. 

If 

h2A 

is not small for some j, then we have not converged and 

the iteration must be repeated.  One iteration consists of 

the following three steps: 
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1) Evaluate terms In Eqs. (3.8) and (3.9), these 

terms depending on y1,y2,...,yN; 

2) Solve Eq. (3.10) for ff.jff«,...,ff ; 

3) Substitute ff.,ff0,....fl^ into (3.7) to get 

1 * 7 > • • • > ^M • 

For this problem, in this generality, we can say noth- 

ing about whether this iterative process converges.  In 

the next section we will show that the chemical equilibrium 

problem is a special case of this problem, and one for which, 

with appropriate modification, this method does converge. 
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4.  THE FIRST-ORDER METHOD FOR SOLVING THE 

CHEMICAL EQUILIBRIUM PROBLEM 

The chemical equilibrium problem is a special case 

of the linear-logarithmic programming problem.  In order 

to put Eqs. (3.1) and (3.2) into the form of Eqs. (1.1) 

and (1.3), we first define 

N - n+p 

M ■ m+p 

where, as stated previously, p is the number of compartments 

in the problem.  Then we define a.., b. , x., and c, for 

i > m and j > n, as follows 

bi - 0 i-nH-l,nH-2, . .. ,M  (4.1) 

c. = 0 j-n+l,n+2,...,N  (4.2) 

\+n  - Sk k-1.2,...,p      (4.3) 
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a. . -< 

0 if 1 i m, j > n 

1 if i > m, j i n, and   [j]  - i-m 

0 if i > m, j i n, and   [j]  jt i-m 

■1 if i > m, j > n, and i-m - j-n 

0 if i > m, j > n, and i-m ^ j-n 

(4.4) 

For all j, we define 

V< 
+1  if j i n 

-1  if j > n . 
(4.5) 

With these definitions, it has been shown [4] that the two 

problems are identical.  Next, we let 

x. - y. + 0. 
J   J   J 

(4.6) 

'-l Um 

ff. - 

IT! + log S,  + 1 .  i>m 
i       i-m 

Substituting Eqs. (4.1) through (4.6) into (3.7) through 

(3.10) and simplifying, we have 
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Vyj 

m 

-hn 

j-1,2,...,n 

1-1 

(4.7) 

n 

Za..a   .y. 

Za.-y« 

jf<l-m) 

^itn,   Istm 

^.^m,   t>in 

(4.8) 

ijyj 
^>in,   l^m 

jc(t-in) 

0 C>ni,   l>in 

/ n 

bi +    I aijyj(CJ  + lr8 ^j  "   1) lim 

'1    = (4.9) 

^        y  (c    + log y  ) 

jc(i-m^ 

i>m 

M 

Zr.   nl   -  si   . 
1',    1 L 

1-1,2,...,M (4.10) 

^-1 

The directional derivative of F in the direction 

(91,92,...,0 ) is given by [1, Theorem 8.11] to be 
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n 

£ OJCCJ + log ^)   . (4.11) 

N
e

2d 
it,   if we compute    V    J  ^ where by  (3.7) Bui 

»k^r,  "  Sk Lk -   lo8 Sk "   ^  - Sk Ck (412) 
k-1,2,•.•,p 

we  show,   in Appendix B,   that 

z^-- ^j+ io« v+i "i (bi -1 VJ 
j-i J       j=i i-i   \    j-i     > 

(4.13) 

Thus, if we assume that (y-. ,y?,.. . ,y ) is feasible, we get 

the injeresting result that the directional derivative of 

F in the direction (9.,9 ,...,9 ) is 

N ^ 
Y  ej(cj + log fy - - ^^-1 ^ 0 . (4.14) 

j«l j-l j 

However, it is also shown in Ap^ idix B that the 

equality on the right side of (4.14) holds if and only if 

the values for y. are optimal.  We further note that if 

(y^Xo»-• • »yn) 
is feasible, then 
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n 

V a..0. = 0 
L   ij j 
j-l 

for i = l,2,...,ra.  Herce, if (y,,y2,...,y ) is feasible, 

then (Vn+XO.,y_+X0-,..,,y +A0 ) will be feasible for any y 1  1 y 2  2     n  n 

X for which each y. + X0. is positive. 
J    J 

We now state the first-order chemical equilibrium 

algorithm: 

1) Calculate (91,02,...,9 ) using Erts. (4.7) through 

(4.10). 

2) Calculate the directional derivative of F in the 

direction (0.,9-,...,0 ) as given by Eq. (4.11); 

if this quantity is not negative, we are done. 

3) Calculate 

€ = 

c is a number that represents the root-mean-square 

error Ln (y, .V..,,. . . .y ).  If f is less than some \  J2 n 

given number (say, 0.001), we are done. 
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4) Calculate the ratio -y./0. for every \   for which 
J  J 

0. < 0.  Let A, be the minimuin of all such ratios 
J 1 

and let A = min (1,/3A ) , where j3 is a number less 

than 1 but close to 1 (say, 0.99).  We now per- 

form the following steps until the test at c) be- 

low is satisfied: 

a) Let z. = y. + X0.; 
J    J    J 

b) Compute the directional derivative of F at 

z. in the direction (0..0.,....9 ):  f(X) = 
j 1 2     n 

0. (c. + log z.) • 
J  J       J 

c) If f(X) z  0, go directly to step 5); 

d) Replace X by yX, where 0 <  y  <-   I,   e.g., y = ■=-    \f2 

5) Finally, replace y. by y. + X0. for j = l,2,...,n. 

Steps 1-5 are repeated until either the test in step 2 or 

the test in step 3 is satisfied. 

If this process terminates, the solution will be 

optimal within the specified limits of accuracy.  It may 

happen that the process does not terminate.  Since the 

objective function F is convex  and assuming infinite 

computational accuracy, non-termination can occur only be- 

cause the values chosen for X become smaller on every 

Ref. 1, Theorem 8.13; Ref. 5. 
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iteration.  This will occur only if some y. is approaching 

zero, and hence (y^y.^,...^ ) is approaching a point at 

which, if it were the optimal solution, the problem woulc 

be degenerate.  It is possible for this to happen for a 

non-degenerate problem for which the initial solution 

chosen was too far from the optimal solution.  Coiivergence 

can be guaranteed by imposing the condition that the value 

of F at the initial solution be less than the value of F 

at any feasible, degenerate point.  However, it is not 

practical to impose this condition on the initial solution 

since it may be very difficult to find such a point.  In 

practice, it has been found that round-off errors cause 

more difficulty than the possible selection of a poor 

initial solution. 
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5.  THE LINEAR-LOGARITHMIC PROGRAMMING PROBLEM, 

SECOND-ORDER METHOD 

In the first-order method, presented in Sec. 3, the 

iterative process was initiated with an estimate of the 

value of x. ,x„ , . . . ,x%,.  In the second-order method, we 1  z     N 

assume that the problem is as defined by Eqs. (3.1) and 

(3.2), but that we have initial estimates for the values 

of 77  TT   . .,77 .  Let'us denote these estimates by 
i  ^      M 

A^A ,...,A   The x. can then be evaluated by Eq, (3,5), 
1  2     M       j 

substituting A. for 77..  These x., however, probably will 
ii j 

not satisfy Eq. (3.2).  The problem of the second-order 

method is to find numbers AA. ,AA~,...,AA , such that 
1   2    '  M 

77. = A. + AA. i = l,2, . . . ,M      (5.1) 
ill 

when substituted into (3.5) will give x. that satisfy (3.2). 

In order to accomplish this, we first use the x. 

calculated from Eq. (3.5) to get 

N 

gi = b. - £ a..x.       i=l,2,...,M      (5.2) 
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where g, represents the amount that equation i is in error 

Next, we evaluate 

by 

a 
N 

b.   -     >  a..x. 

N 
dx. 

1 aij TT1 

N 

I a. 
ij   dX 

M 

exp I d ■n Ahahj J   J 
- 1 

h=l 

N 

= -    )   a..d.   x.ao.   = -  r.. (5.3) 

where r , is given by Eq. (3.8).  If we make a very small 

change, dX  dX   .., in X X   .., the change in g ,g2,..., 

is given by dg ,dg , ..., where 

M 
ög,. 

^t^ ljrdX, i»l,2,....M 

/-I 
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or 

M 

dg. = - ^ r.dA^ . i=l,2,...,M      (5.4) 

'.=1 

We would want dg. to be equal to -g, as computed by 

Eq. (5.2).  If we make the approximation that 

dX 

Is constant over the domain considered, we can set 

dg. = -g., let dA = AX , and write 

M 

g. = ^ r .M1 . 1=1,2,...,M      (5.5) 

t=l 

Equation (5.5) consists of M equations in the M unknowns 

AX-,AA.-, . . . ,AXM.  We may thus solve Eq . (5.5) for 

AÄ, ,M0 , . . . , A\w and compute TT. , ff- , . . . , trw from (5.1).  If 

the assumption about 

dA 

being constant over the domain considered was correct, then 
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the x. computed from (3.5) with these values for tr. will 

satisfy (3.2).  However, in general, they will not satisfy 

(3.2), but, if we were close enough to the solution so 

that the 

ög. 

ÖA 

did not vary greatly in the domain considered, then the new 

values for x, should come closer to satisfying (3.2) than 

did the first set of x.. 
J 

With this assumption, we may now state the iterative 

process: 

a) Using the values at hand for ff. ,ff-,. ., ,Tr0, 

evaluate (3.5). 

b) Using the values for x. obtained in step af 

evaluate (5.2).  If the |g. | are sufficiently 

small, we are done. 

c) Compute r.  using (3.8) and solve (5.5) for AA.. 

d) Denoting the IT.   in step a by A., we get new rr. 

by (5.1). 

Steps a-d are repeated until the |g.|, computed in step 

b, are sufficiently small, or until they show no more 

improvement. 
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There is no proof of convergence for this method. 

In fact, the method presented here is unlikely to converge 

unless the starting values of TT. , n  . . . ,Tr are very good, 

and even then there may be no convergence.  This method may 

be used on the chemical equilibrium problem after the first- 

order method has resulted in a reasonably good solution. 

If the n.   obtained from (3.10) in the final iteration of 
i 

the first-order method are used to initiate the second-order 

method, the accuracy produced by the second-order method 

will generally be better than that which could be achieved 

by use of the first-order method only. 
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6.  THE SECOND-ORDER CHEMICAL EQUILIBRIUM ALGORITHM 

In ordv»r that the second-order linear-logarithmic 

method be set in the form of a chemical equilibrium problem, 

the same definitions as given in Sec. 4--i.e., Eqs. (4.1) 

through (4.5)--are used here.  Since ehe second-order method 

is best used after the first-order method has been applied, 

the initial values of v.   for the second-order method must 
i 

be specified.  The first-order method gives a set of v\ 

which are related to it.   by Eq. (4.6).  The v.   computed by 

means of (4.6) are appropriate initial values for the second- 

order method.  Using these initial values for TT, , the second- 
6 i' 

order chemical equilibrium algorithm is an iterative process 

for which each iteration consists of the following steps: 

1) Using the current values for (ff-, ,ff„ , . .. .TO , 
i  Z     n 

evaluate x1,x«,...,x by means of (3.5). 
12     n 

2) Calculate g,,g0,...,g by means of (5.2) and set 
i  /     m 

8m+l'8m+2"-"8M e^ual t0 Zer0- 

3) Compute r.. from (4.8) and solve (5.5) for 

4) Let 

M 
P = max I AX. I . 

1 = 1 
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If P < 6, where Ö is a small positive number such 

as 10  , we are done; otherwise, let Q = min (—,11. 

5) Replace n    by n. -f Q AA. for i = 1,2,...,M. 

Steps 1-5 are repeated until the test at 4) is satisfied. 

P should decrease at every iteration; however, when the 

values for 77, get close to their optimal values, P may 

not become zero due to round-off error.  In order to prevent 

an endless repetition .of steps 1-5 due to the selection of 

too small a 6, we can test P against the value of P at the 

previous iteration.  If this value has increased over the 

previous iteration, it can be assumed that this method has 

obtained as accurate a solution as possible, and we can 

terminate the iteration process.  The reason for inserting 

the factor Q above is to prevent the v.   from varying too 

much on one iteration. 
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7.  SUMMARY OF THE COMPUTATION PROCEDURE 

The best method for starting the solution of the 

chemical equilibrium problem depends on whether an estimate 

for the solution vector is available.  The projection method 

should be used when the problem being solved is a slight 

variation from a problem previously solved, and in this 

case, the values used for y, in (2.9 - 2.12) should u« the 

solution vector to the previous problem.  Even when the 

estimate is no better than an intuitive guess, the pro- 

jection method may still be used.  The linear programming 

method, then, may be used as a back-up if the  projection 

method produces a non-positive component.  Of course, if 

no estimate is available, the linear programming method 

would be used immediately to provide an estimate. 

The recommended procedure is, then, to use the first- 

order method until either no further progress can be made 

with this method or until the amount of change becomes 

small from iteration to iteration, and then to use the 

second-order method.  It has been found that, for reason- 

ably large problems (say m = 30, n = 100), the point at 

which progress ceases in the first-order method usually 

occurs when the indicated corrections to the components 
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of the solution vector average about one per cent of the 

components; that is, when (3.5) is accurate to about two 

significant digits.  A switch to the second-order method 

at this point usually yields quite accurate results in two 

iterations of the second-order method.  The second-order 

method usually satisfies (1.1) to an accuracy of about 

five significant digits on a machine that carries eight 

significant digits.  This accuracy is typically about three 

orders of magnitude above what is usually obtained in 

experimental data. 

To summarize, the typical procedure for solving a 

chemical equilibrium problem is the following: 

1) If an estimate is available, use the projection 

method to obtain a feasible estimate. 

2) If step 1 yields a strictly positive estimate, go 

to step 3, but if tt.e projection method yields non-positive 

components, or if there was no initial estimate, then use 

the linear programming method to get an estimate. 

3) Use the first-order method until one of the tests 

described in Section 4 is satisfied, 

4) Use the second-order method as described in Section 
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Appendix A 

A FORTRAN-IV PROGRAM FOR SOLVING THE 

CHEMICAL EQUILIBRIUM PROBLEM 

GENERAL DESCRIPTION 

The program described here is a set of FORTRAN-IV 

subroutines for solving chemical equilibrium problems. 

The calling sequence used is merely the statement: 

CALL SOLVE 

Communication of data into and out of the subroutines 

is accomplished by a block common statement: 

COMMON/SLVE/IV(30),TOL(20),NR(55,2),B(55),KN(120),X(121),C(121), 
1 KL(26),NAM(25,2),A(55,121),PIE(65),V1(65),V2(65),V3(65), 
2 V4(65),XMF(120),X1(121),X2(121),X3(121),XBAR(25),R(65,65) 

The data that must be input before CALL SOLVE is 

executed consist of the following: 

COMMON Location    Quantity 

IV(1) m 

IV(2) M   (   = mfp) 

IV(3) P 

IV(4) n 

IV(6) Number of 
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COMMON Location    Quantity 

IV(7) Print flag:  -1 = minimal amount of 

messages; 0 = one message per itera- 

tion step; +1 = all messages. 

IV(9)        Maximum number of iterations to be 

allowed. 

B(i) b., i = 1,2,...,m. 

X(j) y., j=l,2,.,.,m, where y. is the 

initial estimate of the solution. 

If no estimate is available, set 

X(J) = 0. 

C(j) c., j=l,2,...,n. 
j 

A(i,j)       a^^  i=l,2,...,m; j»l,2,...,n. 

In addition, all components in one compartment must 

have consecutive subscripts.  That is, components l,2,3,...,k1 

must be in compartment 1; components k.+l, k1+2, ..., k9 

must be in compartment 2; ...; and components k i+l. 

k ,+2, .... k must be in compartment p.  These k's are 
P-l        P 

communicated to the subroutines by setting 

KL(1) = 1 

KL(2) = k +1 

KL(3) = k2+l 

KL(p) - k .-Kl 
■r    p-l 

KL(p-H) - k +1 
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In other words, KL(k) is the number of the first component 

in compartment k, and KL(p+l) is equal to n+1. 

The above are the only numbers that need be set in 

order that CALL SOIVE will solve the chemical equilibrium 

problem.  However, in order that the program can write 

messages, in cases of infeasibility, etc., names for the 

rows, components, and compartments may be input: 

COMMON Location 

NR(I,1), NR(I,2) 

KN(J) 

NAM (K,l), NAM(K,2) 

Quantity 

Two-word row name for row I. 

One-word component name for 

component J. 

Two-word compartment name for 

compartment K. 

In addition, T0L(1) through T0L(5) are tolerances used 

by the program.  If they are zero when the program is 

entered, they are set by the subroutines to nominal values. 

These values may also be set by the user of the subroutines, 

in which case the nominal values will not be set in the sub- 

routines.  These tolerances are the following: 

Tolerance 

T0L(1) 

Nominal 
Value 

0.01 

Meaning 

c in step 3 of the first- 

order method (see Sec. 4) 
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Nominal 
Tolerance Value 

T0L(2) ID"5 

T0L(3) IQ"12 

T0L(4) io-6 

Meaning 

6 in step 4 of the second- 

order method (see Sec. 6). 

Minimum value any x, is 
J 

allowed to have. 

Minimum starting value that 

any component will have is 

the lesser of T0L(4) and 

hyn+i  (see Sec- 2)- 
- 8 

T0L(5) 10 Problem is assumed to be 

degenerate if any S. 

becomes less than T0L(5). 

With the above as input, the statement CALL SOLVE will 

cause an attempt to solve the chemical equilibrium problem. 

If, upon completion of this attempt, a solution is obtained, 

the cell 
IV(10) 

will contain a 1 and the following data will be in storage: 

COMMON Location Data 

X(i) x., i-1,2,...,n (the solution). 

XBAR(k) 

PIE(l) 

XMF(i) 

V k-1.2,. • • ,P. 

V i-1,2,. . . ,m. 

v 1-1,2,. . . , n. 
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If IV(10) is not 1, the subroutines have failed to solve 

the chemical equilibrium problem.  The reason for this 

failure is written on output unit IV(6).  In such a case, 

X(i) will contain the latest value of these quantities. 

SUBROUTINES 

There are nine subroutines in the set used for the 

solution of the chemical equilibrium problem,  A brief 

description of these subroutines follows, 

1. Subroutine SOLVE 

SOLVE is the master subroutine, and is divided into 

four functional segments.  Each segment calls other sub- 

routines which do specific tasks.  The four segments 

are: 

a) The projection and linear programming routines 

for obtaining the initial solution (lines 18-42) 

b) The first-order method (lines 43-122). 

c) The second-order method (lines 123-163). 

d) Output messages (lines 164-203). 

2, Subroutine BAR 

BAR calculates the S, . 
k 
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3. Subroutine BERROR 

BERROR calculates 

N 

81 = bi " Z aiiX1 "    i=1'2'•••'M 

j = l 

4. Subroutine DEL 

DEL  sets 

m 

w.   =    ^aljqi   . j=l,2,...,n 

1 = 1 

5. Subroutine RCALC 

RCALC calculates the r.  array (4.8) 

6. Subroutine CLOG 

CLOG computes 

A 
a. = c + log x  .     j-1,2,...,n 

7. Subroutine LP 

LP sets up the linear programming problems. 

8. Subroutine SIMPLE 

SIMPLE solves the linear programming problems. 

Information is communicated to this routine via a 
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calling sequence racher than by COMMON as in sub- 

routines 1-7.  The dimension of A in SIMPLE should 

agree with the dimension of A in the first seven 

subroutines, but all other dimensions are dummy 

statements. 

9.  Subroutine MATINV 

MATINV solves simultaneous equations.  As in 

SIMPLE, no COMMON is used.  The dimension of A in 

MATINV should agree with that of R (not A) in SOLVE, 

All other dimensions are singly subscripted and are 

irrelevant as to magnitude. 

Each of the first seven subroutines has a COMMON 

statement which should be the same in all seven.  The 

dimensions of the variables in this COMMON statement may 

be set to the values for the largest problem to be solved, 

With m, M, p, and n as previously defined, these dimen- 

sions must be at least: 
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Symbol Mlnlmuin Dimension 

IV 30 
TOL 20 
NR (m,2) 
B m 
KN n 
X n+1 
C n+1 
KL p+1 
NAM (P.2) 
A (ni,n+l) 
PIE M 
VI,V2 ,V3,V4 M 
XHF n 
XI,X2 ,X3 n+1 
XBAR P 
R (M,M) . 

A listing of nhese subroutines follows.  This listing does 

not necessarily represent an actual program.  The language 

used was that version of FORTRAN described in [6".  The 

machine used for the solution of chemical equilibrium 

problems was the IBM-7044, which uses a floating-point 

number with eight bits for the exponent and 28 bits for 

the sign and mantissa. 
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LISTING 

c 

-.... 

c 

SUBROUTINE SOLVE 
C 01-11-10N I SL V E /IV I 3 0 I , T OL I 2 0 I • NR I 55, 2 I , B I 55 l , K, I 1 2 '-! I , X I 12 1 I , C I 12 l I , 

1 KL I 2 61 t NAM I 2 5 t 2 I t A I 55 t 12 1 I • P 1 £ I 6 5 l , V 1 I 6 5 I t V 2 I 6? I , V 3 I 6 5 I t 
2 V 4 I 6 5 I , X MF I 12 0 l t X 1 I 121 I t X 2 I 12 1 I t X 3 I 12 1 I t X bAR I 2? I t R I 6? t 6 5 I 

INTEGER PF 
EQUIVALENCE ITOL ! 31tX MINitiT OLI 41tX S TARTitiT OLI51t GAR Ml NI 
EQU IVALENCE 11VIllt MitiiV121t ME N01tiiV131t NCU,..,PlellVI4lt i oNTOTio 

1 IIV151,NITit!IV 161t NO TI tllVI71tP F ie l lV I81tlT ERiol lV1 9 1eiT MAXI, 
2 I IV I 1 ~ I , I E i< ROR I , I 1 VI 11 I , LA ST C P I , I I V I 12 I , K E l 

DI MEN S ION OX I 1 I tALPrlAI 11, Trl I 11o GI 11 
EQ UIVALENCE IG,Vl l ,( t) X,Xll• IALPnAtX21 9 ITHtX31 
IF IT OLI1leLE •• 0 1 TOLI11 = CeCl 
IF IT L12leL E. C. Ol TOLI21 = 1· E- 5 
IF IX Ml eL E • ~ • O I XMI N = 1. ~ -12 
IF l bARI-IIN eL E. eOI uAR ; I = . E-b 
IF IIT MA X.L ' . ... 1 IH'.AX: 4 u 
DO 152 J = 1 , TuT 

IF IXIJieL E • .:: .I G TC 5 
152 CON TI NUE 

IF X IS S TRICTL Y POS I TI VE o o cG I N PR OJECTION 
CALL BAR I X tX 5 AR 

2 CALL 6ERRCRIERR I 
CALL RCALC 
CALL t-ATl o vcr.. , ·-1E t Go-1t V2• V3 tV4tKEI 
IF IK E:. . E. CI GO TO 5 
CALL DEL I CXo I 
DO 3 t<. =. lt •>~Cv ' P 

KTA : KLI KI 
KT6 = KLit<.•11-1 
MK = M • I( 

() ' 4 ,J: Ki AoK Tc 
X ( J I • X I J I * I 1 • • X I J I + G I YK I l 
I F IXI JI .L E. el GOT 5 

4 CO,... TI NUE 
3 CONTI N'-

GO TO 1 
LI NEAR PROGi< AMM I G RCU TI ~ E 

5 CALL LPIKF ; 
IF IKFeNE. I GO TU l v 6 

1 CALL dARIXtXoARI 
CALL CLOG IXtX t.RI 
FE2 • 1eE+2 u 

FIRST ORDER ~ETnCD LGOP 
DO 899 ITER= l ,I TMAX 

CALl. BERROR I ERR I 
DC 711 0 l=l t'lE:.N ) 

PI EIII = "' • 
711 u CONTI NU E 

7113 
7112 
7111 

DO 7111 K = 1t C MP 
KTA • t<.LIKI 
KTo: KLIK+11 - 1 
MK : M + K 
D 7112 J • KTA t t<.T3 

AX z ALPH AI J I * XIJI 
PIEI ~t<. l z Pl E I ~ KI + AX 
DO 7113 I z lt M 

Pl :: lll: Pi Il l • AX * ldltJI 
CONT I I E 

CO Tl ~E 
CONTI NuE 

SOU 01 
SCC0 2 
S0003 
S0004 
SCOC 5 
S0006 
SJ00 7 
S000 6 
S00 0 9 
S00 10 
500 11 
500 12 
500 13 
50 0 14 
500 15 
500 16 
5001 7 
SC0 18 

:. 19 
50C 2 
5 0 21 
500 22 
S00 23 
50024 
5CC 25 
5C026 
50 0 27 
S002 d 
s 0 29 
::.00 30 
SC0 3l 
SOC 32 
500 33 
500 34 
SOC 35 
500 36 
500 37 
500 38 
500 39 
5004C 
.::>O C41 
500 42 
500 43 
50044 
500 45 
suo 46 
Sv0 47 
!>00 46 
~v C 4 9 

~~:~ ... 
SvC 5l 
~uv52 

S0 053 
St:0 54 
SU0 55 
so 56 
50057 
:;cos a 
SCC 59 
500 60 



7114 

71 0 3 
71 \J 4 

712 .... 

8 3 ) 1 

8266 

8264 
8265 

828 

82 8 1 

8231 
8288 

699 
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DO 7 114 I • 1 , . 1 
PIEIII • (d ll + PI Eill' 

CONTINUE 
CALL RCALC 
CALL MAT! V C R , ~E ~~ · IE o-1o V2 oV3 oV4oKEI 
IFIK Ee NE e0 1 GO TO 12 00 3 
DMAX a 1e ~ +2 

CALL DE LITt1oP IE I 
GNORM•;::. 
TDA • J e 
FE = o. 
DO 71 ~ 4 (• 1o NC OM P 

M( • M + K 
(. TA :: KL C(I 
KTo :: KL I K+ll -1 
DO 71 0 3 J • KTA , KTB 

THIJI • Tt11 J I +PI E CMKI- AL PHAIJI 
uNOR~ : GI\OR .'~ + Ttll J I ••2 
THCJ I TH(J ) • XCJI 
TuA :: T ~ A + Tt1CJI • ALPt1ACJI 
IF CXCJ ieL Te- J .'-IAX * Th CJ II ' "'AX :: - XI.Jl/lt11.JI 
FE • F~ + XI.JI • ALPrl~I.J l 

CON TI uE 
CON TIN UE 
E p 5 : 5 R T ( G ~- r( ~ I F L , A T ( I Tv T ) 
DFE :: FE - FE2 
FE2 :: FE 
I F IIT ERe C: e ll GO TO 712 ... 
ITR = ITER - 1 
IFIPFeG Ee v l ~R I TE I I\0 To7 99 1 I TR , ~ F E o OP TL o EP~ 

PTL aA "' I 1 I leo e S9 • 0M AX I 
IF IPF oG • v lwR!T r ( CT o824ll D AA o P L oTu AoE Rk 
IF I EPS e LEeT OLilll GO TO o~~9 
IF ITJt. eGEeCe l C. TO 8:. • 
DO d 2 6 5 I I = l , ':> 4 

DO 63 :.: 1 J ,. l• 
DXIJI • AMAX11XIJI + PTL * fn(J I oXY I I\1 

CO T I uE 
CALL A ~ l v X o X c A~ I 

CALL CL I D X o ..< Jt.~ l 

TUA a v • 

DO 8266 J:: l o ~T T 
Tu A :: TJ A + Tn iJI * ALP n AIJI 

Cv TI NUE 
I FIPF e GT e v ) 'IIRIT :.. I . OT o d26 2llloOPTL.o 
I F I TDt. eLT eOel GO TO 828 
OPT L :: ~?T L /1e4 142 

CONTINUE 
CALL BARIXoX bAR I 
GO TO 8 271 
DO o281 J =1• T ~ T 

XI.J) a () X(J) 
CtiN T I NU E 
FE " 
DO d231 J=- 1 oN 

FE ,. F E + ALP t1 AIJl•XI J I 
CGN TI N:.JE 
CALL 5S~TCH15 oLA3 E Ll 
IF IL AdE L• N[ .2l GO TO 

CON TI NU E 

TDA 

50C61 
;,u0 62 
50 063 
500 64 
5C0 65 
S00 66 
~L.0 67 

5C0 68 
5 C.0 6 9 
500 70 
SCC71 
sec 12 
sec 73 
5\JC 74 
500 75 
500 76 
500 77 
500 7!; 
~ 0() 79 

~ cc a o 
SCG bl 
.:.0 08 2 
5008 3 
50084 
.:.00 85 
~ v C 86 
::.u !: 7 
500 88 
.:.CC d9 
50 0 90 
5C0 91 
::,,J 92 
500 9 3 
.;:, " 0 94 
S.J C9 5 
~ .:. c 9 6 
.;:, () 09 7 
500 98 
500 99 
~ 1 oc 
.J0 101 
S0 1::l2 
50 103 
50104 
50 10 5 
50 1 06 
::,0 10 7 
50108 
50 109 
S0 11 0 
50 111 
50112 
50113 
50114 
5Cll5 
50 116 
50 117 
S0 118 
s 119 
S\J 12 0 
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C EN 0 OF FIRST OR DER ~ tTrlOO LOO P 
GO TO 1u C. v 2 

6Cu u ITER1 : ITER + 
PMAX z 1oE+2 u 
PI>1 AX1 = 1• E+21 

C SECOND ORDER ~~ TrlOG L~ P 

60 l u 

6 ~ v3 

60J 6 

6J ..; 4 

6vl1 

DO 6Cu 2 ITER = ITE ~ 1t!T ~ A X 
CALL ;)Ell XtPIEI 
DO 6 UJ 3 K =1tNC O ~ P 

MTA = Kll KI 
MTB = KllK+11 - 1 
DO 6u 1 ~ J = M TA. ~ T B 

XMFlJI z EXP l DXlJI -ClJI I 
XlJI = X~ FlJI*X~A~l~l 

CON TI NUt. 
IF l Xa ARlKiolEo~A R~ l N I GO TC 1 ~ · J 5 

CO TIN UE 
I F l P :~A X ol c. • T OL l 2 I • CR . l .-> ., t.. X • Gt • P it .t.. X 1 • A."~v • P -~ A X • G ~ o P I'. A X 2 I 

GO TO }uvv1 
CALL 8ERRCR lER RI 
CALL RC ALC 
CALL M ATI ~V lRti' ENG t G t -1oV2t V3tV4tK£1 
IFlK EoNEo v l GO TO 1-00 3 
PMAX2 = P:·1AX 1 
PI- AX = P .~ ;.x 

P1·\AX = 
DC 6 C0 4 I = lo MEN~ 

p ;-.~ t.X : AI~A X 1 l p·.;Ax • A-:.. S l G l I I I 
CO, T I UE 
IF lPMAX o E~ •• :.. 1 G TO } J , 1 
ZM =A MI NI l lo/P MA Xtlol 
D:J 6 0 S I =}, ,"1 

PI Ell l - P! El ll + ZM • Gill 
CO TINUE 
DC 6 "11 K z lt NCOV P 

o"'K "' M+K 
XdARlKI = X6A~lKI* EX P l Z~ • Gl~KI I 

CON TINUE 
IF IPF.G Eou l ~RITtlNOTt6u991 IT ~R .P"'AX,E ~~ 

CALL SS wTCH15tLAoELI 
IF ILA a ELo NE o21 GO TO l v~04 

6 · ... 2 CON TI NUE 
C E~ D OF Sc.CO D ORCER ~ ETHOD LOO P 
1v.Jv 2 IE~ ~o;< a 2 

WRITEINOTt2 vu v21 
2 0j ... 2 FORMA TI27H ITERAI N LI~IT ~ XCEE O E D 

ITER = ITMAX 
GO TO 10JCO 

1000 3 !E RROR a 3 
-RIT INOTo2 vvJ 31 ~E 

2 ~0 v3 FORMAT121H R ~ATRIX HAS NULLITYol31 
GO TO 1v0J.; 

1v uv 4 lt. RROR = 4 
WRITEIN0Tt2v uv41 

2 uvv 4 FOR I-IATI56H 50 LV E ROU TI NE T£R •· J AT v SEC:\USt:.: !:>EN;,E :, ·,J IC rl 5 IS DOt.N 
1 I 

GO TO l wOuO 
1000 5 !ERROR a 5 

WRITEINOT,2 l..iuv 51 NAMIKo11oNA~ IKo21 

2vuu5 FORMATI13H C OMPART ~ EN T t2A6o1 0H TCO S ~ALL 

S0 121 
::;0 122 
:.0 123 
::.0 124 
50125 
50126 
50 127 
50 128 
50 129 
S0130 
50 131 
50 132 
50 133 
5Cl34 
s 135 
50 130 
!:.0 137 
~ u 138 

50 139 
50 140 
S0 141 
S0142 
S0143 
50144 

J 145 
50 146 
50 147 
50148 
~0 14 '1 

50 15 0 
S0151 
~0152 
50153 
50 154 
50155 
50156 
50157 
501So 
5:H 59 
Svl60 
50161 
S0162 
50 163 
S0164 
50165 
50166 
50167 
50 166 
5~ 169 

50170 
;:,i) 1 11 
50 172 
:.C173 
SO l 74 
50175 
50176 
5C1 71 
Sv178 
S0179 
50180 



LA S TCP c K 
GO TO } 1.-::l 

l vJv 6 l ERRO = 6 

1 - \..I V 1 
l vJ .J.., 
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8 £ 4 A T(l5H V,AX=l P E 1 2 e4 tl H , OP T L A~ A=E l Ce 3 t 6H t T A =E1 
1 • 5 • 16 rl , :. A X 

8 6 7 1 
/:j 6o 

= E12e 5 ) 
Tt826 8 l I TLR 

, 14, 3 i.. H P 5 I I I VE I A , GO I 0 ~E I H D 2 

826 :: . ~ 1 , l TC: I T t 827 I TE 
827v F ..., i· .I.T I -., H Ll ATiiJ tl4t4 n A THc.TA E!:> S I nA IJL( l l • G0 I J fi,£ TH L. 

1 2) 
G T 6 :J.; ... 

8£71 I F I PF . C.t: . C l ,,RJ IN T t 62 7 l IT 
8£7 F A T I 1Ch IT L. /. , tl 4 t36rl ::. T P :..1 ZE T 0 SMALL • GO Tu E THO 2 ) 

G T 6 JJ:: 
8 2 6 F v R A 11 . , 4 H5T£P ,I 2 • 9H LA~ ~: A =lP E 1 0 e 3 t6 H t TDA = l l 5 e b l 

7 9 F R-1/.Ti l .; n ER.'.TIC .'h l4 • 2 4 H C ,.. , E 1 F l~ E ERG Y= l PU5 e!l tl 2 H 
15TE P ~ I Z£ a E l 5 e 8 •1 H AV TH E TA=El e 5 l 

6 9'1 FC ATI } ..; H I T R ATI~ ' tl4tl n ' A (hA :i [ I N P I E =1P E 1 5.8tl 5H AX RO,, 
1 R=Els . a 

END 

::. 0 161 
50 182 
::.0 183 
SJ 184 
::. u 1d5 
!:>J 11:l6 
s.:; 1a1 
SO lS !! 
,:) 0 1!! 9 
50 1 90 
SJ 1 9 1 
50 1 9 2 
!:>J 1 93 
50 1 9 4 
s 1 9 5 
50 1 9 6 
!:>0 1 9 7 
50 198 
50 199 
!:> U2 0 
50 2 0 1 
S:l2 0 2 
50 2 0 3 
50204 
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SUBROUTINE bAR('/.',v,3ARl AOCOI 

COMMON/SLVE/IV{33)tTOL(20» »NR(55♦2)»B(55»iKN«12UJiXU21)»C(121»• *U0Ü2 
1 KL(26)fNAM(25»2)»A(55tl21)»PIE(63)iVl(65).v2«65)iv3t65)» WUUU3 
2 V4C65) tXMFC 120) iXK 12U »X2( 1211 iX3(121) tXbAR( 25) »Rl 65 »6 5) /.COOA 
EQUIVALENCE ( I V(1)»M).(IV(2 » »MEND)t( IV(3)»NCOKP).(IV(4)»NiNI 0 I )t «0005 

1 (IV(5).NIT)»(IV(6)»NOT).(lV(7)iPF).(IV(8)tIlcR)»(IV(9)»I TMAX) . .VC006 
2 IIV(1Ü)tIERROR)•(IV(11).LASTCP).(1V(12)»KE) WU007 
DIMENSION tr.'( 1 ) tWüAR( 1) W000Ö 

7 DO 701 < « l.NCOMP ^3009 
<TA » <L(<) V.ÜC10 
<TB   »   <L(K+1 )   -   1 IOC11 
WBAR(K)    »   Ü, A3C12 

DO   702   J   =   ICTA.KTB ^-3013 
WBAR(K)    =   WBARttt)   ♦   W(J) rtQCl* 

7^2        CONTINUE W0015 
7Ü1   CONTINUE '.GC16 

END .VOO^ 
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CO.X'-'.OA/^LVE/ I'M 3^ I .TOL (2 ^>-»N^( 55 .2) . 5 ( f;r.) .<Wl l^u) tA l 12 1 ) »C I 121 ) » 
1 KL ( i6 > i NAN', t 25 .2 ) • A1 5 5 »12 1) »P IE I 611 . V1 ( 65 ) . V2 ( 6 5 ) . V31 65 ) . 
2 V'*( u-j) «X'^r ( 12 . ) »Xl( 121 ) .X2{ 121 ) .X'' ( 1 21) »XL A^( 25 ) ,I<(6cJt65 ) 

EuUlVALEMCl    ( IV( 1 ) .v ) » ( IV(2) »MENJ ) . ( I V ( 3 ) i.NCCVP) , ( I V(4) tN.KTOT ) t 
7).PF).(Iy(8)«liLR)fllvi9)tI 
ICH) ti I vi 12) .<E) 

1 ( IV( 'j ) tNI T ) « ( I V(6) »NCT ) » ( 1 V( 
2 ( W( 1, ) , It^RCm .(IVIllJfLAb 
DIisLNSlCN   G( 1 ) 
EuUlVALLNiCL    U.V1I 
CO    Kl    I    =    1,M 

ZT    =    .. 
uO   1 v.2   J   =    ItH 

I F ( A ( I »J ) . N L.«- . I    ^T   =   ZT   -   x(J)    »   A(I»J» 
1^2 CCMlNJc 

G( I )    =   ZT    t-   L3( I ) 
Ul   CONTINUE 

DO    11-   <    =    1.NC0M? 
2T   =   „. 
M T A    =   < L ( ^ I 
MTB    =   <L(< + 1 )    -    1 
DO in j = y.TA.y.Td 

ZT = ZT > X(J) 
ill   CONTINUE 

WK. = M -f v 
GdiN) = XuAR(K.) - ZT 

llv. CONTINUE 
BMAX = „, 
DO 120 I » ItMEND 

IF (AüS(G( I ) ) .GT, ADS(3MAX) ) LAX = G(I) 
12- CONTINUE 

RETURN 
END 

IAX ) 

bOCOl 
bU'J'J2 
bCC03 
bcnou 
BOCCS 
bO'COb 
oven 
b^COB 
DÜC09 
DUÜ10 
ÜGCll 
DUC12 

bG013 
bGC14 
bJ015 
buC.16 
B0017 
DGCI 8 
b3C19 
DUC2C 

b0021 
uGC22 
BÜ023 
bü024 
BUC25 
bC026 
60027 
BGC2c 
BG029 
boL30 
bC031 
oCC32 
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SUBRUJTINE l)EL<rt'»wJ 
CGMMG^/3LVE/I V( 3C ) .TOL( 2^ ) .'^(ODt^) ..3( 55) .<•>.( 120 1 tX( 121 ) «C( 121 ) t 

1 KL(26).NA,%(25.2)»A(53»121)»PlLl6t;)fVlt63).v2»65)»v3(b5)f 
2 V4(65l .XMFI 12-) »XK 121 ) .X2; 121 ) »X^l 121 ) »XcARI 25) .^(6rJt65) 
EuU I VALENCE ( I V ( 1 ; . I) . ( I V ( 2 ) • f-E\ J ) » ( I V ( 3 ) . i\Cr: P ) . ( rv(4) .,\»MOI ) • 

1 ( IV ( p J tNI T ) . I IV ( 6 ) ♦ NOT ) » { I V ( 7 ) t PF ) . ( IV t 8 ) » I I LK ) . t J V ( 9 ) » I I .XAX ) i 

2 (IV(1 )iURRORJ•(IV( 11) »LASTCP) ♦( lV(12»»<£) 
DIMENSION .■,( 1 ) .0( 1 ) 
DO 2L J = IHN 

/. A = ^ • 

DC lu I = l.M 
IF ( A( I ♦ J ) .NL.O. )  A".V = 

CONTINUE 
w (J ) = ',v .v 

CONTINUE 
RETURN 
END 

♦ A( 1,J ) # ^( I ) 

DOC 01 
00002 
Duuu3 
DOC 04 

DC i" 06 
D0C07 
Ducoa 
D0CC9 
DCC1C 
DvJCll 
DÜ012 
DCC13 
Du014 
D0015 
L)0016 

ÜJC17 



-52- 

SUBROUTINE RCALC 
CÜMMÜi\/SLVE/IV( 3C)»TüL(2ü)»NR(5>5>f2)i3(b5) iK.\(12u) .X1121)tC(12l)» 

1 KL (26) tNAM( 25.2)iAlt)5,121).PIE(65).Vl(6$).V2(6b)iV3(65)t 
2 V4(&5J »XMF( 120) tXl(12ll tX2l 1211 »X3(121) iXuAR( 23) tR( 63.65») 
EQUIVALENCE ( IV ( 1 ) »M ) . ( IV ( 2 ) t MENO ) . ( IV ( 3 ) »NCOMP ) •( I V (<♦) .f. »N I U I ) . 

1 I IV(5J »NIT) ♦ I IV(6) »NOT) . ( IV(7l iPF) .UV«8)»1TLR) .( 1VJ9) . ITi-lAXJ . 
2 ( IV(1C) , IcRROR).(1V(11).LASTCP).(IV(12).<E) 

COMPUTE R 
DO 1 I » I»MEND 

DO 2 J «1.1 
Rl I »J) • u.O 

2   CONTINUE 
1 CONTINUE 

DO 10  K ■' »NTOT 
DO 11  I»1.K 

IF (A( 1 .K) .EQ.O. ) GO TO 11 
AUX » A( I ,K) » X( (C) 
DO 12  J «1»I 

IF (A(J.K).NE.O.) Rfl.Ji = A(J,K) » AIKX ♦ R(I.J) 
12     CONTINUE 
11   CONTINUE 
10 CONTINUE 

DO 2Ü < « ItNCOMP 
IH = < ♦ M 
MTA «KL(<) 
MTb "KLCK+D - 1 
DO 21 L »MTA.MTL 

DO 2 2 J M.v 
IF (A(J.L).NE.O.)  K(Ih.J) = ^(IH.J) + A(J.L) » X(L) 

22     CONTINUE 
21   CONTINUE 
2Ü CONTINUE 

DO 30 J » 2»MENÜ 
JL = J-l 
DO 31 I « l.JL 

R(I*J) « R(Jtl ) 
31   CONTINUE 
3o CONTINUE 
5o RETURN 

END 

RJC01 
ROÜ02 
K00C3 
KCC04 
RCC05 
R0C06 
RÜC07 
ROCOü 
R:CO9 
R0C10 
RG011 
R0012 
R0C13 
R0C1<» 
R0015 
R0C16 
K0C17 
RGOlö 
R0019 
R0020 
R0021 
RÜC22 
RC023 
R002'» 
R0025 
RÜ026 
RU027 
RÜ028 
R0C29 
RCC30 
PC031 
R0C32 
R0Q33 
RÜ034 
R0035 
R0036 
R0037 
R0C36 
R0039 
R0040 
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SUBROUTINE   CLÜG( A/.rtüAR ( 
COMMON/SLVE/IV(30).TGL(20)tNK(55♦2)»3t55)»KNC12U)»X(121» »C(121» » 

1 KL(26)»NAM(25.2)tA(55.121)fPlt(65).Vl(6b)tV2t63I.V3(6cj). 
2 V^(65)fXMF(12o).Xl(121).X2(121).X0(121)«XüAR(2 3)tR(65.65) 
EQUIVALENCE ( I V ( 1 ) f M ) , ( I V ( 2 ) .MENÜ) . ( 1V(3) »NCOMP ) . ( 1VU ) »N tNTüT J » 

1 ( IV(5)»NIT» »(1V(6)»NOT»♦( IV(7)»PF>»(IV<81»1TIR)»( IV(9I.ITMAX)♦ 
2 (IV(IC)tIcHRQR),(IV(11)»LASTCP) .( IV(12)»KE) 
DIMENSION  >v( 1 ) »i/tfüAKJ 1 ) .ALPriA( 1) 
EQUIVALENCE .X2.ALPnA) 
DO 1 K = 1, NCOMP 

KLA - KLiK) 
KLÜ = KL(<+1)-l 
DO 2 J = fvLA.i^Lu 

ALPHAIJ) = C(J) 
XXX x   W(J)/AüAR(K) 

IF(XXX.üT,v,C) ALPHA 
2   CONTINUE 
1 CONTINUE 
RETURN 
END 

J) = C<J)+ALCG(XXX) 

C0C01 
CCC02 
C0003 
COCO^ 
CCC05 
CÜC36 
C0007 
CG00Ö 
C0009 
CCC10 
COC11 
CGC12 
C0013 
COCK 
C0015 
CCC16 
C001 7 
ccne 

Cw>.2C 
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SUbKJuTINE L?  CCNJ» 
CuK.V«J^/SLVt/IV( 3C) .TOLCZ:) • ^^ I j J . 2 ) . : ( S : ) »K..^ ( 1 ^ , ) . X ( 1 2 1 ) . C 

1 KL{26).NA>1l25.2>.Alb5.12n.PlLiö:j).Vl(6>).V2(üt)).V3(o5>t 
2 V<»(65).XN,Ml2.)tAl(l21).X2(12I).X3(121).A^AR(2:j)i.'i(65t63 
IMTLGtS PF 
v.Ul VALENCE  I TCL« 3) »X.-.IN> » (TL.LU) »XCTAPT» »<T':L(!J» tfjAKII.NJ 
u'b I VALENCE ( IV( 1 ) i.'- ) . ( IV( 2 ) •XENJI t ( I V ( 3 ) ..NiCC.'P ) t ( I V U 1 .N vMOT ) i 
( IV>b)tNIT ) . ( IV(6)»NOT) , ( 1V(7)»PF) t( IV(0) » ITLR ) . ( IV(9) »ITKAX)» 
(IV(1^},ItKROKj . ( IV(11)tLASTCP) . ( IV(12) »<E) 

1MENSION    XX( 1 ) .(tOJn 7 ) . CC ( 1) »P ( 1 ) 
QUIVAL£NCE(CCfXMF)11XX .X2J i (P»Vl ) 
ON« w 
C     /vcrAOT.IE     r^     ,^i      VCTADT     »     i      r — i 

15 

INTEGER PF 
EC 
E^' 

I < 
2 
D 
ECJ 

MON 
IF (XoTART.LE.O.C) 
DG 1C 1 ■ l.M 

P(I ) » b( I ) 
A( I »NTOTM ) = 0.0 

DO 15 J « l.NTOT 
A(I»NTOTfl) s 

CONTINUE 
CONTINUE 
DO 1  J 

CC( J) 
CONTINUE 
CC(N+1) 

^( 1 2 - ) . X ( 1 2 1 ) . C ( 12 1 ) . 

) 

.X^TAPT ) . ( TCL ( 5 ) tfjAH UN J 

XSTART = l.E-6 

A( I »NTOT+l ) + A(I tJ) 

ItNTOT 
C • u 

-1.VJ 
.dEKO-TM SIMPLEX IS TC OETE^MNE FEASIJILITY 

CALL 5IMPLE( v»M»i\+l»A.P»CC»K.CUT»XXiPI£.V2«V3»V<MX3tK) 
= XX{N*1) 

RITE    (NO! . IJ6)<CUT(2» iZTtKOL'TI 1) 
)   ELEMENT»lPE15.ä. Iu6 

CALL SIMPLE ( -»MtN+l »A»P »CC »KCUTtXX iPI£ .V2 •V3»V<i. 
ZT = XX{N*1) 
IF(PF.GE.: ).vRITE (NO! .1 J6)<CuT(2) »ZTtKOUTI 1J 
FUR^AT( 12MCSIMPLEX  C.U,29n ITERATIONS. MAX MIN 

I 12M, CONDITION .13) 1 12M. CONDITION .13) 
ZZT   =AMlNl(ZT/2.0. XSTART) 
DO 1C<» I » l.M 

P( I ) s P( I ) - ZZT»A( I .N+l ) 
l\)k   CONTINUE 
2uo DO 2C1  J = l.NTOT 

X(J) s XX(J) 
XMF(J) « l.w 

2v.l CONTINUE 
IF (ZT.LE.0.«OR.KOUT(1J.Nt»0)  GO TO 40 

SIMPLEX LOOP 
FR2«l.t*20 
DO 30 1 NN « 1. NCOMP 

DO 3^2 J s 1. NTOT 
CC(J)    = C(J) 

3-2   CONTINUE 
= FLOAT(NN) - l.w 

.A,P,CC.<ÜUT.XX.PiL.V2.V3.VA.X3.R) 
GO TO 50 

+ XMF(J) - 1,0 

FN 
CALL SIMPLE(i.M.N 

IF UOUT ( 1 ) .Nc.O) 
3uu   DO 3-3 J = l.NTOT 

X(J) = XX(J) 
X(J) = ( FN»Xl(J) ♦ 

XI(J) = X(J) 
3u3   CONTINUE 

CALL BAR(X.XBAR) 
< -    1 

r K  = u • w 

DO 310  J = l.N 
I 

X ( J ) ) / ( F N ♦ 1 ,:) 

310  J = 1 . N 
IF (J.GL.KL(K>1 ) )  < = < ♦ 1 
It- (J.E«»i-L(<) .^N^.XjArvlK.) .UT.C.r)FP = FK-X^AR(K)*,'lLJGIXüAR(Kv)) 

IF (X(J).GT.3.C)  FR = FR + XfJ)»(ALOG(X(J)) ♦ C(U) ) 

Luuul 
LCCD2 
L0003 
L0004 
LO^Oä 
L0006 
LCC07 
LC00Ö 
L0CC9 
LUÜlO 
LÜÜll 
L0012 
L0013 
LÜC14 
LOOlb 
L0ri6 
LOCI 7 
LCC18 
LCC19 
L0:20 
L0C21 
L0022 
LÜC23 
L0024 
L002P 
L002fa 
L0027 
L0028 
L0029 
LO030 
L0G31 
LOC32 
L0n33 
L0C34 
LÜG35 
LOO 36 
L0G37 
LCC3d 
L0039 
L004G 
LGC41 
L0042 
LG043 
L0C44 
LCC<o 
LGC46 
LG047 
L004Ü 
LOG49 
L005Ü 
L0051 
LGC52 
LGG53 
LCC54 
LOÜ55 
LO056 
.0057 
LO05Ö 
L0059 
L0C60 
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XMF(J) « u» LCG61 
IF ( XbAR(IC).NE.O. ) XMF(J) = X(J) / XbA«(<)                      L0062 

31Ü   CONTINUE L00o3 
IF (PF.GE.C) WRITE(NOTi305) NN.t <OUT ( 2 > .FR L0C6<» 

3ub   FORMATCÖH SIMPLEX»13»IH»»Ht12H ITERATIONS .8H FR ENG»1PE15.8) L006* 
IF (FR.GE.FR2) GO TO 399 L0066 
FR2SFR L0067 

301 CONTINUE L0068 
399 DO 4GC U ■ l.N L0069 

X(J) ^ X(J) + ZZT L0070 
hüü   CONTINUE L0G71 

RETURN L0072 
U's    IF UOUTd ).GT.l)  GO TO 50 L0073 

WRITE (NOT.41) LOOT* 
Ul   FORMAT(72H0THIS PROBLEM IS INFEASIJLL. THE FOLLOWING LINEAR CÜMüI   L0075 

1NAT10N OF ROäS» /IX) L0076 
DO U^ I «1»M L0077 

IF    (PIE( I ) .NE.O. )      WRITE(N0T.U1 )    P I E ( I ) »NR « I . 1 ) .NR ( I .2 )                              L007e 
141 FORMAT (luXt3H-* <»Fl5«8»5H ) » .2A6I L0079 
Uo   CONTINUE L0080 

WRITE    (NOT.142) LÜ081 
142 FuRMAT(4dH0  LEADS TO THE FOLLOWING INFCAblöLL EQUATION.  /1X) L00d2 

DO 15« k »l.NCOKiP LCCÖ3 
MTA = KL(<) LC084 
MTb = ^L(iC*l) - 1 LÖC85 
DO 151 J = MTA, MTB L0086 

D « 0. L0G87 
DO 152 I =1.M 10068 

D = PIE( I )* A(I.J) + D L0089 
152     CONTINUE LC090 

IF (D.NE.w.) «RITE (NOT.143) O.KN ( J ) .NAM( K . 1) .NAM (IC,2 )           LCC91 
143 FORMAT(10X.3H+ (,F15»8.5M ) » .A6.4H IN .2A6) L0092 
151 CONTINUE L0093 
15o CONTINUE L0C94 

D = ü. LCC95 
DO 160 I «l.M L0C96 

D « PIE{I)*a(I) ♦ D L0097 
16U CONTINUE L009d 

WRITE (NOT.144) D L0099 
144 FORMAT(1H0.15X. 7H* 0.0 «.F15.8) LG100 
70 WON « 1 L0101 

RETURN L0102 
50 IF (KOUT(l).NE.2) GO TO 60 L0103 

JT = <OUT(7) L0104 
DO 51  K « l.NCOMP L0105 

IF ( JT.GE.KL(K))  GO TO 52 L0106 
51 CONTINUE L0107 
52 WRITE (NOT.952)  <N ( JT ) »NA^U » 1) .NAM(IC,2 I L0108 

952 FÜRMAT(14H Tut VARIAoLE .A6.4H IN .2A6.33H IS UNSOUNDED AND MUST B   L0109 
IE REMOVED) L0110 
GO TO 7^ L0111 

60 WRITE (NOT.96^) L0112 
960 FüRMAT(6JH SIMPLEX ROUTINE nAS FAILED DUE TO EXCESSIVE ROUND-OFF E   L0113 

1RROR) L01i4 
GO TO 70 L0115 
END L0116 
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Calllng Sequence for Simplex Subroutine 

The simplex subroutine, SIMPLE, may be used to solve 

a general linear programming problem of the form:  Minimize 

n 

y c.x. (i) 

subject to 

n 

Y a..x. - b. 1=1,2,3,...,m (2) 

The a.. is stored in a two-dimensional array, A, with 

a., in cell A(i,j); C. is stored in a one-dimensional array, 

C, with C, in cell C(j); and b. is stored in a one- 

dimensional array, B, with b. in cell B(i). 

The calling sequence is 

CALL SIMPLE(II,M,N,A,B,C,KO,X,P,JH,XX,Y,PE,E) 

where 

II - 0; 

M - No. of rows, m; 

N ■ No. of variables, n; 
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A, B, C  Are as above; 

KO = A subscripted variable of 

dimension 7; 

X = A subscripted variable of dimen- 

sion n or more; 

P, JH, XX, Y, and PE = Subscripted variables of 

dimension m or more; and 

E = A subscripted variable of 

2 
dimension m or more. 

Upon exiting from the subroutine, 

X(l),X(2),...,X(n)  Contains X-»x«,...,x  (the solution); 

P(l),P(2),...,P(m)  Contains the shadow prices; 

K0(1) Contains an 0 if the problem was 

feasible, 1 if the' problem was 

infeasible, 2 if the problem had 

an infinite solution, and 3, 4, or 

5 if the algorithm did not terminate; 

K0(2)  The number of iterations taken; 

K0(3)  The number of pivots performed since 

the last inversion; 

K0(4)  The number of inversions performed; 

K0(5)  The number of pivot steps performed; 
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K0(6) A logical variable that is  "true" 

if and only if the problem was 

feasible; and 

K0(7) Contains, if the problem had an 

infinite solution, the number of 

the variable that was infinite. 

The dimension of A (line X0009) must agree (at least 

in the first subscript.) with the dimension of A in the 

calling program. The other dimensions need not agree with 

those of the calling program. 

If an initial basis is available, this basis may be 

communicated to the subroutine by letting 

II  - 1 , 

0.0 if variable i is not in basis, 

(non-zero) if variable i is in basis. 
X(i) - 

and the other quantities remain as above. 

This subroutine differs from other linear programming 

routines in several respects. If the restraints (2) are 

linearly dependent, the problem is considered to be in- 

feasible. This is the case because the chemical equilibrium 

problem cannot be solved if the rescraints are dependent. 

In addition, this subroutine was written to be as scale-free 
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as possible; this was accomplished by computing tolerances 

internally in the subroutine. 
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C TH£ 

C 
c 

AUTOMATIC SIMPLEX       REDUNDANT EQUATIONS CAUSE INFEASIJlLITY 
SUBROUTINE SlyPLE(INFLAGiMXiNN.A,üiC.KOUT .<Ö.P.JM.XiY.PE.E) 
DIMENSION 8(1»iC(l).<OuT(7)iJH{1) iX(1)»P(1)iY(1)» 

1 <b(l).E( II iPEd) .<0(7I 
EQUIVALENCE    (K.<0(1 I).(ITER»<0(2)1»(INVC»KOC3))• 

2 (NUMVRiKO«*))»(NUMPVtKOIS)I•(FEAS.<C(6)1i(JT»HO(7)) 
EQUIVALENCE (XXiLL) 
FOLLOWING DIMENSION SHOULD BE THE SA^E HERE AS IT IS IN CALLER. 
DIMENSION A(55il21l 
LOGICAL FEAS.V-RiNEGfTRIG.i^iABSC 

MOVE INPUTS ZERO OJTP-TS 
I li7 
C 

1341 

.5*»16 
<»#M ♦ 10 
M/2  ♦ 5 

GO TO 1<»00 
ONE WlTn SINGLETON BASIS 

1402 

)  GO TO 1320 

DO 1341 
KO( I ) 

CONTINUE 
M ■ MX 
N ■ NN 
TEXP  ■ 
NCUT  ■ 
NVER  ■ 
M2 ■ M»»2 
IF  (INFLAG.NE.C) 

C» »NEW    START  PHASE 
DO 14-2  J » 1»N 

KB(J) ■ w 
KQ   ■ .FALSE. 
DO 14^3  I ■ liM 

IF (A( I iJUCQ.O.O) GO TO 1403 
IF UQ.OR.AIIiJI.LT.O.O) GO TO 
KQ • .TRUE. 

CONTINUE 
KBUI > 1 

CONTINUE 
IF (INFLAG.UT.l 
DO 14wl  I >1»M 

JH II) > -1 
CONTINUE 

CREATE INVERSE FROM »KB« AND «JH« 
• .TRUE. 

INVC ■ C 
NUMVR   ■  NUMVR 
DO 11^1  I ■ 1»M2 

E(I ) • O.w 
CONTINUE 
MM«1 
DO 1113  I ■ l.M 

ETMMI ■ l.w 
PE(I)  >  w.O 
X(I) >  3(1) 
IF (JH(I) .NE.OI 
MM ■ MM ♦ M ♦ 1 

CONTINUE 
FORM INVERSE 

DO 1U2  JT • liN 
IF KJIJTI.EO.O)  GO TO 1102 
GO TO 600 

14u3 

14-2 
14wC 

I4wl 
C« «VER« 
132w VER 
1121 
1122 

11^1 

♦ 1 

JH( I 1 • -1 

1113 

C 
C 

60^. CALL Jn 
CHOOSE PIVOT 

1114 TY 
DO 

■ J.Ü 
1104 I 1 iM 

X0001 
X0002 
X0003 
X0004 
X0C05 
X0006 
XÜ007 
X0C06 
X0009 
X0010 
XOOU 
X0012 
X0013 
XÜ014 
X0C15 
X0016 
X0017 
xocia 
X0019 
X0020 
X0021 
X0022 
X0023 
X0024 
X0023 
X0026 
X0027 
X002Ö 
X0029 
X0030 
X0G31 
X0032 
X0033 
XÜC34 
X0035 
X0036 
X0037 
X0038 
XC039 
X0040 
X0041 
X0042 
X0043 
X0044 
X0045 
X0046 
X0047 
XU048 
X0049 
X0050 
X0051 
XÜ052 
X0C53 
X0054 
X0055 
X0056 
X0057 
X005Ö 
X0C59 
X0C6Q 
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IF (JH( I ) .ME.-l)  GO TO 1104 XC061 
IF ( ABS(Y{ 1 ) I .LE.TY)  GC TO IICU X0062 
IR » I XJC63 
TY « A6S(Y(I)) XC06^ 

11J4   CON'"NUE XCC6b 
<b(JT) « Ü X0066 

C                       TEST PIVOT XuC67 
IF (TY.LE.TPIV)  GO TO 1102 XÜÜ6Ö 

C                        PIVOT Xücby 
JH(IR) « JT XCC70 
Kb(JT) « IR Xu071 
GO TO 9C0 XGC72 

C 9v.u   CALL PIV X0073 
1K2 CONTINUE X0C7^ 

C                 RESET ARTIFICIALS XJ075 
DO 11^9  I = ItM XCC76 

IF (JH(I).EG.-l )  JM(I) = 0 XJC77 
liu9 CONTINUE XU076 

■IZo^   VER « .FALSE. XGC79 
C                             PtRrüKX ONE ITERATION XOOdO 
C* 'XCK«    DETERMINE FEASIulLlTY X0OÖ1 

FEAS« .TRUE. X0Cö2 
NEG « .FALSE. XÜ063 
DO 12^1  I = 1,V| X0084 

IF (X(I).LT.C.C)  GO TO 1250 X00Ö5 
IF (JHIIJ.EQ.C)  FEAS = .FALSE. X0086 

12C1 CONTINUE X0067 
C* 'GET'    GET APPLICAdLE PRICL'S X0C8Ö 

IF (.NOT.FEAS)  GO TO 531 X0C89 
C                       PRI-IAL PRICES XGC90 

DO 503 I » UM X0091 
P(I) » PE(I) XGC92 

5J3 CONTINUE X0093 
ABSC = .FALSE. X009^ 
GO TO 599 X0C95 

C                       -COMPOSITE PRICES X009fa 
125u FEAS = .FALSE. X0097 

NEG  = .TRUE. XÜ098 
601 DO 504  J » I» M X0099 

P(J) = C. XÜ100 
5w^ CONTINUE X01Q1 

AbSC = .TRUE. XÜ102 
DO 5C5  I = UM X0103 

MM =1 X0104 
IF (X(I ) .OL.C.O)  GO TO 5J7 X01G5 
AbSC » .FALSE. X0106 
00 5U8 J = l.M X0107 

P(J) » P<J) + E(M,'1) XG108 
MM = MM ♦ V, X0109 

5J8   CONTINUE X0110 
GO TO 5C5 X01 11 

507   IF (JH(I).NE.J) GO TO 505 X0112 
IF (X(I).NL.C.) AuSC = .^"ALSE. X0113 
DO 51Ü  J = 1.M XÜ114 

P(J) « P(U) - El MM) Xoll5 
MM ■ MM ♦ M Xollb 

51w   CONTINUE Xull7 
5^5 CONTINUE XGllb 

C* «MIN'    FIND MINIMUM RLJUCEu COST X0119 
599 JT ■ J X0120 
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b8 
DO 7C1 

ü.O 
J «1 »N 

IF ( K L- ( J ) . 
OT = „.u 
DC 3U3 I = 

ME..C) 

1 

GO 
SKIP   COLUMNS 

TO 7C1 
IN BASIS 

A( I ,J) If- (A( I »J J ,NE.O»0 )  DT = DT •»• P(I) 
i^i CONTINUE 

IF (FEAS)  DT = DT > C(J) 
IF  (A3SC)  DT * - ADS(DT ) 
IF (üT.GE.üü)  uO TO 701 
bb = DT 
UT = J 

7ul CONTINUE 
C  TEST FOR NO PlVuT COLUMN 

IF (jT.LE.u)  GO TO 203 
C  TLST FOR ITERATION LIMIT EXCEEDED 

IF (ITER.GE.NCUT)  GO TO 16Ü 
ITER = ITER +1 

C* 'JMY'     MULTIPLY INVERSE TI MlS A(.,JT) 
6^w DC 61^  I« l.M 

Y ( I ) = u.O 
61- CONTINUE 

LL = ^ 
COST = C(JT) 
DO bob 1= ItM 

AljT - A(IiJT) 
IF (AIJT.cO.O.) GO 
COST = COST ♦ AIJT 
DO  606  J » l.M 

LL = LL ♦ 1 
Y(J) * Y(J) ♦ AIJT 

6^6   CONTINUE 
GO TO 605 

602   LL = LL * M 
6^5 CONTINUE 

C        COMPUTE PIVOT TOLERANCE 
Y^IAX = 0,0 

YMAX = AMAXK AüS ( Y ( I ) ) , YMAX ) 
62o CONTINUE 

TPIV  =  YMAX » TEXP 
RETURN TO INVERSION ROUTINE. IF INVERTING 

TO 602 
• PE(1 ) 

» L(LL) 

C 

C 
IF (VLR)  GO TO 111^ 

COST TOLERANCE CONTROL 
IF (TRIG.AND.Jb.GL.-TPIV)  GO TO 203 
TRIG ' .FALSE. 
IF (BÜ.GE.-TPIV)  TRIG » .TRUE. 

C* •ROW»    SELECT PIVOT ROW 
C AMONG EOS. WITH X«C. FIND MAXIMUM Y 
C  GET MAX POSITIVE Y(I) AMONG REALS. 
10JJ IR = ^ 

AA - u.O 
KG = .FALSE. 
DO l*bo      I =1.M 

IF (X(I).NE.0.Q.OR.Y(1).LL.TPIV) 
IF (JH(I).EO.O)  GO TO lUUU 
IF (ICQ) GO TO 1-5 0 

i:ub      IF (Y(I).LL.AA) GO TO 1050 
GO TO 1^7 

AMONG ARTIFICIALS. OR. IF NONE, 

GO TO 1050 

X0121 
X0122 
X0123 
X0124 
X0125 
X0126 
X0127 
XQ12Ö 
X0129 
X0130 
X0131 
X0132 
X0133 
X013^ 
X0135 
X0136 
XQ137 
X0138 
X0139 
X0140 
XOUl 
X0142 
X01^3 
xom 
X0145 
X0U6 
XOl'»? 
X0148 
XC1^9 
XÜ150 
X0151 
X0152 
X0153 
X0154 
X0155 
X0156 
X0157 
XQ158 
X0159 
X0160 
X0161 
X0162 
XC.16 3 
X0164 
X016.S 
X0166 
X0167 
X0168 
X0169 
X0170 
X0171 
X0172 
X0173 
xom 
X0175 
X0176 
X0177 
X0178 
X0179 
X0180 
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1(H4   IF (KQ) GO TO 1045 
KQ » .TRUE. 

1Ü47   AA = Y(I) 
IR = I 

1050 CONTINUE 
IF ( IR.NE.O)  GO TO 1099 

1001 AA « U0E+2Ü 
C FIND MIN. PIVOT AMONG POSITIVE EQUATIONS 

DO 1010  I  = 1,M 
IF (Y( I ).LL.TPIV.ÜR.X(I).LE.0.0.OR.Y(I)»AA,LE.X(1 ) ) GO TO 1010 
AA = X(I )/Y( I ) 
IR » I 

lülu CONTINUE 
IF (.NOT.NEG)  GO TO 1099 

C  FIND PIVOT AMONG NEGATIVE EGUATIONSt IN WHICH X/Y IS LESS THAN THE 
C MINIMUM X/Y IN THL POSITIVE EQUATIONS. THAT HAS THE LARGEST ABSF(Y) 
1016 B6 = - TPIV 

DO 1030  I = 1,M 
IF (X( I ).oc.0..uR.Y( I ) .UL.Dö.OR.YCI)»AA.GT.X( I)  )  GO TO 1030 
Bb = Y(1) 
IR = I 

1030 CONTINUE 
C  TEST FOR NO PIVUT ROW 
1099 IF  (IR.LE.u)  GO TO 207 

C« «PIV    PIVOT ON ( IR.JT ) 
C LEAVE TRANSFORMED COLUMN IN Y(I) 

9C0 NUMPV  =  NUMPV  ♦  1 
YI = -Y(IR) 
Y( IR) = -1 .o 
LL « 0 

C TRANSFORM INVERSE 
DO  9-4  J = 1»M 

L = LI. ♦ IR 
IF (EIL).NE.0.C1  GO TO 905 
LL = LL ■»■ M 
GC TO 904 

9ob XY = E(LI / YI 
PEI J) « PE(J) ♦ COST • XY 
E(L) = 0.0 
DO 9U6  I = 1»M 

LL  =  LL ♦ 1 
E(LL) = E(LL)  ♦ XY • Y(I) 

9o6   CONTINUE 
904 CONTINUE 

C TRANSFORM X 
XY  =  X(IR) / YI 
DO 90Ö  I  = 1. M 

XNEw = X(I) ♦ XY » Y(I) 
IF (VER.OR.XNEW.ÜL. ...OR.Y( 1 ),GT.TPIV.0R.X( I) .LT.O. ) GO TO 907 
X( I ) « Co 
GO TO 908 

9u7   X( I ) « XNE*' 
9oö CONTINUE 

C RESTORE Y(IR) 
Y( IR) = -YI 
X( IR) = -XY 
IF (VLR) GO TO 1102 

221 IA « JH( IR) 
IF (IA.GT.O)  KB(1A) = 0 

213 KB(JT)   « IR 

X0181 
X0182 
X0183 
X0184 
X0185 
X0186 
X0187 
X0188 
X0189 
X0190 
X0191 
X0192 
X0193 
X0194 
X0195 
X0196 
XÜ197 
X0198 
X0199 
X0200 
X0201 
X0202 
X020i\ 
X02C4 
X0205 
X0206 
X02O7 
X0208 
X0209 
X021Ü 
X0211 
X0212 
X0213 
X0214 
X0215 
X0216 
X0217 
X021Ö 
X0219 
X022C 
X0221 
X0222 
X0223 
X022^ 
XÜ225 
X0226 
X0227 
X0228 
X0229 
X0230 
X0231 
X0232 
XÜ233 
X0234 
XÜ235 
XÜ236 
X0237 
X0238 
X0239 
X02'»0 
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JH(IR)   = JT 

IF (NU^PV.Lt.M) Gü TC 1200 
C  TEST FGK INVERSION ON THIS ITERATION 

INVC   = INVC   >1 
IF  (lNVC.Ew.NV£R)   GO TO 132U 
GO  TO  1 2 0 v- 

C»  £N0 OF ALGOR I Tn.V, StT LXIT VALULo 
C INFINITE SOLOTIOiN 

2^7 < =      2 
GC TO 25Ü 

C PROdLE.M 13 CYCLING 
16o K  =  4 

GC TO 25^ 
C FLASIJLC: OS INFEASIJLt SOLUTION 

2-3 K  =  ^ 
25- IF l.NOT.FEAS)  < « IC ♦ 1 

DO 13^9  J = l.N 
XX  =  u »U 
KöJ  =  ^oIJ) 
IF (KBJ.NL. v )  XX = X(KbJ ) 
KBfJI = LL 

1399 CONTINUE 
C       SET 'ICOUT' 
1392 DO 1393 I = 1.7 

ICOUT ( I ) a <u( I ) 
1393 CONTINUE 

RETURN 
END 

X02M 
X02^2 
X0243 
X0244 
X02'*i) 
X0246 
X0247 
X024Ö 
X0249 
XÜ230 
X0251 
X02i2 
X0253 
X02^4 
X0255 
X0256 
X0257 
X0258 
XÜ259 
X0260 
X0261 
X0262 
X0263 
X0264 
X0265 
X0266 
X0267 
X0?6fl 
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c 

c 

c 
c 

2w 
C blG 

1J5 

2ÜU 

26u 

100 

^5- 

lib 
6 v.. 

ELEMENT 

oO TO 1-3 

AjS(AVAX ) .GL.A3r(A(J.K) ) )  GO TO ICO 

GO TO 75C 

PJT PIVOT ELEMENT ON DIAGONAL 
GO TO 260 

KATKIX INVERSION AITM ACCJKPANrlNG SOLUTION 
SUdROUTlNE MATINV(AtN»BtMf I.NAtlNd.lP.lSlNG) 

DIMENSION B(1).INA(1)iINB( 1 ) i IP( 1 ) 
LOGICAL IP 
DIMENSION A(65,65) 

INITIALIZATION 
DC 2ü J « l.N 

1P(J) = .FALSE. 
CONTINUE 
LOOP ON 1 
DO bib      I = l.N 

AMAX  s D.v 
SEARCH FOR PIVOT 

DO 105 J s l.N 
IF  ( IP(J) ) 
DO 100 K. = l.N 

IF  ( IP(KI .OR 
I ROW  = J 
ICOL = K 
AMAX = A(J,<) 

CONTINUE 
CONTINUE 
IF (AMAX.tO.0.0) 
IP(ICOL) -   .TRUE. 

INTERCHANGE ROWS TO 
r" ( IROW.LU.ICOL) 

^0 200 L « l.N 
SWAP a A(IROW.L) 
A« IROW.L) = A( ICOL.L) 
A( ICOL.L) » SWAP 

CONTINUE 
IF (M.EO.O) GO TO 260 
bwAP = B( IROw) 
b(IROW)   = B( ICOL ) 
b(ICOL)   = SWAP 
1NA(I) = IROW 
INb(I) = IC^L 

DIVIDE PIVCT ROW bY PIVOT ELEMENT 
A(I COL.I COL) = 1.0 
DO 3 5.-  L = l.N 

A(ICOL.L) « A(ICCL.L) / AMAX 
CONTINUE 
IF (M.NE.-)  Li (I COL) 

COMPLETE Tu: PIVOT 
DC 550 LL = l.N 

IF (LL.b-.lCCD oO 
S..AP = A(LL.ICOL) 
A(LL.ICOL ) = „.w 

^v. ^3-  L s 1 ,N 
A(LL »L ) = A(LL.L) 

CUNTINUL 

IF ( M.\E,„ ) BILL)  ^ :: < LL)  - ;M ic; 
CONTINUE 

CONTINUE 
IF (:•'. L T . „ ) 
INTERCHANGE 
DC 71-  1 = 

iF LINEAR EQUATIONS 

9( ICOL) / A"AX 

5 50 

A(ICwL.L) • S..AP 

, .■. A P 

RETURN 
C-LU'/NS 
1 .N 

MO0 01 
/.or. 02 
i-.c:o3 
KQQOk 
KOOO'J 

.••'.uCOö 
MOO 0 7 
MO 0 06 
M000 9 
M 0 010 
MOO 11 
MOC12 
MOO 13 
MOO 14 
MOO 15 
MC 016 
M0C17 
MOCia 
M0019 
M0020 
MOO 21 
MOC22 
M002 3 
M0024 
M0025 
M0026 
M0027 
M002ä 
M0029 
M0030 
M0031 
M0032 
M0033 
M003* 
M0035 
M0036 
M0037 
MC03Ö 
M003' 
MOOAO 
MOG^l 
M0042 
MCC43 
M00<»'» 
MÜ045 
M00<»6 
M0047 
MCO^o 
M0049 
.■iOC50 
f.Qdbl 
MO 0 52 
M0053 
M0C54 
■1v05^ 
MCC56 
M0C57 
MOO 5b 
MOC59 
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L = N ♦ 1 - I 
IF ( 1NA(L).EQ.INBIL) ) 
IRCU = I\A(L) 
ICCL = INb(L) 
DO 705 K. = UN 

SAAP » AU. IROw ) 
A( Kt I RC*;) = A( < t ICCL ) 
A(KtlCOL) = SWAP 

7-5   CONTINUE 
7lo CONTINUE 
T*j   RETURN 
blNüüLARITY FLAG 
75- ISING = 1 + N - I 

GO TO 603 
END 

bU TO 710 

M006C 
NO 0 61 
M 0 0 62 
MCC63 
y.0C6^ 
MCC65 
M0066 
M0067 
M006fa 
MG069 
MOO 70 
MOO 71 
Mw072 
M0073 
M007<» 
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Appendix B 

MATRIX NOTATION AND FURTHER PROOFS 
i ■    iii. 

The derivations in the preceding sections would be 

facilitated by the use of matrix notation rather than sub- 

scripted variables.  We introduce the following symbols to 

correspond to the subscripted variables used in Sec. 3. 

Subscripted Variable   Matrix   Size of Matrix 

MxN 

Mxl 

Nxl 

Nxl 

Nxl 

Mxl 

MxM 

Nxl 

The single-column matrices may also be thought of as vectors 

We use here the convention that an operator applied to a 

matrix means that the operator operates on each element of 

the matrix.  For example, log Y is the Nxl matrix consist- 

ing of 

aiJ 
A 

b B 

Xj Y 

d D 

c. C 

TT. it 

ru R 

x. X 
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log y. 

log y. 

log y 
N 

\ 

T . 
The superscript  indicates the transposition of a matrix. 

We assume that the elementary results of matrix theory are 

known.  For example, it is known that the inverse of an 

invertable symmetric matrix is symmetric.  The square 

diagonal matrix whose diagonal is one of the vectors pre- 

viously defined will be denoted by the previously defined 

vector in elongated type; that is, 

0 = diag (D) 

and 

Y = diag (Y) 

Equations (3.2) and (3.7) in matrix notation are 

AX = B (B.l) 

X = Y(D"1ATtr -D^C - log Y) (B.2) 
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To see the ease of matrix notation, we may substitute (B.2) 

into (B.l) to get 

AYD'Vir - B + AYCO^C + log Y) . (B.3) 

By letting 

R - AYD'V (B.4) 

and 

.-1 S - B + AYCD^C + log Y) , (B.5) 

we see that 

RTT = S (B.6) 

corresponds to (3.10). 

In Sec. 4, we evaluated 

N02d. l^f (B.7) 
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but we did not give the details of the computation. The 

algebra of this evaluation is very difficult unless matrix 

algebra is used.  In matrix notation, (B.7) is 9 DY 0, 

where 9 = X-Y.  From (B.2) we have 

Hence, 

6  = YCD"^  -D^C  -   log Y)   -  Y   . (B.8) 

9TDY"19 = (/AD"1 - c7!)"1 - log Y^YDY"^ - Y^Y"^ 

= TrTA(D'1YDY'1)9 - (cV1 + log Y^DYY"1© - YVV 

= 7TTA9 - (CT0"1 + log Yr)D9 - Dr9 . (B.9) 

Since AX = B, A9 = AX-AY = B-AY.  Also, in the chemical 

equilibrium formulation. 

n       N      p / \ 

j=l    j=n+l   k=l^j€<k^       / 

= 0 

and 
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(CV1 +  log YT)D9 

n N 

=    ^ (Cj  + log y )0    +     ^ log XjC-e^ 

j=l j-n+1 

k=l \jc(k) 

+ log yj) - ek log sk 

I   (    ^9.(c.   +logy.   -   logSk) 

k=l  \j€(k) 

Hence, 

N n2, m        / n \ n 

I^= Iffibi- Iaijyj - I^^j^^V (B-l0) 

j-1  J     1=1   \     j»l      /    j-1 

in the context of the chemical equilibrium problem used in 

Sec. 4. 

Next we wish to show that 
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N92d. 
-LJL 2 o I ̂

 

as stated in (4.14).  First, we prove 

Lemma 1:  Let y1,y?,...,y be positive numbers and let 

0,.0o.....9 be any real numbers.  Let 12     r     J 

G= I 
r e2 ( VJ 

yi      r 

j-l J    T.    y. 
j-1 J 

Then, 

i)  G ? 0 

ii) G = 0  if and only if 

e,     «o 0 
1         2 r 

yl       y2 ^r 

Proof:  Let or. = O./y., j = l,2,...,r.  Then, 

I ^ o.y. I r 
2 

G r 

j-i J 
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r      \-l 

0=1 
Iyj)(lVj)-(l0jyj 

L\j-1    / \j-l        /       \j-l 

r     \   -1 

<j=l 

r     / r 

i-1 \j-l 

-1 

1^ 
0=1 

r     /i 

I (I Hvj 
Li=l  \j = l 

la.a.y.y. + a.y.y. 

Iyj)       ( Iyiyj(aj  ■0fi)2) 
j=l    /        \j<i / 

^ 0 , 

which is result i).  The proof is completed by noting that 

G = 0 if and only if o. = o. for all i and j; this proves 

ii). 

Now we can prove 

Theorem 1:  In the chemical equilibrium problem 

i) 

N92d. 

L yi j-i  J 

0 

ii) 

N92d. 

L   y> 
j-i J 

= 0 if and only if there exist 
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numbers  or, ,a0.. . . ,or     such that 12 p 

a)    9.  - orr. ,7. i^n 

b)     9.   = a.     S.        . j>n 
J J-n  j-n 

Proof:  The proof follows by noting that for i > n 

9. =  V  9. 
i L        3 

jc i-nN 

Then, 

N 92d.   " 92   P 9^ 
Y  i i = Y -i.  yJs+n 
L   y. L   y.       L     s 
j=l J   j=l J  k=l 

k=l \jc (k) J   jc^ J 

by lemma 1.  Furthermore, by lemma 1, if the equality holds, 

then for each k there is a number o-, such that 9, = a, y.   if 

j c k.  This, noting that b) follows from the fact that 
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9. *   y e' for i>n > 
jca-n) 

completes the proof of the theorem. 

Our final result is 

Theorem 2:  In the chemical equilibrium problem, with 

(y-i »YOJ . . • .y ) feasible and 0. ,9»,....0 calculated as in w 1 2    yn 12     n 

(4.7) 

n 

i)  £ 0.(0. + log y.) ^ 0 

i-i 

n 

ii)  V 9.(c. + log y.) - 0 if and only if 

j-l 

(y1,y2»■••.yn) ls optimal. 

Proof:  i) follows from Theorem 1, (B.10), and the fact 

that (y1,y2,....y ) is feasible. 

To prove ii), we assume that 

n 
A 

£ 9.(c. + log y.) - 0 . 

J-l 

Then, 
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N92d. 

L yi 
o , 

and 0.   is  as   in   ii)   of Theorem  1.     Combining b)   of Theorem 

1  and  (4.12)  we have 

ök+n  = ViU = akSk 

or 

ök  =  ^m+k 

Next,  we combine a)   of Theorem 1 with  (4.7)   to get 

9.   -  y. 
J J 

m 

I 
Li=l 

ff! a. . -  c.   -   log y.   + TT! . 1. 
j 6 ^j [j]-hn 

J   Lj]      J1   Lj +tn 

or 

m 

I 
i=l 

nla..   -  c.   -   log y.   = 0 
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Thts last result is the optlmality condition for 

(yi.y2»'''»y ) as given by (1.4), and this demonstrates 

the forward Implication of ii).  The converse follows from 

the fact that optimality implies that the objective function 

cannot be decreased. 
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