
R. J. Clasen

PREPARED FOR:
UNITED STATES AIR FORCE PROJECT RAND

MEMORANDUM

RM-4345-PR

JANUARY 1965

THE NUMERICAL SOLUTION OF
 THE CHEMICAL EQUILIBRIUM PROBLEM

This research is aponsored hy the I nited Statec Air Force under Project RAND-Contract No. AF 1916.381.70) monitured by the Directorate of Deselopment Plans. Deputy Chief of Saff. Revareth and Deselopment. Hq I'SAF. View or conchusions contained in thi . 1 momandum should not be interpereted as representing the official opinion or policy of the ('inited States Air Force.

DDC AVAILABILITY NOTICE
Qualified requesters may obtain copies of this report from the Defense Documentation Center (DDC).

```
Auflowort = I ,TS rom, it
```


PREFACE

This Memorandum is one in a continuing series of RAND publications dealing with theoretical computational questions arising from the RAND program of research in biology and physiology. The Memorandum contributes to our ability to apply computer technology to the analysis of complex chemical systems by considering the "chemical equilibrium problem," the problem of determining the distribution of chemical species that minimizes the free energy of a system while conserving the mass of each of the chemical elements. Solutions to the chemical equilibrium problem published up to this t me [4,5] apply to those problems for which an estimate of the solution exists. This Memorandum considers a problem for which no estimated solution exists and solves that problem with the maximum precision now available.

The mathematical aspects of this Memorandum should also be of interest in other fields where computational analyses of complex chemical systems are under consideration, e.g., in studies of rocket propulsion systems, planetary atmospheres, re-entry problems. etc.

SUMMARY

In physical chemistry, the "chemical equilibrium problem" is the problem of determining the distribution of chemical species that minimizes the free energy of a system while conserving the mass of each of the chemical elements. The reactions occurring within the chemical system may be quite complex. However, in a great number of cases, the mathematical statement of the problem can be simplified to a particular mathematical form $[7,8]$ involving the minimization of a nonlinear objective function over a set of linear constraints.

This Memorandum presents the numerical solution of the chemical equilibrium problem by describing methods for starting the solution when an initial estimate is not available, and for improving an initial estimate to make it feasible. It presents a first-order method and a second-order method for solving the chemical equilibrium problem in the context of the linear-logarithmic programming problem [4] and provides convergence criteria for the majority of problems of this type that are likely to be attempted.

FOREWORD

In deciding between the languages of mathematics and physical chemistry, we have chosen in this Memorandum to use that of mathematics. The disadvantage of this choice is that the physical chemist may experience some diffizulty in immediately identifying certain concepts. The advantage is that mathematical language divorces the methods from the physical assumptions involved in constructing a mathenaticai model of a physica: system. ${ }^{*}$ The mathematical methods are, hence, free to transcend their specific chemical applications.

The methods given here do not solve every problem that is specified in the given mathematical form. The solution of a problem in which some phase vanishes (a degenerate problem) requires further work. Some work has been done on particular degenerate systems [13], but the accurate numerical solution of a large general system of this type has yet to be accomplished. Until recently, a skilled physical chemist could intuitively eliminate the degeneracies of his model and

[^0]obviate the need for solving a degenerate system. But, as problems grow, eliminating degeneracy becomes increasingly difficult. Frequently, the point at which the problem becomes too large for the physical chemist to decide whether or not to include a phase coincides with the point at which the problem becomes numerically unwieldy. Hopefully, the future will eliminate these difficulties.

Statements about convergence and convergence tests exist, unless otherwise indicated, in the context of finiteaccuracy numerics. Statements of this kind do not mean, in the absence of qualification, that no problem exists nor that no machine would serve as a counter example. Rather they are simply descriptions of what was found to occur in actual practice.

No attempt has been made to describe those methods which were tri.ed and found wanting. The methods presented are those which are best for the largest number of cases. Finally, it should be pointed out that although computing time was a factor, it was consicered secondary to accuracy of results.

ACKNOWLEDGMENTS.

The author wishes to thank J. C. DeHaven, E. C.
DeLand, F. R. Gilmore, and N. Z. Shapiro for their many constructive comments and suggestions.

CONTENTS

PREFACE iii
SUMMARY v
FOREWORD vii
ACKNOWLEDGMENTS ix
Section

1. INTRODUCTION 1
2. THE INITIAL SOLUTION 5
The Projection Method 5
The Linear Programming Method 9
3. THE LINEAR-LOGARITHMIC PROGRAMMING PROBLEM, FIRST-ORDER METHOD 15
4. THE FIRST-ORDER METHOD FOR SOLVING THE CHEMICAL EQUILIBRIUM PROBLEM 21
5. THE LINEAR-LOGARITHMIC PROGRAMMING PROBLEM, SECOND-ORDER METHOD 28
6. THE SECOND-ORDER CHFMICAL EQUILIBRIUM ALGORITHM 33
7. SUMMARY OF THE COMPUTATION PROCEDURE 35
Appendix
A. A FORTRAN-IV PROGRAM FOR SOLVING THE CHEMICAL EQUILIBRIUM PROBLEM 37
General Description 37
Subroutines 41
Listing 45
Calling Sequence for Simplex Subroutine 56
B. MATRIX NOTATION AND FURTHER PROOFS 67
REFERENCES 79

1. INTRODUCTION

For the purposes of this Memorandum, the chemical equilibrium problem is merely a name we use for a particular mathematical programming probiem, i.e., the problem of minimizing a particular nonlinear function $F\left(x_{1}, x_{2}\right.$, \ldots, x_{n}), defined below, while satisfying the linear restraints or constraints

$$
\sum_{-1}^{n} a_{i j} x_{j}=b_{i} \quad i=1,2,3, \ldots, m
$$

with $x_{j} \geq 0$ for $j=1,2, \ldots, n$ and $a_{i j}, b_{i}$ given constants. Assuming that the equations of (1.1) are linearly independent, then in order to have a non-trivial problem it can be assumed that $m<n$. The variables $x_{1}, x_{2}, \ldots, x_{n}$ can be considered components of a vector ($x_{1}, x_{2}, \ldots, x_{n}$). Solving the chemical equilibrium problem then is the problem of determining this vector. The variable x_{j} will be referred to as the " j th component"; also the numerical value of x_{j} may be referred to as the "component" rather than using the perhaps linguistically correct but cumbersome term "component value."

The components are partitioned into p non-empty subsets called compartments. Let us denote these compartments by $\langle 1\rangle,\langle 2\rangle, \ldots,\langle p\rangle$. Then if the $\mathrm{j}^{\text {th }}$ component is in the $k^{\text {th }}$ compartment, we will say $j \in\langle k\rangle$, where each component is in exactly one compartment. The number of the compartment that the $j^{\text {th }}$ component is in is denoted by [j]. Hence $j \in(k)$ implies $[j]=k$, and conversely. Each compartment has associated with it a sum defined by

$$
\begin{equation*}
S_{k}=\sum_{j \in\langle k\rangle} x_{j} \tag{1.2}
\end{equation*}
$$

The component fraction $\hat{\mathbf{x}}_{\mathrm{j}}$ is defined by $\hat{\mathbf{x}}_{\mathbf{j}}=\frac{\mathbf{x}_{\boldsymbol{j}}}{S_{[j]}}$ whenever $S_{[j]}>0$.

The objective function to be minimized over (1.1) 18

$$
\begin{equation*}
F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{j=1}^{n} x_{j}\left(c_{j}+\log {\hat{A_{j}}}_{j}\right) \tag{1.3}
\end{equation*}
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are given consiants, called objective constants.

When an x_{j} is zero, $\log \hat{X}_{j}$ is undefined; but we define $0 \log 0$ to equal 0 so that we may evaluate F when
some components are zero. A feasible solution to the chemical equilibrium problem is defined to be any set of non-negative components that satisfies (1.1). The problem is said to be feasible if it has feasible solutions. If no feasible solution is arbitrarily large in any component, the feasible problem is said to be bounded feasible; all practical problems with which one might have occasion to deal are bounded feasible.

A solution or optimal solution to a bounded feasible problem is any feasible solution in which $F\left(x_{1}, \ldots, x_{n}\right)$ attains the minimum value over all feasible solutions. A problem which has optimal solutions in which some component is zero is called degenerate, and a bounded feasible problem in which the components in any optimal solution are all. strictly positive is called a non-degenerate problem. It has been shown [1, Theorem 12.1] that a non-degenerate problem has exactly one optimal solution. Hence, we may speak of the solution to the problem. Furthermore, it has also been shown ${ }^{*}$ for the non-degenerate problem that the minimization of F is equivalent to the existence of numbers $\pi_{1}, \pi_{2}, \ldots, \pi_{m}$, called Lagrange multipliers, which satisfy:

$$
{ }^{*} \text { Ref. } 1, \text { p. } 18
$$

$$
\begin{equation*}
\sum_{i=1}^{m} \pi_{i} a_{i j}=\dot{c}_{j}+\log \hat{x}_{j} . \quad j=1,2,3, \ldots, n \tag{1.4}
\end{equation*}
$$

In the following sections we derive conditions, analogous to (1.4), which are useful in solving the problem. In Sec. 2 we are interested in finding a solution to (1.1) with all $x_{j}>0$. A set of x_{j} which satisfies these conditions is called a positive feasible solution. If (1.1) is satisfied with $X_{j} \geq 0$, we have called such a result a feasible solution. The theory of linear programming gives us methods of finding feasible solutions to problems with linear restraints. In Sec. 2, we use a linear programming technique to find a positive feasible solution. In Sec. 4 we show how to modify the initial ositive feasible solution to get the solution to the problem.

2. THE INITIAL SOLUTION

The algorithms presented in the following sections require an initial positive feasible solution in order that the procedure for solving the problem can be initiated. Frequently, an individual with a problem to solve will be able to give a rather accurate estimate of its optimal solution. This estimate may be the exact solution of another problem which differs from the one being considered in relatively minor ways.

THE PROJECTION METHOD

Let us suppose that such is the case, and let us denote the estimate of the components by $y_{1}, y_{2}, \ldots, y_{n}$. These values, substituting y_{j} for \mathbf{x}_{j} in Eq. (1.1), will not generally satisfy (1.1), being somewhat in error. Let us denote these errors by $g_{1}, g_{2}, \ldots, g_{m}$; that is, let

$$
\begin{equation*}
g_{i}=b_{i}-\sum_{j=1}^{n} a_{i j} y_{j} . \quad i=1,2, \ldots, m \tag{2.1}
\end{equation*}
$$

Then, we wish to find corrections to y_{j} such that, denoting the corrections by θ_{j}, we have

$$
b_{i}-\sum_{j=1}^{n} a_{i j}\left(y_{j}+\theta_{j}\right)=0 \quad i=1,2, \ldots, m
$$

or

$$
\begin{equation*}
g_{i}=\sum_{j=1}^{n} a_{i j} \theta_{j} . \quad i=1,2, \ldots, m \tag{2.2}
\end{equation*}
$$

The θ_{j} must also be chosen such that $y_{j}+\theta_{j}>0$, for all j. We cannot guarantee this condition, but we can attempt to choose small values for θ_{j}. One way to do this is to minimize

$$
\sum_{j=1}^{n} w_{j} \theta_{j}^{2}
$$

subject to (2.2), where w_{j} is the "weight" or relative importance of minimizing θ_{j}. This reduces to the problem of finding Lagrange multipliers $\pi_{1}, \pi_{2}, \ldots, \pi_{m}$, such that with

$$
\begin{equation*}
L=\frac{1}{2} \sum_{j=1}^{n} w_{j} \theta_{j}^{2}-\sum_{i=1}^{m} \pi_{i}\left(\sum_{j=1}^{n} a_{i j} \theta_{j}-g_{i}\right) \tag{2.3}
\end{equation*}
$$

we have

$$
\begin{equation*}
\frac{\partial L}{\partial \theta_{j}}=0 . \quad j=1,2, \ldots, n \tag{2.4}
\end{equation*}
$$

Equation (2.4) becomes

$$
\begin{equation*}
w_{j} \theta_{j}=\sum_{i=1}^{m} a_{i j} \pi_{i} \quad j=1,2, \ldots, n \tag{2.5}
\end{equation*}
$$

and substituting (2.5) into (2.2) we have

$$
\begin{equation*}
g_{i}=\sum_{l=1}^{m}\left[\pi_{l}\left(\sum_{j=1}^{n} \frac{a_{l j}{ }_{i j}}{w_{j}}\right)\right] \cdot i=1,2, \ldots, m \tag{2.6}
\end{equation*}
$$

The terms

$$
\sum_{j=1}^{n} \frac{a_{\ell j}{ }_{i}{ }_{i j}}{w_{j}}
$$

can be immediately evaluated; let us denote these terms by

$$
\begin{equation*}
q_{\ell i}=\sum_{j=1}^{a} \frac{a_{\ell, j} a_{i j}}{w_{j}} . \tag{2.7}
\end{equation*}
$$

Note that $q_{\ell, \mathrm{i}}=\mathrm{q}_{\mathrm{i} \ell}$. Then, (2.6) becomes

$$
\begin{equation*}
g_{i}=\sum_{\ell=1}^{m} q_{i_{i}} \pi_{\ell} \cdot \quad i=1,2, \ldots, m \tag{2.8}
\end{equation*}
$$

Equation (2.8) is a set of m simultaneous equations in the m unknowns, $\pi_{1}, \pi_{2}, \ldots, \pi_{m}$. These equations may be solved for $\pi_{1}, \pi_{2}, \ldots, \pi_{m}$, and then these values may be substituted in (2.5) to get $\theta_{1}, \theta_{2}, \ldots, \theta_{n}$. There remains the question of choosing values for the weighting factors w_{j}. In tests of this method, it has been found that using

$$
w_{j}=\frac{1}{y_{j}}
$$

yields satisfactory results. The choice of the weighting factors depends, to some extent, on the available compouters. Using these weighting factors, we can summarize the computation of θ_{j} in the following three equations:

$$
q_{\ell i}=\sum_{j=1}^{n} a_{\ell j} a_{i j} y_{j} \quad \begin{align*}
& i=1,2, \ldots, m \tag{2.9}\\
& \ell=1,2, \ldots, m
\end{align*}
$$

$$
\begin{equation*}
\sum_{\ell=1}^{m} q_{\ell i^{\pi} \ell}=b_{i}-\sum_{j=1}^{n} a_{i j} y_{j} \quad i=1,2, \ldots, m \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{j}=y_{j} \sum_{i=1}^{m} a_{i j} \pi_{i} \quad j=1,2, \ldots, n \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{j}=y_{j}+\theta_{j} \cdot \quad j=1,2, \ldots, n \tag{2.12}
\end{equation*}
$$

The x_{f} from (2.12) will satisfy (1.1). However, the x_{f} need not all be strictly positive. If any x_{j} is zero or negative, this method of obtaining the initial solution, which we shall call the projection method, has falled. If the projection method fails, or if no initial estimate is provided, then a linear programing method may be used.

THE LINEAR PROGRAMMING METHOD

The terminology used in inear programing is similar to the terminology used above in describing the chemical equilibrium problem. The statement of a linear programming problem includes a set of linear restraints

$$
\sum_{j=1}^{n} a_{1 j} x_{j}=b_{1} \quad \quad 1=1,2, \ldots, m
$$

together with a set of constants $C_{1}, C_{2}, C_{3}, \ldots, C_{n}$, called costs. A feasible solution to a linear programing problem is any set of non-negative x_{j} such that (2.13) is satisfied. The costs are used to form the following expression, L, which is called the objective function

$$
\begin{equation*}
L=\sum_{j=1}^{n} C_{j} x_{j} \tag{2.14}
\end{equation*}
$$

For every set of feasible x_{j}, we can evaluate L . The set of feasible x_{j} for which L has the minimum value that it can have with any set of feasible x_{j}, is called a soiution of the linear programming problem. A problem which has sets of feasible x_{j} is called a feasible problem, and a problem in which there are no sets of feasible x_{j} is called an infeasible problem. An infeasible froblem has no solutions, while a feasible problem has at least one solution. In this discussion, we will not be concerned as to whether a problem has moi : than one sclution: we will only be concerned with finding a solution to the problem. Since the means of finding a solution to a linear programming problem has been the subject of many papers and books, we will not give an actual method of solving the linear programming problem here. The reader may refer to Dantzig [2] for a complete discussion of the problem.

The problem of finding a feasible solution to a linear programing problem is it:self a linear programming problem--that is, it involves finding a solution to the
problem with all C_{j} equal to zero. With all $C_{j}=0$, L in (2.14) is zero for any set of feasible x_{j}; hence, L is at its minimum value for any set of feasible x_{j}. Since L is at its minimum value for any feasible set of x_{j}, any feasible set of x_{j} is, by the above definition, a solution to the linear programming problem.

However, we must not only find a feasible solution to the linear programming problem, we must also find a positive feasible solution to the problem. In order to do this, we 1 et

$$
\begin{equation*}
x_{j}=y_{j}+y_{n+1} \cdot \quad j=1,2, \ldots, n \tag{2.15}
\end{equation*}
$$

If we can find non-negative values of $y_{1}, y_{2}, \ldots, y_{n+1}$ which satisfy

$$
\sum_{j=1}^{n} a_{1 j}\left(y_{j}+y_{n+1}\right)=b_{i} \quad i=1,2, \ldots, m
$$

then x_{j}, as defined by (2.15), will be a feasible solution. If we can somehow assure that y_{n+1} is positive, then all x_{j} will be positive. Rewriting (2.16), we have

$$
\begin{equation*}
\sum_{j=1}^{n} a_{i j} y_{j}+\left(\sum_{j=1}^{n} a_{i j}\right) y_{n+1}=b_{i} . \quad i=1,2, \ldots, m \tag{2.17}
\end{equation*}
$$

If we now specify $C_{1}, C_{2}, \ldots, C_{n+1}$, we have a linear programming problem in $n+1$ unknowns. In order to guarantee that y_{n+1} is positive, if it is possible for it to be positive, we can maximize y_{n+1}. It is easy to see that we can maximize y_{n+1} by setting

$$
\begin{equation*}
\mathrm{L}=-\mathrm{y}_{\mathrm{n}+1} \tag{2.18}
\end{equation*}
$$

which is equivalent to setting $C_{1}=C_{2}=C_{3}=\ldots=C_{n}=0, C_{n+1}=-1$. If the solution to the resulting linear programming problem is feasible and $y_{n+1}>0$, then we have, by (2.15), a positive feasible solution to the analogous chemical equilibrium problem (1.1). If the linear programming problem is feasible but $y_{n+1}=0$, then the analogous chemical equilibrium problem is degenerate, since there is no strictly positive solution to the problem. However, this is a rather trivial kind of degeneracy, and its occurrence usually indicates that a mistake was made in setting up the problem. Hence, this linear programming method gives us a way of finding a positive feasible solution to the chemical equilibrium problem if the chemical equilibrium problem is non-degenerate.

The positive fasible solution that we obtain by this method will generally not resemble the final solution of the chemical equilibrium problem. The initial positive feasible solution can be improved by the following technique. Define b_{m+1} to be some multiple, between zero and one, of the value of y_{n+1} that was obtained above. Then, adjoin to the linear restraints (2.17) one more restraint of the form $y_{n+1}=b_{m+1}$. Ne: t, solve the linear programming problem with these restraints and with $C_{1}=C_{1}, C_{2}{ }^{=} C_{2}$, $\ldots, C_{n}=c_{n}, C_{n+1}=0$ (recall that the lower-case c 's here refer to the c's in the chemical equilibrium problem (1.3)). The solution to this linear programing problem will give a set of components more nearly resembling the solution to the chemical equilibrium problem than did the components calculated from Eqs. (2.17) and (2.18). This new solution, in turn, may be improved by solving another linear programing problem (the details of which can be seen in SUBROUTINE LP in Appendix A) and averaging the new solution with the old solution.

In order to solve an elaborate chemical equilibrium problem it is not sufficiert to simply use a method which we can prove converges to the correct solution. Proofs of convergence generally assume infinite computational accuracy, but since we are usually limited in practice to
about eight significant digits, the numerical solution will not always converge. However, it has been observed that the closer we can get to the solution by the initial solution methods described above, the greater will be the probability that the numerical procedure will converge. Furthermore, not only will the probability of convergence be greater, but the number of iterations to get co the solution will be fewer, and hence--when an improved initial solution is used--the computation time will be shorter. Unfortunately, the mathematical methods that are available for analyzing convergence of iterative processes do not, in the case of the chemical equilibrium problem, enable us to prove convergence when we are limited to finite mathematical accuracy. Only experience with a particular method will tell us whether it is a useful numerical procedure to use.

In the next section we consider a somewhat more general problem than the chemical equilibrium problem. This problem is considered first because the numerical results take on an especially simple form when the additional generality is admitted.

3. THE LINEAR-LOGARITHMIC PROGRAMMING PROBLEM,
 FIRST-ORDER METHOD

In this section we consider the problem of minimizing

$$
\begin{equation*}
F\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\sum_{j=1}^{N} x_{j}\left(c_{j}+d_{j} \log x_{j}\right) \tag{3.1}
\end{equation*}
$$

while satisfying the linear restraints

$$
\sum_{j=1}^{N} a_{i j} x_{j}=b_{i} . \quad i=1,2,3, \ldots, M
$$

The symbols $a_{i j}, b_{i}, c_{j}$, and d_{j} denote constants, and $x_{1}, x_{2}, \ldots, x_{N}$ are the unknowns that we seek. We restrict the problem to the case that $d_{j} \neq 0$ for $j=1,2,3, \ldots, N$. We note that if $x_{j}<0$, the term in (3.1), $x_{j}\left(c_{j}+d_{j} \log x_{j}\right)$, is undefined, whereas if $x_{j}>0$ this term is defined. If $x_{j}=0$ we define $x_{j}\left(c_{j}+d_{j} \log x_{j}\right)=0$, since this expression approaches zero as $\mathrm{x}_{\mathrm{j}}>0$ approaches zero. From this discussion, we see that, in order for a solution of Eqs. (3.1) and (3.2) to be defined, we must assume that $x_{j} \geq 0$ for $j=1,2,3, \ldots, N$.

We may attempt to solve this problem using Lagrange multipliers.* In this method we let

$$
L=F\left(x_{1}, x_{2}, x_{3}, \ldots, x_{N}\right)-\sum_{i=1}^{M}\left[\pi_{i}\left(\sum_{j=1}^{N} a_{i j} x_{j}-b_{i}\right)\right]
$$

and then set

$$
\frac{\partial L}{\partial x_{j}}=0
$$

for $j=1,2,3, \ldots, N$. Performing the partial differentiation, we get

$$
\begin{align*}
c_{j}+d_{j} \log x_{j}+d_{j}-\sum_{i=1}^{M} \pi_{i} a_{i j} & =0, \tag{3.3}\\
j & =1,2,3, \ldots, N
\end{align*}
$$

or, when rearranged,

$$
\begin{equation*}
\log x_{j}=d_{j}^{-1}\left[\sum_{i=1}^{M} \pi_{i} a_{i j}-c_{j}-d_{j}\right] \tag{3.4}
\end{equation*}
$$

*See Kaplan, Ref. 3, p. i28, or Dantzif, Ref. 2, p. 140 .

Exponentiating both sides of (3.4), we.get

$$
\begin{array}{r}
x_{j}=\exp \left[d_{j}^{-1} \sum_{i=1}^{M} \pi_{i} a_{i j}-d_{j}^{-1} c_{j}-1\right] . \tag{3.5}\\
j=1,2,3, \ldots, N
\end{array}
$$

Note that for (3.5) to be a solution to the problem, we must have all $\mathrm{x}_{\mathrm{j}}>0$. We assume, in the remainder of this section, that the solution does have all $\mathrm{x}_{\mathrm{j}}>0$. Then, the problem reduces to the problem of determining the $M \pi_{i}$ so that the x_{j} from (3.5) satisfy (3.2) Equivalently, the $M+N$ equations (3.2) and (3.5) must be satisfied simultaneously by the proper choice of the $M+N$ unknowns, $\pi_{1}, \pi_{2}, \ldots, \pi_{M}, x_{1}, x_{2}, \ldots, x_{N}$. We now consider two methods of approximating the solution.

In the first method, we suppose that we have an estimate of the X_{j} which may or may not satisfy (3.2). We denote this estimate by y_{j}, and, in this method, solve Eqs. (3.2) and (3.4) simultaneously by making a inear approximation to $\log x_{j}$. Since we have the estimate that x_{j} is near y_{j}, we note that the first-order Taylor expansion of $\log x_{j}$ about y_{j} is

$$
\begin{equation*}
\log x_{j}=\log y_{j}+\frac{x_{j}-y_{j}}{y_{j}}+(\text { higher-order terms }) . \tag{3.6}
\end{equation*}
$$

Dropping the higher-order terms, and substituting (3.6) into (3.4) and solving for x_{j}, we have

$$
\begin{equation*}
x_{j}=y_{j}\left[d_{j}^{-1} \sum_{i=1}^{M} \pi_{i} a_{i j}-d_{j}^{-1} c_{j}-\log y_{j}\right] . \tag{3.7}
\end{equation*}
$$

Now, if we substitute these x_{j} into (3.2), we get

$$
\begin{gathered}
\sum_{\ell=1}^{M}\left(\sum_{j=1}^{N} d_{j}^{-1} a_{i j} a_{\ell j} y_{j}\right) \pi_{\ell}=b_{i}+\sum_{j=1}^{N} a_{i j} y_{j}\left(\log y_{j}+d_{j}^{-1} c_{j}\right) . \\
i=1,2,3, \ldots, M
\end{gathered}
$$

Denoting

$$
r_{i \ell}=\sum_{j=1}^{N} d_{j}^{-1} A_{i j}{ }_{\ell j} y_{j} \quad \begin{align*}
& \ell=1,2,3, \ldots, M \tag{3.8}\\
& i=1,2,3, \ldots, M
\end{align*}
$$

and

$$
\begin{equation*}
s_{i}=b_{i}+\sum_{j=1}^{N} a_{i j} y_{j}\left(\log y_{j}+d_{j}^{-1} c_{j}\right) \tag{3.9}
\end{equation*}
$$

$$
i=1,2,3, \ldots, M
$$

we have

$$
\sum_{i}^{M} r_{i \ell}{ }_{\ell}=s_{i} . \quad i=1,2,3, \ldots, M
$$

Equation (3.10) is a set of simultaneous equations which can be solved for $\pi_{1}, \pi_{2}, \ldots, \pi_{M}$.

With the above results, we can now define the iterative process for the first method. At each iteration we have a set of values for $x_{1}, x_{2}, \ldots, x_{N}$. At the beginning of the iteration these values are called $y_{1}, y_{2}, \ldots, y_{N}$, and at the end of the iteration the values are $x_{1}, x_{2}, \ldots, x_{N}$. If

$$
\frac{x_{j}-y_{j}}{y_{j}}
$$

is small for each j, then we say we have converged. The magnitude of "small" depends on the nature of the problem. If

$$
\frac{x_{j}-y_{j}}{y_{j}}
$$

is not small for some j, then we have not converged and the iteration must be repeated. One iteration consists of the following three steps:

1) Evaluate terms in Eqs. (3.8) and (3.9), these terms depending on $y_{1}, y_{2}, \ldots, y_{N}$;
2) Solve Eq. (3.10) for $\pi_{1}, \pi_{2}, \ldots, \pi_{M}$;
3) Substitute $\pi_{1}, \pi_{2}, \ldots, \pi_{M}$ into (3.7) to get
$x_{1}, x_{2}, \ldots, x_{N}$.
For this problem, in this generality, we can say nothing about whether this iterative process converges. In the next section we will show that the chemical equilibrium problem is a special case of this problem, and one for which, with appropriate modification, this method does converge.

4. THE FIRST-ORDER METHOD FOR SOLVING THE CHEMICAL EQUILIBRIUM PROBLEM

The chemical equilibrium problem is a special case of the linear-logarithmic programming problem. In order to put Eqs. (3.1) and (3.2) into the form of Eqs. (1.1) and (1.3), we first define

$$
\begin{aligned}
& N=n+p \\
& M=m+p
\end{aligned}
$$

where, as stated previously, p is the number of compartments in the problem. Then we define $a_{i j}, b_{i}, x_{j}$, and c_{j}, for $i>m$ and $j>n$, as follows

$$
\begin{array}{ll}
b_{i}=0 & i=m+1, m+2, \ldots, M \\
c_{j}=0 & j=r_{i}+1, n+2, \ldots, N \\
x_{k+n}=S_{k} & k=1,2, \ldots, p
\end{array}
$$

$$
a_{i j}=\left\{\begin{align*}
0 & \text { if } i \leq m, j>n \tag{4.4}\\
1 & \text { if } i>m, j \leq n, \text { and }[j]=i-m \\
0 & \text { if } i>m, j \leq n, \text { and }[j] \neq i-m \\
-1 & \text { if } i>m, j>n, \text { and } i-m=j-n \\
0 & \text { if } i>m, j>n, \text { and } i-m \neq j-n .
\end{align*}\right.
$$

For all j, we define

$$
d_{j}= \begin{cases}+1 & \text { if } j \leq n \tag{4.5}\\ -1 & \text { if } j>n .\end{cases}
$$

With these definitions, it has been shown [4] that the two problems are identical. Next, we let

$$
\begin{align*}
& x_{j}=y_{j}+\theta_{j} \tag{4.6}\\
& \pi_{i}= \begin{cases}\pi_{i}^{\prime} & i \leqslant m \\
\pi_{i}^{\prime}+\log s_{i-m}+1 \cdot & i>m\end{cases}
\end{align*}
$$

Substituting Eqs. (4.1) through (4.6) into (3.7) through (3.10) and simplifying, we have
-23-

$$
\begin{array}{r}
\theta_{j}=y_{j}\left[\sum_{i=1}^{m} a_{i j} \pi_{i}^{\prime}-c_{j}-\log \hat{y}_{j}+\pi^{\prime}[j]+m\right] \tag{4.7}\\
j=1,2, \ldots, n
\end{array}
$$

$r_{i \ell}= \begin{cases}\sum_{j=1}^{n} a_{i j} a_{\ell j} y_{j} & \ell \leq m, i \leq m \\ \sum_{j \in\langle i-m\rangle} a_{\ell, j}{ }_{j} & \ell \leq m, i>m \\ \sum_{j \in\langle\ell-m\rangle} a_{i j} y_{j} & \ell>m, i \leq m \\ 0 & \ell>m, i>m\end{cases}$

$$
\begin{align*}
& s_{i}^{\prime}=\left\{\begin{array}{l}
b_{i}+\sum_{j=1}^{n} a_{i j} y_{j}\left(c_{j}+1 r g \hat{y}_{j}-1\right) \quad i \leq m \\
\sum_{j \in(i-m)} y_{j}\left(c_{j}+10 g \hat{y}_{j}\right) \quad i>m
\end{array}\right. \\
& \sum_{i=1}^{M} r_{i \ell \ell_{i}}^{\prime}=s_{i}^{\prime} .
\end{align*}
$$

The directional derivative of F in the direction $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right)$ is given by [1 , Theorem 8.11] to be

$$
\begin{equation*}
\sum_{j=1}^{n} \theta_{j}\left(c_{j}+\log \hat{\theta}_{j}\right) \tag{4.11}
\end{equation*}
$$

But, if we compute $\sum_{j=1}^{N} \frac{\theta_{j}^{2} d_{j}}{y_{j}}$ where by (3.7)

$$
\begin{equation*}
\theta_{k+n}=S_{k}\left[\pi_{m+k}-\log S_{k}-1\right]=S_{k} \pi_{m+k}^{\prime} \tag{4.12}
\end{equation*}
$$

$$
k=1,2, \ldots, p
$$

we show, in Appendix B, that
$\sum_{j=1}^{N} \frac{\theta_{j}^{2} d_{j}}{y_{j}}=-\sum_{j=1}^{n} \theta_{j}\left(c_{j}+\log \hat{y}_{j}\right)+\sum_{i=1}^{m} \pi_{i}\left(b_{i}-\sum_{j=1}^{n} a_{i j} y_{j}\right)$.

Thus, if we assume that $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is feasible, we get the irieresting result that the directional derivative of F in the direction $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right)$ is

$$
\begin{equation*}
\sum_{j=1}^{n} \theta_{j}\left(c_{j}+\log \hat{y}_{j}\right)=-\sum_{j=1}^{N} \frac{\theta_{j}^{2} d_{j}}{y_{j}} \leq 0 . \tag{4.14}
\end{equation*}
$$

However, it is also shown in $A p f$ dix B that the equality on the right side of (4.14) holds if and only if the values for y_{j} are optimal. We further note that if $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is feasible, then-

$$
\sum_{j=1}^{n} a_{i j} \theta_{j}=0
$$

for $i=1,2, \ldots, m$. Herce, if $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is feasible, then $\left(y_{1}+\lambda \theta_{1}, y_{2}+\lambda \theta_{2}, \ldots, y_{n}+\lambda \theta_{n}\right)$ will be feasible for any λ for which each $y_{j}+\lambda \theta_{j}$ is positive.

We now state the first-order chemical equilibrium algorithm:

1) Calculate ($\theta_{1}, \theta_{2}, \ldots, \theta_{n}$) using Eqs. (4.7) through (4.10).
2) Calculate the directional derivative of F in the direction ($\theta_{1}, \theta_{2}, \ldots, \theta_{n}$) as given by Eq. (4.11); if this quantity is not negative, we are done.
3) Calculate

$$
\epsilon=\sqrt{\frac{1}{n} \sum_{j=1}^{n}\left(\frac{\theta_{j}}{y_{j}}\right)^{2}}
$$

ϵ is a number that represents the root-mean-square error in ($y_{1}, y_{2}, \ldots, y_{n}$). If \in is less than some given number (say, 0.001), we are done.
4) Calculate the ratio $-y_{j} / \theta_{j}$ for every j for which $\theta_{j}<0$. Let λ_{1} be the minimum of all such ratios and let $\lambda=\min \left(1, \beta \lambda_{1}\right)$, where β is a number less than 1 but close to 1 (say, 0.99). We now perform the following steps until the test at c) below is satisfied:
a) $\operatorname{Let} z_{j}=y_{j}+\lambda \theta_{j}$;
b) Compute the directional derivative of F at z_{j} in the direction $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right): f(\lambda)=$ $\theta_{j}\left(c_{j}+\log \hat{z}_{j}\right) ;$
c) If $f(\lambda) \leqslant 0$, go directly to step 5);
d) Replace λ by $\gamma \lambda$, where $0<\gamma<1$, e.g., $\gamma=\frac{1}{2} \sqrt{2}$.
5) Finally, replace y_{j} by $y_{j}+\lambda \theta_{j}$ for $j=1,2, \ldots, n$. Steps 1-5 are repeated until either the test in step 2 or the test in step 3 is satisfied.

If this process terminates, the solution will be optimal within the specified limits of accuracy. It may happen that the process does not terminate. Since the objective function F is convex ${ }^{*}$ and assuming infinite computational accuracy, non-termination can occur only because the values chosen for λ become smaller on every

[^1]iteration. This will occur only if some y_{j} is approaching zero, and hence $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is approaching a point at which, if it were the optimal solution, the problem woulc be degenerate. It is possible for this to happen for a non-degenerate problem for which the initial solution chosen was too far from the optimal solution. Convergence can be guaranteed by imposing the condition that the value of F at the initial solution be less than the value of F at any feasible, degenerate point. However, it is not practical to impose this condition on the initial solution since it may be very difficult to find such a point. In practice, it has been found that round-off errors cause more difficulty than the possible selection of a poor initial solution.

5. THE LINEAR-LOGARITHMIC PROGRAMMING PROBLEM,
 SECOND-ORDER METHOD

In the first-order method, presented in Sec. 3, the iterative process was initiated with an estimate of the value of $x_{1}, x_{2}, \ldots, x_{N}$. In the second-order method, we assume that the problem is as defined by Eqs. (3.1) and (3.2), but that we have initial estimates for the values of $\pi_{1}, \pi_{2}, \ldots, \pi_{M}$. Let us denote these estimates by $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{M}$. The x_{j} can then be evaluated by Eq. (3.5), substituting λ_{i} for π_{i}. These x_{j}, however, probably will not satisfy Eq. (3.2). The problem of the second-order method is to find numbers $\Delta \lambda_{1}, \Delta \lambda_{2}, \ldots, \Delta \lambda_{M}$, such that

$$
\begin{equation*}
\pi_{i}=\lambda_{i}+\Delta \lambda_{i} \quad i=1,2, \ldots, M \tag{5.1}
\end{equation*}
$$

when substituted into (3.5) will give x_{j} that satisfy (3.2). In order to accomplish this, we first use the X_{j} calculated from Eq. (3.5) to get

$$
\begin{equation*}
g_{i}=b_{i}-\sum_{j=1}^{N} a_{i j} x_{j} \quad i=1,2, \ldots, M \tag{5.2}
\end{equation*}
$$

where g_{i} represents the amount that equation i is in error. Next, we evaluate

$$
\frac{\partial g_{i}}{\partial \lambda_{\ell}}
$$

by

$$
\begin{align*}
\frac{\partial g_{i}}{\partial \lambda_{\ell}} & =\frac{\partial}{\partial \lambda_{\ell}}\left[b_{i}-\sum_{j=1}^{N} a_{i j} x_{j}\right]=-\sum_{j=1}^{N} a_{i j} \frac{\partial x_{j}}{\partial \lambda_{\ell}} \\
& =-\sum_{j=1}^{N} a_{i j} \frac{\partial}{\partial \lambda_{\ell}}\left[\exp \left(d_{j}^{-1} \sum_{h=1}^{M} \lambda_{h} a_{h j}-d_{j}^{-1} c_{j}-1\right)\right] \\
& =-\sum_{j=1}^{N} a_{i j} d_{j}^{-1} x_{j} a_{\ell j}=-r_{\ell i} \tag{5.3}
\end{align*}
$$

where $r_{\ell i}$ is given by Eq. (3.8). If we make a very small change, $d \lambda_{1}, d \lambda_{2}, \ldots$, in $\lambda_{1}, \lambda_{2}, \ldots$, the change in g_{1}, g_{2}, \ldots, is given by $\mathrm{dg}_{1}, \mathrm{dg}_{2}, \ldots$, where

$$
\mathrm{dg}_{\mathrm{i}}=+\sum_{\ell=1}^{M} \frac{\partial \mathrm{~g}_{\mathrm{i}}}{\partial \lambda_{\ell}} \mathrm{d} \lambda_{\ell} \quad \mathrm{i}=1,2, \ldots, M
$$

or

$$
\begin{equation*}
\mathrm{dg}_{\mathrm{i}}=-\sum_{\ell=1}^{M} \mathrm{r}_{i, \mathrm{i}} \mathrm{~d} \lambda_{\ell,} . \quad \mathrm{i}=1,2, \ldots, \mathrm{M} \tag{5.4}
\end{equation*}
$$

We would want dg_{i} to be equal to $-\mathrm{g}_{\mathrm{i}}$ as computed by Eq. (5.2). If we make the approximation that

$$
\frac{\partial g_{i}}{\partial \lambda_{i}}
$$

is constant over the domain considered, we can set $d g_{i}=-g_{i}$, let $d \lambda_{i}=\Delta \lambda_{g}$, and write

$$
\begin{equation*}
g_{i}=\sum_{i=1}^{M} r_{i, i} \Delta \lambda_{1} . \quad i=1,2, \ldots, M \tag{5.5}
\end{equation*}
$$

Equation (5.5) consists of M equations in the M unknowns $\Delta \lambda_{1}, \Delta \lambda_{2}, \ldots, \Delta \lambda_{M}$. We may thus solve Eq. (5.5) for $\Delta i_{i}, \Delta \lambda_{2}, \ldots, \Delta \lambda_{M}$ and compute $\pi_{1}, \pi_{2}, \ldots, \pi_{M}$ from (5.1). If the assumption about

$$
\frac{g_{i}}{\partial \lambda_{!}}
$$

being constant over the domain considered was correct, then
the x_{j} computed from (3.5) with these values for π_{i} will satisfy (3.2). However, in general, they will not satisfy (3.2), but, if we were close enough to the solution so that the

$$
\frac{\partial g_{i}}{\partial \lambda_{1}}
$$

did not vary greatly in the domain considered, then the new values for x_{j} should come closer to satisfying (3.2) than did the first set of x_{j}.

With this assumption, we may now state the iterative process:
a) Using the values at hand for $\pi_{1}, \pi_{2}, \ldots, \pi_{M}$, evaluate (3.5).
b) Using the values for x_{j} obtained in step a, evaluate (5.2). If the $\left|g_{i}\right|$ are sufficiently small, we are done.
c) Compute $r_{i \ell}$ using (3.8) and solve (5.5) for $\Delta \lambda_{i}$.
d) Denoting the π_{i} in step a by λ_{i}, we get new π_{i} by (5.1).

Steps a-d are repeated until the $\left|g_{i}\right|$, computed in step b, are sufficiently small, or until they show no more improvement.

There is no proof of convergence for this method. In fact, the method presented here is unlikely to converge unless the starting values of $\pi_{1}, \pi_{2}, \ldots, \pi_{M}$ are very good, and even then there may be no convergence. This method may be used on the chemical equilibrium problem after the firstorder method has resulted in a reasonably good solution. If the π_{i} obtained from (3.10) in the final iteration of the first-order method are used to initiate the second-order method, the accuracy produced by the second-order method will generally be better than that which could be achieved by use of the first-order method only.

6. THE SECOND-ORDER CHEMICAL EQUILIBRIUM ALGORITHM

In order that the second-order linear-logarithmic method be set in the form of a chemical equilibrium problem, the same definitions as given in Sec. 4--i.e., Eqs. (4.1) through (4.5)--are used here. Since the second-order method is best used after the iirst-order method has been applied, the initial values of π_{i} for the second-order method must be specified. The first-order method gives a set of π_{i}^{\prime} which are related to π_{i} by Eq. (4.6). The π_{i} computed by means of (4.6) are appropriate initial values for the secondorder method. Using these initial values for π_{i}, the secondorder chemical equilibrium algorithm is an iterative process for which each iteration consists of the following steps:

1) Using the current values for ($\pi_{1}, \pi_{2}, \ldots, \pi_{M}$), evaluate $x_{1}, x_{2}, \ldots, x_{n}$ by means of (3.5).
2) Calculate $g_{1}, g_{2}, \ldots, g_{m}$ by means of (5.2) and set $g_{m+1}, g_{m+2}, \ldots, g_{M}$ equal to zero.
3) Compute r_{i}, from (4.8) and solve (5.5) for $\Delta \lambda_{1}, \Delta \lambda_{2}, \ldots, \Delta \lambda_{M}$.
4) Let

$$
P=\underset{i=1}{M} \Delta u_{i} .
$$

If $\mathrm{P}<\delta$, where δ is a small positive number such as 10^{-5}, we are done; otherwise, let $Q=\min \left(\frac{1}{P}, 1\right)$.
5) Replace π_{i} by $\pi_{i}+Q \Delta \lambda_{i}$ for $i=1,2, \ldots, M$.

Steps 1-5 are repeated until the test at 4) is satisfied. P should decrease at every iteration; however, when the values for π_{i} get close to their optimal values, P may not become zero due to round-off error. In order to prevent an endless repetition of steps $1-5$ due to the selection of too small a δ, we can test P against the value of P at the previous iteration. If this value has increased over the previous iteration, it can be assumed that this method has obtained as accurate a solution as possible, and we can terminate the iteration process. The reason for inserting the factor Q above is to prevent the π_{i} from varying too much on one iteration.

7. SUMMARY OF THE COMPUTATION PROCEDURE

The best method for starting the solution of the chemical equilibrium problem depends on whether an estimate for the solution vector is available. The projection method should be used when the problem being solved is a slignt variation from a problem previously solved, and in this case, the values used for y_{j} in (2.9-2.12) should i e the solution vector to the previous problem. Even when the estimate is no better than an intuitive guess, the projection method may still be used. The linear programming method, then, may be used as a back-up if the proiection method produces a non-positive component. Of course, if no estimate is available, the linear programming method would be used immediately to provide an estimate.

The recommonded procedure is, then, to use the firstorder method until either no further progress can be made with this method or until the amount of change becomes small from iteration to iteration, and then to use the second-order method. It has been found that, for reasonably large problems (say $m=30, n=100$), the point at which progress ceases in the first-order method usually occurs when the indicated corrections to the components
of the solution vector average about one per cent of the components; that is, when (3.5) is accurate to about two significant digits. A switch to the second-order method at this point usually yields quite accurate results in two iterations of the second-order method. The second-order method usually satisfies (1.1) to an accuracy of about five significant digits on a machine that carries eight significant digits. This accuracy is typically about three orders of magnitude above what is usually obtained in experimental data.

To summarize, the typical procedure for solving a chemical equilibrium problem is the following:

1) If an estimate is available, use the projection method to obtain a feasible estimate.
2) If step 1 yields a strictly positive estimate, go to step 3, but if the projection method yields non-positive components, or if there was no initial estimate, then use the linear programming method to get an estimate.
3) Use the first-order method until one of the tests described in Section 4 is satisfied.
4) Use the second-order method as described in Section 6.

Appendix A
 A FORTRAN-IV PROGRAM FOR SOLVING THE CHEMICAL EQUILIBRIUM PROBLEM

GENERAL DESCRIPTION

The program described here is a set of FORTRAN-IV subroutines for solving chemical equilibrium problems. The calling sequence used is merely the statement:

CALL SOLVE

Communication of data into and out of the subroutines is accomplished by a block common statement:

COMMON/SLVE/IV(30), TOL (20) , NR(55, 2), B(55) , $\mathrm{KN}(120), \mathrm{X}(121), \mathrm{C}(121)$, $1 \mathrm{KL}(26), \operatorname{NAM}(25,2), \mathrm{A}(55,121), \operatorname{PIE}(65), \mathrm{V1}(65), \mathrm{V} 2(65), \mathrm{V} 3(65)$, $2 \mathrm{~V} 4(65), \mathrm{XMF}(120), \mathrm{Xl}(121), \mathrm{X} 2(121), \mathrm{X} 3(121), \operatorname{XBAR}(25), \mathrm{R}(65,65)$

The data that must be input before CALL SOLVE is executed consist of the following:

COMMON Location
IV(1)
IV(2) $M(=m+p)$

IV(3)
p

IV(4)
IV(6) Number of the output unit.

COMMON Location

IV(7)

IV(9)

Quantity

Print flag: $-1=$ minimal amount of messages; $0=$ one message per iteration step; $+1=$ all messages.

Maximum number of iterations to be allowed.
$B(i)$

$$
b_{i}, i=1,2, \ldots, m
$$

X (j)
$y_{j}, j=1,2, \ldots, m$, where y_{j} is the
initial estimate of the solution.
If no estimate is available, set
$X(J)=0$.
$C(j)$
$c_{j}, j=1,2, \ldots, n$.
$A(i, j)$

$$
a_{i j}, \quad i=1,2, \ldots, m ; j=1,2, \ldots, n
$$

In addition, all components in one compartment must have consecutive subscripts. That is, components $1,2,3, \ldots, k_{1}$ must be in compartment 1 ; components $k_{1}+1, k_{1}+2, \ldots, k_{2}$ must be in compartment $2 ; \ldots$; and components $k_{p-1}+1$, $k_{p-1}+2, \ldots, k_{p}$ must be in compartment p. These k 's are communicated to the subroutines by setting

$$
\begin{aligned}
& \mathrm{KL}(1)=1 \\
& \mathrm{KL}(2)=k_{1}+1 \\
& \mathrm{KL}(3)=k_{2}+1 \\
& \vdots \\
& \mathrm{KL}(p)=k_{p-1}+1 \\
& \mathrm{KL}(p+1)=k_{p}+1
\end{aligned}
$$

In other words, $\mathrm{KL}(\mathrm{k})$ is the number of the first component in compartment k, and $K L(p+l)$ is equal to $n+1$.

The above are the only numbers that need be set in order that CALL SOI.VE will solve the chemical equilibrium problem. However, in order that the program can write messages, in cases of infeasibility, etc., names for the rows, components, and compartments may be input:

COMMON Location
$N R(I, 1), N R(I, 2)$
KN(J)
$\operatorname{NAM}(K, 1), \operatorname{NAM}(K, 2)$

Quantity

Two-word row name for row I.
One-word component name for component J.

Two-word compartment name for compartment K .

In addition, $T O L(1)$ through $T O L(5)$ are tolerances used by the program. If they are zero when the program is entered, they are set by the subroutines to nominal values. These values may also be set by the user of the subroutines, in which case the nominal values will not be set in the subroutines. These tolerances are the following:

Tolerance
TOL(1) Value
0.01

Meaning
c in step 3 of the firstorder method (see Sec. 4).

If IV(10) is not l, the subroutines have failed to solve the chemical equilibrium problem. The reason for this failure is written on output unit IV(6). In such a case, $X(i)$ will contain the latest value of these quantities.

SUBROUTINES

There are nine subroutines in the set used for the solution of the chemical equilibrium problem. A brief description of these subroutines follows.

1. Subroutine SOLVE

SOLVE is the master subroutine, and is divided into four functional segments. Each segment calls other subroutines which do specific tasks. The four segments are:
a) The projection and linear programming routines for obtaining the initial solution (lines 18-42).
b) The first-order method (1ines 43-122).
c) The second-order method (1ines 123-163).
d) Output messages (1ines 164-203).
2. Subroutine BAR

BAR calculates the S_{k}.

3. Subroutine BERROR

BERROR calculates

$$
g_{i}=b_{i}-\sum_{j=1}^{N} a_{i j} x_{j} . \quad i=1,2, \ldots, M
$$

4. Subroutine DEL

DEL sets

$$
w_{j}=\sum_{i=1}^{m} a_{i j} q_{i} . \quad j=1,2, \ldots, n
$$

5. Subroutine RCALC

RCALC calculates the r_{i}; array (4.8).
6. Subroutine CLOG

CLOG computes

$$
\alpha_{j}=c_{j}+\log \hat{x}_{j} . \quad j=1,2, \ldots, n
$$

7. Subroutine LP

LP sets up the linear programming problems.
8. Subroutine SIMPLE

SIMPLE solves the linear programming problems.
Information is communicated to this routine via a
calling sequence rather than by COMMON as in subroutines 1-7. The dimension of A in SIMPLE should agree with the dimension of A in the first seven subroutines, but all other dimensions are dummy statements.

9. Subroutine MATINV

MATINV solves simultaneous equations. As in SIMPLE, no COMMON is used. The dimension of A in MATINV should agree with that of R ($n o t A$) in SOLVE. All other dimensions are singly subscripted and are irrelevant as to magnitude.

Each of the first seven subroutines has a COMMON statement which should be the same in all seven. The dimensions of the variables in this COMMON statement may be set to the values for the largest problem to be solved. With m, M, p, and n as previously defined, these dimensions must be at least:

Symbol	Minimum Dimension
IV	
TOL	30
NR	20
B	$(\mathrm{m}, 2)$
KN	m
X	n
C	$\mathrm{n}+1$
KL	$\mathrm{n}+1$
NAM	$\mathrm{p}+1$
A	$(\mathrm{p}, 2)$
PIE	$(\mathrm{m}, \mathrm{n}+1)$
V1, V2,V3, V4	M
XMF	M
X1, X2, X3	n
XBAR	$\mathrm{n}+1$
R	p
	(M, M).

A listing of these subroutines follows. This listing does not necessarily represent an actual program. The language used was that version of FORTRAN described in [6]. The machine used for the solution of chemical equilibrium problems was the IBM-7044, which uses a floating-point number with eight bits for the exponent and 28 bits for the sign and mantissa.

LISTING

SUEROUTINE SOLVE SOUO1
COMMON／SLVE／IV（30），TOL（20），NR（55，2），B（55），KN（120），X（121），（121） SCCO2
$1 \mathrm{KL}(26), N A M(25,2), A(55,121), P I E(65), V 1(65), V 2(65), V 3(65)$, SOOO3
2 V4（65），XMF（120），X1（121），X2（121），X3（121），XOAR（25），R（6），65） 50004
INTEGER PF scoos
EQUIVALENCE（TOL！3），XMIN），（TOL（4），XSTART），（TOL（5），UARMIN） S0006
EGUIVALENCE（IV（1），M），（IV（2），MENU），（IV（3），NCCMP），（IV（4），N，NTOT）， SOOO 7
1 （IV（5），NIT）s（IV（6），NOT），（IV（7），PF），（IV（8），ITER），（IV（9），ITMAX）， 50008
2 （IV（1C），IERROR），（IV（11），LASTCP），（IV（12），KE） S0009
DIMENSION DX（1），ALPHA（1），TH（1），G（1） 50010
EQUIVALENCE（G，V1），（DX，X1），（ALPRA，$\times 2$ ），（TH，$\times 3$ ） S0011
IF（TOL（1）．LE•O．O）TOL（1）＝C．C1 SOO12
IF（TOL（2）•LE•C•0）TOL（2）＝1•E－5 SOO13
IF（XMIN•LE•U•O）XMIN＝1•E－12 SOO14
IF（GARMIN．LE•C•O）UARNIN＝ $1 \cdot E-0$ SUO 15
IF（ITMAX•LE．い）ITNAX＝4u S0016
DO $152 \mathrm{~J}=1$ ，NTUT SOO17
IF（X（J）•LE•U•）GO TC 5 SCO18
152 CONTINUE

```C IF X IS STRICTLY POSITIVE，OEGIN PROJECTIONCALL BARI X，XBAR ）SOC 202 CALL \(\quad\) OERRCR（ERR）SOO21
```

CALL RCALC SOO23
（ALL MATINV（r，MENU，G，－1，V2，V3，V4，KE） SOO24
IF（KE．NE．O）GO TO 5 SCO25
CALL DEL（CX，G） SCO26
DO $3 \mathrm{~K}=1$ ，IVCUMP SOO27
$K T A=K L(K)$ SOO28
$K T E=K L(K+1)-1$ 50029
$M K=M+K$ 50030

```OU \(4 \mathrm{j}=K T A, K T d\)
```

```\(X(J)=X(J) *(1 .+U X(J) \rightarrow G(V K))\)IF（X（J）•LE•U•）GO TO 5SCO31SOC 32SOO 33
```

4 CONTINUE SOO 34
3 CONTIN： SOC35
GO TO 7 50036
－LINEAR PROGRAMMING RCUTIIVE 50037
5 CALL LP（KF； SOO 38

```IF（KF•NE．U）GO TU 10VO6SOO 39
```

7 CALL उAR（X，XOAR） 5004 C
CALL CLOG（X，XUAR）

```\(30 C 41\)
```

$F E 2=1 \cdot E+2 U$ 50042
C FIRST ORDER IAETHCD LUOP 50043

```DO 899 ITER＝1，ITMAX
```

50044

```CALL BERROR（ERR）
```

DC 711U $1=1$ •MENL

```SOO45CIIU \(=1\) gMENLPIE（I）\(=\sim\) ．
711U CONTINUE
            DO 7111 K = 1. NCOMP
            KTA = KL(K)
                KTd = KL(K+1) - 1
                MK = M + K
                DO 7112 J = KTA, KT3
                    AX = ALPHA(J) * X(J)
                    PIE(NKK) = PIE(AKK) + AX
                    DO 7113 I = 1.M
                    PIE(I) = PIE(I) & AX L(I.J) 50057
    7113
                    CONTINUE
                CONTINUE
                50058
7112
SuC59
7111 CCNTINUE
SuO46
Su047
$0048
SuC49
SO゙こちO
SUO51
suus2
S0053
SOO54
SUO55
S0060
```



```
        CONTINUE 50063
        CALL RCALC
        CALL MATINV(R,VENU,PIE,-1,V2,V3,V4,KE)
        S0064
        50065
        IF(KE.NE\bulletU) GO TO 1UOO3
        DMAX = 1•E + 2C
        CALL DEL(TH,PIE)
71u5 GNORM=こ.
    TDR = 0.
    FE=0.
    DO 7104 K=1.NCO:AP
        MK = M + K
        KTA=KL(K)
        KTO}=KL(K+1) -1
        DO 7103 J = KTA, KTB
            THIJ)= TH(J) +PIE(MK)- ALPHA(J)
            GNORM = GNOR:A * TH(J) *2
            TH(J)=TH(J) X(J)
        TDA = TDA + TH(J) * ALPHA(J)
        IF (X(J)\bulletLT\bullet-UMAX*THIJ)) UMAX = - X(J)/IH(J)
        FE = FE + X(J) * ALPHA(J)
    CONTINUE
71U4 CONTINUE
    EPS = SQRT ( GIVJRM/FLUAT (NTUT) )
    DFE = FE - FS2
    FE2 = FE
    IF (ITER.EO.1) GO TO 712U
    ITR = ITER - 1
    IF(PF.GE.U) NRITE(NOT,799) ITR, LFE,OPTL,EPS
    OPTL =AMIN1 (1., -G9*UMAX )
        DMAX,OPTL,TOA,ERK
    IF (EPS.LE.TOL(1)) GO TO 0&59
    &Z& IF (TJA\bulletGE\bulletO\bullet) GOTO 8:こ? 20094
#2% DO ठ265 1I =1.54
        DO 8301 J = 1,N
            OX(J) = AMAXI(X(J) + CPTL*TH(J) ,XMIN)
    CONTINUE
    (ALL UAR(UX,XEAR)
    CALL CLUG(OX,XJAR)
    TVA = -. 
    DO 8266 J = 1.NTOT
        TOA =TUA +TH(J)*ALPHA(J) SO103
8266 CUNTINUE SO104
    IF(PF.GT\bulletU)NRITL(NOT, ठ262)II.OPTL, TDA SO1O5
    IF (TDA•LT.O\bullet) SO TO 828 SO1J6
8264 OPTL= UPTL 11.4142 SONTINUE SO107 7
    CALL BAR(X,XGAR) SO109
    GO TO 8271
828 DO O281 J=1,NTOT SO111
            X(J) = OX(J) SO112
828 DO O281 J=1,NT心T SO111
8281 CCNTINUE SO113
    FE=0. SO1144
    DO 8231 J=1,N
        FE=FE + ALPHA(J)*X(J) SO116
8231 CONTINUE SO117
8288 CALL SSNTCH(5,LABEL) SO118
    IF (LABEL.NL.2) GO TO 1OUY4 SO119
899 CONTINUE
Su120
```

```
C END OF FIRST ORDER METHOD LOOP
    GO TO IVOU2
    GOUU ITERI = ITER + 1
        PMAX = 1.E 2U
        PMAXI = 1.E E 21
C SECOND ORDER NETHOD LOOP
        DO GCU2 ITER = ITER1,ITMAX
            (ALL DEL(DX,PIE)
            DC 6UU3 K =1,NCOMP
                    MTA = KL(K)
                    NTB =KL(K+1) - 1
            DO GUl, J = MTA,MTE
                XMF(J) = EXP ( DX(J) -C(J) )
                x(J) = XMF(J)*XBAR(K)
    *
    I\tilde{r (XBAR(K).LE.OARIIN) GO TC 10005}
    6OU3 CONTINUE
        IF (PMAX.LE.TOL(2).OR.(P.HAX.GE.PHAX1.AND.PMAX.GE.PN,AX2) )
    1 GO TO luvul
        CALL BERRCR(ERR)
    6006 CALL RCALC
        CALL MATINVIR,NEND,G, -1,V2,V3,V4,KEI
        IF(KE.NE.い) GO TO 1UOO3
        PMAX2 = P:AAX1
        PNAXI = Pitix
        P:AX = J.
        DC 6CU4 I = 1,MENU
            PMAX =AMAX1 ( P:AAX. AES (G(I)) )
    60U4 CONTINUE
        IF (PMAX.EG.O.O) GO TO lUNOL
        ZM =AMIN1 (1./PMAX,1.)
        DO 6u05 1 = 1,M
            PIE(I) = PIE(I) + ZM* G(I)
    GOU5 CONTINUE
        DC 6C11 K = 1,NCONP
            MK = M+K
            XむAR(K) = XGAR(K)E EXP ( ZA G(:AK) )
    GU11 CCNTINUE SO15ठ
        IF (PF.GE\bulletU) WRITL(NOT,GUGG) ITER,PMAX,ERK SO159
        CALL SSNTCH(501AOEL)
        IF (LABEL•NE.2) GO TO IUUUU4
    6UU2 CONTINUE
C ENO OF SLCOND ORCER NETHOD LOOP
1UUU2 IERRON =2
        NRITE(NOT,2UU~2)
2UJu2 FORNAT(27H ITERAION LINIT EXCEEDED )
        ITER = ITMAX
        GO TO lUJCO
1OOU3 IERROR = 3
    *RITE(NOT, 2UUu3) KE
2vOu3 FORMAT(21H R MATRIX HAS NULLITYPI3)
    GO TO lUOJU
IuUv4 IERROR = 4
    WRITE(NOT,2UU\checkmark4) SO174
2UUO4 FORMATISGH SOLVE ROUTINE TERIINATEU SECAUSE SENSE SNIICH 5 IS DONN SOITS
    1)
    GO TO 10000
    SO176
SC177
10005 IERROR = 5
    WRITE(NOT,2ULU5) NAN(K,1),NAIFIK,2)
Su178
SO179
ZuUUS FORMAT(13H COMPART:MENT , 2AG,1JH TCO SPALL )
s0180
```

```
        LASTCP =K NO NOSOL&1
1UJU6 IERROR=6
        GO TO 1UJJU
IUUU1 IERROK = 1
1\cupUUU RETURN
    8<41 FORMAT(15H LMIVUOA NAX=1PE12.4.13H. OPT LAMABDA=E1C.3.6H. TDA=E12
        1.5.16H, HAX Kご ENRUR=E12.51
    8 2 6 7 ~ I F ~ O F . G E . C ) ~ W R I T E ~ ( N C T . 8 2 6 8 ) ~ I T E R ~
    8260 CRMATIILH ITERATION,I4.3UH POSIIIVE IDA, GO IO MEIHOD 2, SOIGO
            GO TO 6Cul
    826y IF (PF.GE•`) WRITE (NOT.827, ITER SOL92
    827U FURNIATIIUH ITLRATION,I4.42H AV THETA LESS IHAN IJLIII, GO IO FETHL SOIG3
        10 21
            GO TO 60こU
    8271 IF (PF.GE&O) WRITE (NOT.8272) ITER
    8272 FORMAT(1OH ITERATION, 14.36H STEP SIZE TCO SMALL. GO TO METHOD 2) SO197
        GO TO GJOC
    8262 FURMAT(1,X, 4HSTEP.12. 9H LANSLA=1PE1O.3.6H. TDA=E15.8) SO199
                                >0183
SU184
\U185
\U186
SU186
SO187
S0188
>0189
S0191
SO193
SO194
SO195
        7S% FORMATIIJH ITERATION.I4.24H CHANUE IN FRLS ENERGY=1PE15.8.12H SU2JO
            1STEP SILE=E15.8,1 H AV THETA=E12.5)
S0201
    GUGY FCRMATIIUH ITERATION.I4.1YH NAX CHANGE IN PIE=1PE15.8.15H MAX RON SO2O2
        IERRCR=E15.8
S0203
END
SO204
```

```
        SUBROUTINE UAR(%,%3AR) NOCO1
        COMMON/SLVE/IV(30),TOL(2U),NR(55,2),E(55),KN(12U),X(121),(1121). N0002
    1 KL(26),NAM(25,2),A(55,121),P1E(65),V1165),V2165),v3(65).
        nuOU3
    2 V4(65),XMF(120), X1(121),X2(121).031121),XBAR(25),R(65,65)
        EQUIVALENCE (IV(I),M).IIV(2),MEND),(IV(3),NCOMP),IIV(4),N,NIOII,
    l (IV(5),NIT),(IV(6),NOT).(IV(7),PF).(IV(8).|ICR).(IV(9).|INAX).
    2 (IV(IO).IERROR),(IV(11).LASTCP),(IV(12),KE)
        OIMENSION v.(1),WBARII)
    7 DO 701K K 1.NCOMP
        KTA =KL(K)
        KTB = KL(K+1) - 1
        NEAR(K) = 0.
        DO 702 J = KTA,KTB
        WEAR(K) = WEAR(K) + W(J) WUC14
7U2 CONTINUE
    w0015
w0C16
    END :%0017
```



```
    1 NL(26),NA!=(25,2),A(55,121),P(E(E5),V1(55),V2(05),V3(65),
```



```
        ELUIVALENCE (IV(I), NI,IIV(2),HENJ),(IU(3),NCO:NP),(IV(4),INONOT).
    | (IV(j),V!T),(IVIo),NCT),(IVIT),PF),(IV(E),|ILRI||VIG),||AA),
```



```
        ulmensicNG(d)
    EuuIVallivCe (u.V1)
    CO 1ul 1 = 1, 
        こT = .
        u0 luz J = 1.iv
            IF(Al!.J).NL.U.) <T = <T - x(J)* A(I.J)
luz CONTINJE
        G(I) = 2T + B(1)
lul CONTINUE
    SO 11~K = 1,NCOMP
        ZT= ..
        MTA = KL(x)
        MTE = KL(K+1) - 1
        DO 111JJ = MTA,\becauseTU
            ZT = ZT + X(J)
111 CONTINUE
        Fik = M + N
        G(i.in) = XuÃZ(k) - LT
llu contlinue
    BMAX = ..
    DO 120 1 = 1.BEND
        IF (ABSIG(l)).GT. AuS(S%AX) ) E:anx = =(!)
12. CONTINUE
    RETURI
    END
111 CONTINUE \(\quad\) BUCく3
Fik \(=M+N\)
1lu contlinue
BMAX \(=\)－
```

00001

uOCO 3
b0004
Buこ05
bue06
－UCう7
Bしこうも
00009
uU010
－$こ C 11$
suci2
نCO13
$\pm 0 C 14$
bJol 5
ticc． 16
さひご 17
טこCl 8
ט0019
－0022C
10021
00022
50024
BUC25
نCO26
60027
ECC2e
60029
buc 30
bCO 31
0 CC 32
SUBROUTINE UEL（n，w） 00001
 とこうこ2ごじる
2 V4（65），XMF（12，），X1（121），X2：121），X？（121），XCAR（25），R（65，65） DOEO4
 Lonus
 Dorco
2 （IV（1）），ILRRUR），（IV（11），LASTCP），（Iソ（12），KE） 00207
DIFENSIOV N（1）．6（1） 0しによ8
DO 2CJ $=1$ M
$\forall n=v$ 。
colul $=1.1$00065Uごく」

lu CONTINJE UCC13
W(J) = iw: 0U014
2. CONTINUE DOO15
RETURN
טن016
نごく17

```
        SUBROUTINE RCALC
        COMMON/SLVE/IV(30),TUL(20),NR(55,2),3(55),KN(120),X(121),C(121),
    1 KL(26),NAM(25,2),A(55,121),P1E(65),V1(65),V2(65),V3(65),
    2V4(65),XMF(120),X1(121),X2(121),X3(121),XUAR(2j),R(65,65)
```



```
        l (IV(5),NIT),(IV(6),NOT),(IV(7),PF),(IV(8),ITLR),(IV(9),IT,iNX).
    2 (IV(IC),ILRROR),(IV(II),LASTCP),(IVII2),KE)
COMPUTE R
DO 1 1 = 1,MEND
            DO 2 J =1,1
            RII,J)=v.O
    2 CONTINUE RCO12
    1 CONTINUE RUO13
        DO LU K = ONTOT
            DO 11 1=1,M
                IF (A|!,K).EQ.O.) GO TO 11
                AlKX = A(I,K) * X(K)
                DO 12 J =1.1
                IF (AlJ,K).NE.O.) R(I,J)=A(J,K) # AIK.X + R(I,J)
    l CONTINUE CONTINUE ROO2O
    ll CONTINU
        DO 20K=1,NCON:P ROO23
        IH=K+Mi ROO24
                MTA =KL(K)
        MTE=KL(K+1)-1 RUO26
            UO 21L =MTA,MTL RUO27
            DO 22 J=1,M RUO28
                    IF (A(J,L).NE.O.) F(IH,J)= R(IH,J) + A(J.L)* X(L)
    CONTINUE CONTINJE ROC30
2O CONTINJE
    DO 30 J : 2,MENO ROO33
        J=J-1
        DO 31 ! = = |,JL
        RO 31! = = = = JLJ,I)
    31 CONTINUE R0037
    3u CONTINUE ROO30
    5U RETURN ROO39
    END
        K0001
        RUOO2
        h2003
        ROCO4
        RCOO5
        ROCO6
        RUCO7
    ROCOB
        R2009
        RCO10
    ROC14
        ROO15
        ROC16
        ROC17
        RCO1%
        ROO19
    11 CONTINUE RON21
    IL CONTINUE RUC22
        =KL(K) ROO25
        RUO28
    ROC29
    22 CONTINUE RCO3O
    21 CONTINJE ROO31
ROC32
        ROO34
        ROO35
R0036
R0039
R0040
```

SUBROIITINE CLOG（NOWUAR） COCODCOMMUN／SLVE／IV（30），TCL（20），Ní（55．2）．3（55），KN（120），X（121）．C（121）．COCO2
1 KL（26），NAM（25．2），A（55．121），PIE（65），V1（65），V216j），V3165）， COOO3
 COCO4
EQUIVALENCE（IV（1），M），（IV（2），诜NU），（IV（3），NCC：OP），（IV（4），iV，NTUT）． CCCO5
 COこう6
2 （IV（IU），IEFROR）•（IV（11）•LAST（P），（IV（12）•KE） C0007
 cocob
EQUIVALENCE，X2，ALPMA） C0009
OO 1 K $=1$ ，irCOMP CCClO
$K L A=K L(K)$ cocll
$K L B=K L(K+1)-1$ COOl2
DO $2 J=K L A, K L U$ CuOL 3
ALPHA（J）$=$ C（J） CUOL4
$X X X=K(J) / \because B A R(K) \quad$ COO 15

CCNTINUE COO17
1 CONTINUE CO.18
RETURN
CuCls
END
cuてく

```
            SUBKJUTIVE LP (:CVI LUNUl
```



```
            1 KL(26),NAM(25.2),A(j5,1211,PlL(05),V1(5)\,V2(65),V3(05), L0003
```



```
            INTEGER PF
            EGUIVALENCE (TOL(3),X:IN).(TUL(4),X(TART).(T`L(b),JAR.IN)
```



```
            l (IVİIPNIT):(IV(6),NUT),(IV(7),PF),(IV(B),ITLR),(IV(9),ITI.AX),
```



```
            DIMENSION XX(1).XOUT(7).C(C(1),P(1)
            EGUIVALENCEICC,X.AF),(xA,x2),(P,V1)
            MON= ~
            IF (XSTART.LE.O.O) XSTART = 1.E-6
            DO lO I = 1,M
                P(l)= B(1)
            AII.NTOT+1)=0.0
            OO 15 J=1,NTOT
                    A(I,NTOT+1)= A(I,NTOT+1) + A(I,J)
                cONTINUE
    ju CCNTINUE
            DO 1 J = 1.NTOT
                CC(J)=C.v
            1 cONTINUE
            CC(N+1) = -1.u
C LEFO-TH SImPLEX IS TC vETERRIINE FEASIJILITY
            CALL SIMPLEI,OM,IV+1,A,P,CC,NOUT,XX,PIE,V2,V3,V4,X3,KI
            ZT = XX(N+1)
            IF(PF.GE.ごNRITE (NU),1JG)KCUT(2),ZT,KOUT(1)
    LUG FORNATIM2HOSIMPLEX O.I4,2SH ITERATIONS, \becauseAX MIH ELENENT=1PEIS.B, LOO28
    l 12H, CONDITION,13)
                LuO30
            22T =AMINI(2T/2.O, XSTART)
                                    L0う31
            00 104 1 = 1,M
                P(I) = P(I) - ZZT*A(I,N+1)
    gua cointinue
                LUO32
                    L0.33
LO034
    2u\cup DO 2Cl J = l,iNTOT
        x(J) = xx(J)
        XMF(J) = 1.u
            LUC35
                            LC.36
    Zい CONTINUE LCO30
            IF (ZT.LE.U..OR.KUUTII).NE.U) GOTO 40 LCOBYG
                LOC37
C SIMPLEX LOJP
LCO39
    FR2=1•E+20
    DO 3u1 NN =1, NCUMP
Lここ40
L0.41
                    CC(J)=C(J)+XYF(J)-1.0 = LON
LOC44
3~2 CONTINUE
LOC45
    FN = FLOAT(INN) - 1.u
LU046
    CALL SIMPLE(1,A,N ,A,P,CC,KOLT,XX,PIL,V2,V3,V4,X3,RI LCO47
        IF (KOJT(1).NE.J) UC TO jこ
LUO40
3uU UO 3u3J=1,NTUT LUC49
        x(J) = xx(J)
    x(J) = ( Fiv*xl(J) + x(J) ) / (Fiv + 10: )
LuO50
            x\(J)= x(J)
LCOSl
K(J) LOC52
3\cup3 CONTINUE LCO53
        CALL GAR(X,XBAR)
LCO53
        K=1
LCC54
L0055
    FR = -.0
LO056
        DC 3li J = 1,N
    .0057
            IF (J.GE-KL(K+1)) K=K + 1
L0058
```



```
                IF (X(J).GT.J.C) FR = FR + XfJ)*(ALCO(X(J)) + (IJ) )
LOO5g
Lu060
```

```
        XMF(J) = U. LCC61
            IF (XGAR(K).NE.O.1 XMF(J)=X(J) / XGAR(K)
        L0062
        IONTINJE LOOO3
        IF (PF.GE.O) WRITEINOT,3O5) NN.KOUT(2),FR
        LOCS4
        FORMATIZH SIMPLEX,I 3,1H,,I4,12H ITERATIONS ,8H FR ENG=1PE15.8I LOO66
        IF (FR.GE.FR2I GO TO 399
        FR2=FR
        L0066
        L0067
301 CONTINUE
399 DO 4OC J=1,N
    X(J):X(J)+2LT LOJ70
4UU CONTINUE LOC71
    RETURN LOO72
    4. IF (KOUT(1).JT.1) GO TO 50 LOO73
    WRITE (NOT,41)
LOC74
    41 FORMAT(72HOTHIS PRUBLEM IS INFEASIJLE. THE FOLLOWING LINEAR CUMUI LOO75
    INATION OF ROWS, /\XI LOO76
    DO 14v l=1,M LOO77
        IF (PIE(I).NE.O.) WRITE(NOT.141) PIEII).NRII.1),NR(I.2) LOO78
141 FOKIMAT(1UX,3H+ (,F15.8,5H 1 , 2AG) LOO79
14v CONTINUE
    WRITE (NOT,142) LOOJ1
142 FURNATI4OHO LEADS TO THE FULLONING INFEASIULL EQUATION, /IXI LOOZ2
    DO 15v K =1.ivCOi*P LCC&3
        MTA =KL(X) LOO84
        MT甘 =KL(X+1)-1 L0085
        DO151 J=MTA,MTE LOO86
            D=0. LOC87
            DO 152 I =1.M
                    D=PIE(I)*A(I,J) + D
                            60068
L0089
152 CONTINJE LOO90
            IF (D.NE.U.) WRITE (NOT,143) U,KN(J),NAM(K,1),NAM(K,2) LCCS1
143 FORMAT(1OX,3H+ (,F15.8,5H) LOO92
151 CONTINUE LOO93
15U CONTINUE LUO94
    D=0. LCC95
    DO 16U I =1.M LOC96
        D=PIE(I)*ロ(I) + D LOO97
16O CONTINUE LOO9O
    WRITE INOT.144) D LO099
144 FORMAT(1HO,15X,7H+0.0=,F15.8) LO100
    7 0 \mathrm { MON } = 1 \text { LO101}
    RETURN
    5u IF (KOUT(1).NE.2) GO TO 60 LO103
    JT =KOUT(7) LO104
    DO 51 K = 1,NCOMP LOLOb
        IF I JT.GE.KL(K)) GO TO 52
    L0106
    51 CONTINUE
    52 WRITE (NOT,Эら2) KN(JT).NA,FIK,1),NAM(K,2) LO108
    L0107
952 FORMATII4H TIEE VARIAOLE ,A6,4H IN , 2AG:33H IS UNBOUNDED AND MUST B LOIO9
    IE fENOVEUI
    GO 1O 7u
    60 WRITE (NOT,G6U)
96U FOFMATIGJH SIAFLEX ROJTINE MAS FAILEC DUE TO EXCESSIVE ROUND-OFF E LOI13
    IRRORI
    GO TO 7J
    L0114
    END
LO116
```


Calling Sequence for Simplex Subroutine

The simplex subroutine, SIMPLE, may be used to solve a general linear programming problem of the form: Minimize

$$
\begin{equation*}
\sum_{j=1}^{n} c_{j} x_{j} \tag{1}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i} . \quad i=1,2,3, \ldots, m \tag{2}
\end{equation*}
$$

The $a_{i j}$ is stored in a two-dimensional array, A, with $a_{i j}$ in cell $A(i, j) ; C_{j}$ is stored in a one-dimensional array, C, with C_{j} in cell $C(j)$; and b_{i} is stored in a onedimensional array, B, with b_{i} in cell $B(i)$.

The calling sequence is

CALL SIMPLE(II , M, N, A, B, C, KO , X , P, JH, XX $, \mathrm{Y}, \mathrm{PE}, \mathrm{E}$)
where

$$
\begin{aligned}
\mathrm{II} & =0 ; \\
\mathrm{M} & =\text { No. of rows, } \mathrm{m} \\
\mathrm{~N} & =\text { No. of variables, } \mathrm{n} ;
\end{aligned}
$$

```
A, B, C Are as above;
            KO = A subscripted variable of
            dimension 7;
            X = A subscripted variable of dimen-
            sion n or more;
P, JH, XX, Y, and PE = Subscripted variables of
                    dimension m or more; and
                    E = A subscripted variable of
                            dimension m}\mp@subsup{}{}{2}\mathrm{ or more.
Upon exiting from the subroutine,
```

```
X(1),X(2),\ldots,X(n) Contains }\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{n}{\prime}\mathrm{ (the solution);
```

X(1),X(2),···,X(n) Contains }\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},···,\mp@subsup{x}{n}{\prime}\mathrm{ (the solution);
P(1),P(2),···,P(m) Contains the shadow prices;
KO(1) Contains an 0 if the problem was
feasible, l if the problem was
infeasible, 2 if the problem had
an infinite solution, and 3, 4, or
5 if the algorithm did not terminate;
KO(2) The number of iterations taken;
KO(3) The number of pivots performed since
the last inversion;
K0(4) The number of inversions performed;
KO(5) The number of pivot steps performed;

```

KO(6) A logical variable that is "true" if and only if the problem was feasible; and

KO(7) Contains, if the problem had an infinite solution, the number of the variable that was infinite.

The dimension of \(A\) (line X0009) must agree (at least in the first subscript) with the dimension of \(A\) in the calling program. The other dimensions need not agree with those of the calling program.

If an initial basis is available, this basis may be communicated to the subroutine by letting
\[
\begin{aligned}
& \text { II }=1, \\
& x(1)=\left\{\begin{array}{l}
0.0 \text { if variable i is not in basis, } \\
(\text { non-zero }) \text { if variable i is in basis, }
\end{array}\right.
\end{aligned}
\]
and the other quantities remain as above.
This subroutine differs from other linear programing routines in several respects. If the restreints (2) are innearly dependent, the problem is considered to be infeasible. This is the case because the chemical equilibrium problem cannot be solved if the restraints are dependent. In addition, this subroutine was written to be as scale-free

\section*{-59-}
as possible; this was accomplished by computing tolerances internally in the subroutine.
```

C AUTONATIC SIMPLEX REDUNDANT EQUATIONS CAUSE INFEASIJILITYY XOOOI
SUBRUUTINE SINPLEIINFLAG,MX,NN,A,H,C,KOUT,KE,P,JH,X,Y,PE,E)
DIVENSION B(1).C(1),KOUT(7).JH(1),X(1),P(1),Y(1).
X0003
1 KE(1),E(1).PE(1).KO(7)
EQUIVALENCE (K.KO(1)).1ITER,KO(2)),1INVC,KO(3)),
2 (NUNVR,KO(4)),INU:APV,KO(5)),(FEAS,KO(6)1,(JT,KO(7))
EGUIVALENCE (XXOLL)
G the folloning dimension shculv be the same here is It IS IN CALlER.
UIVENSION Al55.121)
LOGIGAL FEAS,VER,NEGITRIGOKUOABSC
C
NCVE INPUTS ... ZERO OUTPJTS
DO 1341 1. 1,7
KC(1)=0
1341 CONTINUE
M = MX
N:NN
TEXP - .5**16
NCUT = 4NM + 10
NVER = M/2 + 5
M2 = M**2
IF IINFLAG.NE.OI GO TO 1400
C* 'NEW' START PHASE CNE WITM SINGLETON SASIS
DO 14-2 J=1,N
KE(J)=u
KO - .FALSE.
DO 14u3 ! = 1OM
IF (AII,J).EQ.O.O) GO TO 1403
IF (KO.OR.A(I.J).LT.O.E) GO TO 1402
KU..TRUE.
14U3 CONTINUE
KE(J)=1
14u2 CONTINUE
14ÖC IF IINFLAG.GT.1) GO TO 1320
DO 14vi 1.1,M
JH (1) - -1
14ul CONTINUE
C* IVERI GREATE INVERSE FROM 'KB' ANJ IJH'
132U VER = .TRUE.
1121 INVC = C
1122 NUMVR - NUMVR +1
DO llul \& = L,N2
Elll O.u
dlud CONTINUE
MM=1
DO 11113 1. 10M
E(MM): l0u
PE(l) - U.O X0047
X(1)= U(l)
IF (JH(1) ONE.O) JH(1)= -1 X0050
M:M=NM+in+1 X0051
1113 CONTINUE
C FORIA INVERSE
X0052

```

```

 GO TO 6JO X0056
 C GUL CALL JAY CHOOSE PIVOT
1114 iY O.0 XOC59
0011.j4 1 1. 10M XOC60

```
```

 IF (JH(1).NE.-1) GO TO 1104 XOO61
 IF | ABS(Y(I)I.LE.TY) GC TO 11こ4 X0062
 R=I
 TY=AES(Y(1))
 1lu4 CON*NUE
 KB(JT)=0
 IF (TY.LE.TPIV) GO TC IIUZ
 pivar
 JH(IR) = JT
 KU(JT)= = IR
 GC TO 900
 CALL PIV
 1l.2 CONTINUE
 C RESET ARTIFICIALS
DO 11U9 1 = 1.M
IF(JH(I).EG.-1) JH(I)=0
llug CONTINUE
.12U~ VER = .FALSE.
C Perroni% GNE ITLRATION
C* IxCK. DETERMINE FEASIUILITY
FEAS= .TRUE.
NEG = .FALSE.
DO 12~1 I = 1,M
iF(X(I).LT.C.O) GO TO 1250
IF (JHIl|.EO.C) FEAS = .FALSE.
1201 CONTINUE
C* 'GET' GET APPLICAJLE PRICES
IF (.NOT.FEAS) GC TO 501
C PRITILL PRICES
DO 503 1 = 1,N
P(1)= PE\:1
5u3 CONTINUE
ABSC = .FALSE.
GO TO 599
COMPOSITE PRICES
125u FEAS = .FALSE.
NEG = .TRUE.
501 DO 504 J = 1,M
P(J)=0.
5u4 CONTINUE
ABSC = .TRUE.
DO SC5 1=1,M
\becauseN=1
IF (XII).CE.C.O) डO 10 507
ABSC=.FALSE.
DO 5u8 J = 1.M
P(J) = P(J) +E(MM)
NMM = MN + N
5u8 CONTINJE
GC TO 5C5
507 IF (JH(I).NE.J) GO TO 505
IF (X(I).NE.C.) AUSC = .FALSE.
DO 510 J = 1.M
P(J) =P(J) - E(:%)
MM = MM + N
5lu CONTINUE
うuj CONTINUE
C* 'MIN' FIND minimuif revuceu cust
599 JT= u

```
```

 vB= = .0
 x0121
 DU 7C1 J =1.N
 SAIP COLUMNS IN BASIS
 IF (KL(J).NE.O) GO TO 701
 UT = し.し
 00 303 1 = 1,%
 It (A(!.J).NE.O.O) DT = DT + P(1)*A(I.J)
 3u3 CONTINUE
 IF (FEAS) UT = UT + C(J)
 IF (ABSC) DT = - MES(UT)
 IF (UT.GE.UO) uO TO 701
 GG = OT
 JT = J
 7ul CCNTINUE
 c test for no pivut colunin
IF (JT.LE.U) GO TO 203
C TEST FOR ITERATION LIMIT EXCEEUEO
IF IITER.GE.NCUT) GO TO 16U
ITER = ITER +l
E* 'jmy' multiply inverse timis a(..jt)
Guv DC 61~ I= 1.M
Y(1) = U.u
6l- CONTINUE
LL =
COST = cist)
DO 605 i = 1.M
AIJT = A(I,JTI
IF (AIJT.EG.O.) GO TO 602
COST = COST + AlJT * PE(I)
DO 606 J = 1.M
LL = :L + l
Y(J)=Y(J) + AlJT * E(LL)
guG CONTINUE
GO TO 605
602 LL = LL +M
GU5 CONTINUE
COMPUTE PIVOT TOLERANCE
YMAX = 0.0
nn 62v 1 = 1,M
YMAX = AMAXII AOS(Y(1)),YMAX)
62U CONTINUE
TPIV = YMAX * TEXP
RETURIV TO INVERSION RUUTINE, IF INVERTING
IF (VLR) GO TO 1114
COST TOLERAINCE CONTKOL
IF (TRIG.ANU.uis.Gt.-TPIV) GO TO 203
TRIG = .FALSE.
IF (BU.GE.-TPIV) TRIG =.TRUE.
C* !ROW' SELECT PIVOT FCW
C AMONG EUS. WITH X=C, FIND YAXI:LLM Y AMONG ARTIFICIALS, OR, IF NONE, XO17O
C GET YÄX POSITIVE YIII AMONG REALS. XO171
luJO IR = u
x0172
AA = v.J
KG = .FALSE.
x0173
KG = ©FALSE.
x0174
x0175
IF (X(I).NE.O.O.OR.Y(I).LE.TPIV) GO TO 1050 XO170
IF (JHII).E`.O) GO TC 1U44 XO177
IF (KQ) GO TO ILSU X0178
1045 IF (Y(I).LL.AA) GO TO 1050
x0179
GO TO 1U47
x0180

```
```

 1044 IF (KO) GO TO 1045 x0181
 KO = .TRUE. XO182
 1047 AA = Y(I) X0183
 IR = I
 losu contINUE
 IF (IR.NE.O) GO TO 1099
 x0185
C1001 AA = 1.OE+2CIND MIN. PIVOT AMONG POSITIVE EQUATIONS
X0186
\times0187
DO 1010 1 = 1.M
IF (Y(I).LE.TPIV.OR.X(I).LE.O.O.OR.Y(I)*AA.LE.X(I)) GO TO 1010
x
AA = X(l)/Y(1)
IR=1
x0191
x0192
lOLU CONTINUE
IF (.NOT.NEGI GO TO 1099
x0193
x0194
C FIND PIVOT AMONG NEGATIVE EGUATIONS. IN WHICH X/Y IS LESS THAN thE
x0195
C MINIMUN X/Y IN THE POSITIVE EQUATIONS. THAT HAS THE LARGEST ABSF(Y)
X0196
1016 BB = - TPIV
DO 1C3u 1 = 1.m
IF (XII).UE\&O..OR.Y(I).UE.OD.OR.Y(I)*AA.GT.XII)) GOTO 1030
BG = Y(l)
IR = I
103U CCNTINUE
C TEST FCR NO PIVOT ROW
1099 IF (IR.LE.U) GO TO 207
x020:
x
C* 'PIV' PIVOT ON IIR,JTI
x0205
C LEAVE TRANSFORMED COLUMN IN Y(1) XO206
GCO NUMPV = NUMPV + 1
X0207
YI = -Y(|R)
x0208
Y(IR) = -1.v
LL = U
X0209
x0210
C
TRANSFORM INVERSE
x0211
DO 9.4 J = 1,M }\times021
L=LI. + IR
x0213
IF (EILI.NE.O.O) GO TO GLS
x0214
LL = LL + M
x0215
GC TO 904
x0216
Qu5 XY = E(L) / YI
x0217
PE(J) = PE(J) + COST * XY
E(L) = O.V
00906 1 = 1,M
x0218
X0219
LL=LL+1
x0220
LL = LL + l X0221
E(LL) = E(LL) + XY Y Y(I) X0222
9UG CCNTINUE X0223
gu4 continue
` TRANSFORM X
x0224
XY = X(IR) / YI
x0225
x0226
DO gig l = 1.M
x0227
XNEN = X(I) + XY * Y(I) X0228
IF IVER.OR.XNEW.GL...OR.Y(I).GT.TPIV.OR.XII).LT.O.1 60 10 5O7 X0229
XII)=C.V X0230
GO TO 908 X0231
Gu7 X(I)= XNEw X0232
9U8 CONTINUE RESTORE Y(IR) X0233
C
RESTORE Y(IR)
X0234
Y(IR)=-Y! XO235
X(IR)=-XY XO236
IF (VER) GO TO 1102 X0237
221 IA = JH(IR) <0238
IF IIA.GT.C) KBIIAI=0 X0239
213 KB(JT):IR X0240

```
```

 JH(IR) = JT
 IF (NU!PV.LE.*) GO TO 1200
 x0241
 x0242
 C TEST FCR INVERSIUAN ON THIS ITERATIUN X0243
INVC = INVC +1
IF IINVC.EGONVER) GO TO 1320
co TC lzu-
C* cinv uf algoritrir. SET ExIT valutu
x0245
IvfinIte sulution
2u7K=2
Gこ TO 250
C Pruolein IS CyCliNg
16v K = 4
GO TO 25,
C feasiole ur livFiAsibll sclutiun
2.3 K=
<5u IF (.NOT.FEAS) K=K + 1
DO 1399 J = 1,N
xx = v.u
KoJ = KulJ)
IF (KBJ.NL.U) XX = x(KUJ)
KÖ(J) = LL
1997 CONTINUE
C SET 'KOUT'
139200 13931=1,7
KCUT(I) = Ku(I)
1393 CONTINUE
RETURN
END
X

```
```

C MATHIX INVEKSION MITM ACCJPRANYING SOLUTIUN OF LINEAR EGJATIUNS
MOO.01
SUOROUTINE IAATINVIA,N,OPR,INA,INE,IP.ISINGI
C
DIMENSION EIII,INA(1),INEI1).IP(1)
LOGICAL ID
DIMENSION A(65,65)
C
initialization
DC 2O J = 1.N
IP(J) =.FALSE.
2u cONTINUE
C UIG LOUP UN I
DO 575 1 = 1,N
AMAX = U.U
C SEARCH for pivot elememt
UO 1055 J = 1,N
IF (IP(J)) vo To lvj
DO lu゙ K = 1.N
IF (IP(K) .OR. A3S(A゙VAX).GE.R2SIA(J,K)) , GOTO 100
IRON = J
ICOL = K
AMAX = A(J,K)
continue
contiNuE
IF (AMAX.LG.0.0) GO TO 75C
IP(ICOL) = .TRUE.
C INTFRCHANGE ROWS IO PuT PIVOT ELENENT CN DIAGONal
「 IIROW.EU.ICOLI GO TO 260
10 200 L = 1,N
SWAP = A(IROW,L)
A(IROW,L) = A(ICOL,L)
A(ICOLOL) = SWAP
CONTINJE
IF (M.EO.C) GO TO 260
SWAP = BIIRUNI
G(IROW) = B(ICOL)
U(ICOL) = SNAP
INA(I) = IRUW
ING(I) = ICUL
OIVIUE PIVCT RON GY PIVOT ELEMENT
AIICOL,ICUL)=1.0
DO 35~ L = 1.N
A(ICOL,L) = A(ICCL,L) / AMAX
3ju EONTINJE
IF (H.NE.W) B(ICLL) = BlICOL) / L"AX
C COCPL:TE THL PIVOT
280 DC 550%LL}=1
|f (ll•E-.licl) u心Tこ 550
S..AP = AILL,ICOL)
A(LL.ICUL) = ...
ひu4j-L = 1,V
A(LL,L) = A(LL,L) - Al|CUL,L)*Sr.AP
cuvilive

```

```

 byu CCNTINJE
 E7j CONTINUE
 6u- IF (\becauseOLT.-) RETURN
 intefchaNGE Culu%NS
 iC 71- ! = 1.N
 MOO． 1
Mocoz
－にくら3
： OC 04
Mびつす。
iiucob
MuOJ7
140000
MOCO7
シーシこ10
MOO11
MUC12
MUO13
MOO14
MOO15
MCO16
MUC17
MOC1る
MOO19
MOO20
M0021
MOC22
LuU CONTINJE 110023
lu5 CONTINUE MOO24
IF（AMAX．LG．O．O）GO TO 75C MOO25
IP（ICOL）＝•TRUE．MOO26
C INTFRCHANGE ROWS TO PUT PIVOT ELEMENT CN DIAGCNAL MOO27
\dot{r} IIROW•EU．ICOLI GO TO 260 MOO28

```

```

SWAP＝A（IROW，L）MOO30
AIIROW，L）＝AIICOLOLI MOO31
A（ICOLPL）$=$ SWAP MOO32
CONTINUE MOO33
MOO 34
MOO 35
MOO 36
MOO 37
MOO 38
MOO 3 ）
C OIVIUE PIVCT ROW GY PIVOT ELEMENT MOO4O
AlICOL．ICUL）$=1.0$
$0035 \mathrm{~L}=1, N$
M0041
140042
MOC43
NOO44
MivC45
MOこ46
N0047
MC040
140049
－ucbi
：0051
Nious2
NOCS3
：10C54
－そúら5
$\because \because C 56$
M0こ57
$\therefore 10056$

```

```

 L=N+1-1 M0060
 IF (INAILI.EQ.INBILI) GU TO 71O
 |RON = \NAILI
 lCCL = \NU(L)
 OO7U5K = 1.N
 SNAP = A(K,IRUW)
 A(K,!RCW)=A(K,ICOL)
 A(K,ICOL) = SNAP
 7.5 CCNTINUE
 7I~ CONTINUE
 74J RETURN
 C SIVGULARITY FLAG
7クU ISING=1 + N - I
GO TO 6こう
EPND
M0061
NivOS2
MCC63
MOO64
M.2064
MOO66
1:0067
M0060
M0069
M0070
:10071
MuO72
EMO MJO74

```

\section*{Appendix B}

\section*{MATRIX NOTATION AND FURTHER PROUFS}

The derivations in the preceding sections would be facilitated by the use of matrix notation rather than subscripted variables. We introduce the following symbols to correspond to the subscripted variables used in Sec. 3.

Subscripted Variable Matrix Size of Matrix


A

B

Y

D

C
\(\pi\)

R

X
X

The single-column matrices may also be thought of as vectors. We use here the convention that an operator applied to a matrix means that the operator operates on each element of the matrix. For example, \(\log Y\) is the \(N x l\) matrix consisting of
\[
\left(\begin{array}{c}
\log y_{1} \\
\log y_{2} \\
\cdot \\
\cdot \\
\log y_{N}
\end{array}\right)
\]

The superscript \({ }^{\top}\) indicates the transposition of a matrix. We assume that the elementary results of matrix theory are known. For example, it is known that the inverse of an invertable symmetric matrix is symmetric. The square diagonal matrix whose diagonal is one of the vectors previously defined will be denoted by the previously defined vector in elongated type; that is,
\[
D=\operatorname{diag}(D)
\]
and
\[
Y=\operatorname{diag}(Y)
\]

Equations (3.2) and (3.7) in matrix notation are
\[
\begin{align*}
& A X=B  \tag{B.1}\\
& X=Y\left(D^{-1} A^{\tau} \pi-D^{-1} C-\log Y\right) . \tag{B.2}
\end{align*}
\]

To see the ease of matrix notation, we may substitute (B.2) into (B.1) to get
\[
\begin{equation*}
A Y D^{-1} A^{\top} \pi=B+A Y\left(D^{-1} C+\log Y\right) \tag{B.3}
\end{equation*}
\]

By letting
\[
\begin{equation*}
R=A Y D^{-1} A^{\tau} \tag{B,4}
\end{equation*}
\]
and
\[
\begin{equation*}
S=B+A Y\left(D^{-1} C+\log Y\right) \tag{B.5}
\end{equation*}
\]
we see that
\[
\begin{equation*}
R \pi=S \tag{B.6}
\end{equation*}
\]
corresponds to (3.10).
In Sec. 4, we evaluated
\[
\begin{equation*}
\sum_{j=1}^{N} \frac{\theta_{j}^{2} d_{j}}{y_{j}} \tag{B.7}
\end{equation*}
\]
but we did not give the details of the computation. The algebra of this evaluation is very difficult unless matrix algebra is used. In matrix notation, (B.7) is \(\theta^{\tau} D Y^{-1} \theta\), where \(\theta=\mathrm{X}-\mathrm{Y} . \quad\) From (B.2) we have
\[
\begin{equation*}
\theta=Y\left(D^{-1} A^{\top} \pi-D^{-1} C-\log Y\right)-Y \tag{By}
\end{equation*}
\]

Hence,
\[
\begin{align*}
& \theta^{\tau} D Y^{-1} \theta=\left(\pi^{\tau} A D^{-1}-C^{\tau} D^{-1}-\log Y^{\tau}\right) Y D Y^{-1} \theta-Y^{\tau} D Y^{-1} \theta \\
& =\pi^{\tau} A\left(D^{-1} Y D Y^{-1}\right) \theta-\left(C^{\tau} D^{-1}+\log Y^{\tau}\right) O Y Y^{-1} \theta-Y^{\tau} Y^{-1} D \theta \\
& =\pi^{\tau} A \theta-\left(C^{\tau} D^{-1}+\log Y^{\tau}\right) D \theta-D^{\tau} \theta \tag{B.9}
\end{align*}
\]

Since \(A X=B, A \theta=A X-A Y=B-A Y\). Also, in the chemical equilibrium formulation,
\[
D^{\tau} \theta=\sum_{j=1}^{n} \theta_{j}-\sum_{j=n+1}^{N} \theta_{j}=\sum_{k=1}^{p}\left(\sum_{j \in\langle k\rangle} \theta_{j}-\theta_{k+m}\right)=0
\]
and
\[
\begin{aligned}
& \left(C^{\top} D^{-1}+\log Y^{\top}\right) D \theta \\
& =\sum_{j=1}^{n}\left(c_{j}+\log y_{j}\right) \theta_{j}+\sum_{j=n+1}^{N} \log y_{j}\left(-\theta_{j}\right) \\
& =\sum_{k=1}^{p}\left(\sum_{j \in\langle k\rangle} \theta_{j}\left(c_{j}+\log y_{j}\right)-\theta_{k} \log S_{k}\right) \\
& =\sum_{k=1}^{p}\left(\sum_{j \in\langle k\rangle} \theta_{j}\left(c_{j}+\log y_{j}-\log S_{k}\right)\right) \\
& =\sum_{j=1}^{n} \theta_{j}\left(c_{j}+\log \hat{y}_{j}\right) .
\end{aligned}
\]

Hence,
\[
\begin{equation*}
\sum_{j=1}^{N} \frac{\theta_{j}^{2} d_{j}}{y_{j}}=\sum_{i=1}^{m} \pi_{i}\left(b_{i}-\sum_{j=1}^{n} a_{i j} y_{j}\right)-\sum_{j=1}^{n} \theta_{j}\left(c_{j}+\log \hat{y}_{j}\right) \tag{B.10}
\end{equation*}
\]
in the context of the chemical equilibrium problem used in Sec. 4.

Next we wish to show that
\[
\sum_{j=1}^{N} \frac{\theta_{j}^{2} d_{j}}{y_{j}} \geq 0
\]
as stated in (4.14). First, we prove
Lemma 1: Let \(y_{1}, y_{2}, \ldots, y_{r}\) be positive numbers and let \(\theta_{1}, \theta_{2}, \ldots, \theta_{r}\) be any real numbers. Let
\[
G=\sum_{j=1}^{r} \frac{\theta_{j}^{2}}{y_{j}}-\frac{\left(\sum_{j=1}^{r} \theta_{j}\right)^{2}}{\sum_{j=1}^{r} y_{j}} .
\]

Then,
i) \(G: 0\)
ii) \(G=0\) if and only if
\[
\frac{\theta_{1}}{y_{1}}=\frac{\theta_{2}}{y_{2}}=\ldots .=\frac{\theta_{r}}{y_{r}} .
\]

Proof: Let \(\alpha_{j}=\theta_{j} / y_{j}, j=1,2, \ldots, r\). Then,
\[
G=\sum_{j=1}^{r} \alpha_{j}^{2} y_{j}-\frac{\left(\sum_{j=1}^{r} \alpha_{j} y_{j}\right)^{2}}{\sum_{j=1}^{r} y_{j}}
\]
\[
\begin{aligned}
& =\left(\sum_{j=1}^{r} y_{j}\right)^{-1}\left[\left(\sum_{j=1}^{r} y_{j}\right)\left(\sum_{j=1}^{r} \alpha_{j}^{2} y_{j}\right)-\left(\sum_{j=1}^{r} \alpha_{j} y_{j}\right)^{2}\right] \\
& =\left(\sum_{j=1}^{r} y_{j}\right)^{-1}\left[\sum_{i=1}^{r}\left(\sum_{j=1}^{r}\left(\alpha_{j}^{2} y_{i} y_{j}-\alpha_{i} \alpha_{j} y_{i} y_{j}\right)\right)\right] \\
& =\left(\sum_{j=1}^{r} y_{j}\right)^{-1}\left[\sum_{i=1}^{r}\left(\sum_{j=1}^{i}\left(\alpha_{j}^{2} y_{i} y_{j}-2 \alpha_{i} \alpha_{j} y_{i} y_{j}+\alpha_{i}^{2} y_{i} y_{j}\right)\right)\right] \\
& =\left(\sum_{j=1}^{r} y_{j}\right)^{-1}\left(\sum_{j<i} y_{i} y_{j}\left(\alpha_{j}-\alpha_{i}\right)^{2}\right) \geq 0,
\end{aligned}
\]
which is result i). The proof is completed by noting that \(G=0\) if and only if \(\alpha_{i}=\alpha_{j}\) for all i and \(j\); this proves ii).

Now we can prove
Theorem 1: In the chemical equilibrium problem
i) \(\sum_{j=1}^{N} \frac{\theta_{j}^{2} d_{j}}{y_{j}}=0\)
ii) \(\sum_{j=1}^{N} \frac{\theta_{j}^{2} d_{j}}{y_{j}}=0\) if and only if there exist
numbers \(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\) such that
a) \(\theta_{j}=\alpha_{[j]} y_{j}\)
\(j \leq n\)
b) \(\quad \theta_{j}=\alpha_{j-n} S_{j-n}\).
\(j>n\)

Proof: The proof follows by noting that for \(i>n\)
\[
\theta_{i}=\sum_{j \in i-n} \theta_{j}
\]

Then,
\[
\begin{aligned}
& \sum_{j=1}^{N} \frac{\theta_{j}^{2} d_{j}}{y_{j}}=\sum_{j=1}^{n} \frac{\theta_{j}^{2}}{y_{j}}-\sum_{k=1}^{p} \frac{\theta_{k+n}^{2}}{S_{k}} \\
& =\sum_{k=1}^{p}\left(\sum_{j \in\langle k\rangle}^{y_{j}} \frac{\theta_{j}^{2}}{j \in\left(k \in\langle k\rangle^{j}\right)^{2}}\right) \geq 0
\end{aligned}
\]
by lemma 1. Furthermore, by lemma 1, if the equality holds, then for each \(k\) there is a number \(\alpha_{k}\) such that \(\theta_{j}=\alpha_{k} y_{j}\) if \(j \in k\). This, noting that b) follows from the fact that
\[
\theta_{i}=\sum_{j \in\langle i-n\rangle} \theta_{j} \text { for } i>n,
\]
completes the proof of the theorem.

\section*{Our final result is}

Theorem 2: In the chemical equilibrium problem, with \(\left(y_{1}, y_{2}, \ldots, y_{n}\right)\) feasible and \(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\) calculated as in (4.7)
\[
\begin{aligned}
& \text { i) } \sum_{j=1}^{n} \theta_{j}\left(c_{j}+\log \hat{y}_{j}\right) \leq 0 \\
& \text { ii) } \sum_{j=1}^{n} \theta_{j}\left(c_{j}+\log \hat{y}_{j}\right)=0 \text { if and only if }
\end{aligned}
\]
\(\left(y_{1}, y_{2}, \ldots, y_{n}\right)\) is optimal.
Proof: i) follows from Theorem 1, (B.10), and the fact that \(\left(y_{1}, y_{2}, \ldots, y_{n}\right)\) is feasible.

To prove ii), we assume that
\[
\sum_{j=1}^{n} \theta_{j}\left(c_{j}+\log \hat{y}_{j}\right)=0 .
\]
\[
\sum_{j=1}^{N} \frac{\theta_{j}^{2}{ }_{j}{ }_{j}}{y_{j}}=0
\]
and \(\theta_{j}\) is as in ii) of Theorem 1. Combining b) of Theorem 1 and (4.12) we have
\[
\theta_{k+n}=S_{k} \pi_{m+k}^{\prime}=\alpha_{k} S_{k}
\]
or
\[
\alpha_{k}=\pi_{m+k}^{\prime}
\]

Next, we combine a) of Theorem 1 with (4.7) to get
\[
\begin{aligned}
\theta_{j} & =y_{j}\left[\sum_{i=1}^{m} \pi_{i}^{\prime} a_{i j}-c_{j}-\log \hat{y}_{j}+\pi_{[j]+m}^{\prime}\right] \\
& =y_{j} \alpha_{[j]}=y_{j} \pi^{\prime}[j+m
\end{aligned}
\]
or
\[
\sum_{i=1}^{m} \pi_{i}^{\prime} a_{i j}-c_{j}-\log \hat{y}_{j}=0
\]

This last result is the optimality condition for ( \(y_{1}, y_{2}, \ldots, y_{n}\) ) as given by (1.4), and this demonstrates the forward implication of ii). The converse follows from the fact that optimality implies that the objective function cannot be decreased.

\section*{REFERENCES}
1. Shapiro, N. Z., and L. S. Shapley, Mass Action Laws and the Gibbs Free Energy Function, The RAND Corporation, RM-3935-1-PR, September 1964.
2. Dantzig, G. B., Linear Programming and Extensions, The RAND Corporation, R-366-PR, August 1963. Also published by Princeton University Press, Princeton, New Jersey, 1963.
3. Kaplan, Wilfred, Advanced Calculus, Addison-Wesley Press, Inc., Cambridge, Massachusetts, 1952.
4. Clasen, R. J., The Linear-Logarithmic Programming Problem, The RAND Cc:poration, RM-3707-PR, June 1963.
5. White, W. B., S. M. Johnson, and G. B. Dantzig, Chemical Equilibrium in Complex Mixtures, The RAND Corporation, P-1059, October 8, 1957. Also published in J. Chem. Phys., 28 (1958) 751-755.
6. International Business Machines Corporation, "IBM 7040/7044 Operating System, FORTRAN IV Language," IBM Systems Reference Library, Form C28-6329, Poughkeepsie, New York, 1963.
7. Dantzig, G. B., and J. C. DeHaven, "On the Reduction of Certain Multiplicative Chemical Equilibrium Systems to Mathematically Equivalent Additive Systems," J. Chem. Phys., 36 (1962) 2620-2627.
8. Shapiro, N. Z., A Generalized Technique for Eliminating Species i.n Complex Chemical Equilibrium Calculations, The RAND Corporation, RM-4205-PR, August 1964.
9. Dantzig, G. B., J. C. DeHaven, I. Cooper, S. M. Johnson, E. C. DeLand, H. E. Kanter, and C. F. Sams, "A Mathematical Model of the Human External Respiratory System," Perspectives in Biol. \& Med., 4 (1961) 324-376.
10. Maloney, J. V., Jr., M.D., J. C. DeHaven, E. C. DeLand, and G. B. Bradham, M.D., Analysis of Chemical Constituents of Blood by Digital Computer, The RAND Corporation, RM-3541-PR, April 1963.
11. DeHaven, J. C., and E. C. DeLand, Reactions of Hemoglobin and Steady States in the Human Respiratory System: An Investigation Using Mathematical Models and an Electronic Computer, The RAND Corporation, RM-3212-PR, December 1962.
12. DeHaven, J. C., E. C. DeLand, N. S. Assali, and W. Manson, Physiochemical Characteristics of Placental Transfer, The RAND Corporation, P-2565, March 1962.
13. Warga, J., "A Convergent Procedure for Solving the Thermo-Chemical Equilibrium Problem," J. Soc. Indust. Appl. Math., 11 (1963) 594-606.```


[^0]:    * The reader is referred to other works for the procedure of constructing the mathematical models of biochemical systems [9-12].

[^1]:    Ref. 1, Theorem 8.13; Ref. 5.

