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PREFACE

This Memorandum is one in a continuing series of RAND
publications dealing with theoretical computational ques-
tions arising from the RAND program cf research in biology
and physiology. The Memorandum contributes to our ability
to apply computer technology to the analysis of complex
chemical systems by considering the ''chemical equilibrium
problem,'" the problem of determining the distribution of
chemical species that minimizes the free ¢nergy of a system
while conserving the mass of each of the chemical elements.

Solutions to the chemical equilibrium problem pub-
lished up to this t.me [4,5] apply to those problems for
which an estimate of the solution exists. This Memorandum
considers a problem for which no estimated solution exists
and solves that problem with the maximum precision now
available,

The mathematical aspects of this Memorandum should
also be of interest in other fields where computational
analyses of complex chemical systems are under considera-
tion, e.g., in studies of rocket propulsion systems,

planetary atmospheres, re-entry problems. etc.



SUMMARY

In physical chemistry, the ''chemical equilibrium
problem'" is the problem of determining the distribution
of chemical species that minimizes the free energy of a
system while conserving the mass of each of the chemical
elements. The reactions occurring within the chemical
system may be quite complex. However, in a great number
of cases, the mathematical statement of the problem can
be simplified to a particular mathematical form [7,8]
involving the minimization of a nonlinear objective func-
tion over a set of linear constraints,

This Memorandum presents the numerical solution of
the chemical equilibrium problem by describing methods
for starting the solution when an initial estimate is not
available, and for improving an initial estimate to make
it feasible. It presents a first-order method and a
second-order method for solving the chemical equilibrium
problem in the context of the linear-logarithmic program-
ming problem [4] and provides convergence criteria for
the majority of problems of this type that are likely to

be attempted.
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FOREWORD

In deciding between the languages of mathematics and
physical chemistry, we have chosen in this Memorandum to
use that of mathematics. The disadvantage of this choice
is that the physical chemist may experience some diffi:ulty
in immediately identifying certain concepts. The advantage
is that mathematical language divorces the methods from
the physical assumptions involved in constructing a mathe-
nmatica. model of a physical system.* The mathematical
methods are, hence, free to transcend their specific
chemical applications.

The methods given here do not solve every problem that
is specified in the given mathematical form. The solution of
a problem in which some phase vanishes (a degenerate problem)
requires further work. Some work has been done on particular
degenerate systems [137, but the accurate numerical solution
of a large general system of this type has yet to be accom-
plished. Until recently, a skilled physical chemist could

intuitively eliminate the degeneracies of his model and

*

The reader is referred to other works for the pro-
cedure of constructing the mathematical models of bio-
chemical systems [9-12].
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obviate the need for solving a degenerate system. But,

as problems grow, eliminating degeneracy becomes increasingly
difficult. Frequently, the point at which the problem be-
comes too large for the physical chemist to decide whether

or not to include a phase coincides with the point at which
the problem becomes numerically unwieldy. Hopefully, the
future will eliminate these difficulties.

Statements about. convergence and convergence tests
exist, unless otherwise indicated, in the context of finite-
accuracy numerics. Statements of this kind do not mean,
in the absence of qualification, that no problem exists
nor that no machine would serve as a counter example,

Rather they are simply descriptions of what was found to
occur in actual practice.

No attempt has been made to describe those methods
which were tried and found wanting. The methods presented
are those which are best for the largest number of cases.

Finally, it should be pointed out that although
computing time was a factor, it was consiuered secondary

to accuracy of results.
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1. INTRODUCTION

For the purposes of this Memorandum, the chemical
equilibrium problem is merely a name we use for a par-
ticular mathematical programming problem, i.e., the prob-
lem of minimizing a particular nonlinear function F(xl,xz,

.,xn), defined below, while satisfying the linear re-

straints or constraints

n
;:a.. x, = b, i=1,2,3,...,m (1.1)

with xj 2 0 for j=1,2,...,n and aij’ bi given constants.,

Assuming that the equations of (l1.1) are linearly inde-

pendent, then in order to have a non-trivial problem it can
1°72°

considered components of a vector (xl,xz,...,xn). Solving

be assumed that m<n. The variables x,,x ++., X cCan be

the chemical equilibrium problem then is the problem of

determining this vector. The variable x, will be referred

j

to as the "jth component'; also the numerical value of xj

may be referred to as the ''component' rather than using

the perhaps linguistically correct but cumbersome term

"component value,"



The components are partitioned into p non-empty

subsets called compartments. Let us denote these compart-

ments by (1),(2),...,{p). Then if the jth component is
in the kth compartment, we will say je(k), where each
component is in exactly one compartment. The number of
the compartment that the jth component is in is denoted
by [(j]. Hence je(k) implies [j] = k, and conversely.

Each compartment has associated with it a sum defined by

Sk= Z xj . (1.2)
jek)
A A X,
The component fraction x, is defined by x, = §J—— whenever
: T
S > 0.
(j]
The objective function to be minimized over (1.1)
is
n
A
F(xl,xz,...,xn) = Elxj(cj + log Jj) (1.3)
j=1
where Cy3CpseevrCy are given coenstants, called objective
constants.

When an xj is zero, log Qj 18 undefined; but we de-

fine 0 log 0 to equal 0 so that we may evaluate F when



some components are zero. A feasible solution to the

chemical equilibrium problem is defined to be any set of

non-negative components that satisfies (1.1). The problem

is said to be feasible if it has feasible solutions. If
no feasible solution is arbitrarily large in any component,

the feasible problem is said to be bounded feasible; all

practical problems with which one might have occasion to
deal are bounded feasible.

A solution or optimal solution to a bounded feasible

problem is any feasible solution in which F(xl,...,xn)
attains the minimum value over all feasible solutions. A

problem which has optimal solutions in which some component

is zero is called degenerate, and a bounded feasible prob-

lem in which the components in any optimal solution are

all strictly positive is called a non-degenerate problem.

It has been shown [1, Theorem 12.1] that a non-degenerate
problem has exactly one optimal solution. Hence, we may
speak of the solution to the problem. Furthermore, it has
also been shown* for the non-degenerate problem that the
minimization of F is equivalent to the existence of numbers

LATLP TR called Lagrange multipliers, which satisfy:

*
Ref. 1, p. 18.



m
. A .
E:"iaij = cj + log hj . j=1,2,3,...,n (1.4)

In the following sections we derive conditions,
analogous to (l1.4), which are useful in solving the problem.
In Sec. 2 we are interested in finding a solution to (1.1)
with all xj > 0. A set of xj which satisfies these con-

ditions is called a pgsitive feasible solution. If (1.1)

is satisfied with xj 2 0, we have called such a result a
feasible solution. The theory of linear programming gives
us methods of finding feasible solutions to problems with
linear restraints. In Sec. 2, we use a linear programming
technique to find a positive feasible solution. In Sec. 4
we show how to modify the initial —ositive feasible solu-

tion to get the solution to the problem.



2. THE INITIAL SOLUTION

The algorithms presented in the following sections
require an initial positive feasible solution in order that
the procedure for solving the problem can be initiated.
Frequently, an individual with a problem to solve will be
able to give a rather accurate estimate of its optimal
solution. This estimate may be the exact solution of
another problem which differs from the one being considered

in relatively minor ways.

THE PROJECTION METHOD

Let us suppose that such is the case, and let us de-
note the estimate of the components by YysYgreees¥ e These
values, substituting yj for xj in Eq. (1.1), will not
generally satisfy (1.1), being somewhat in error. Let us

denote these errors by 811895183 that is, let

n
g, = b, - Zaijyj . i=1,2,...,m (2.1)

Then, we wish to find corrections to yj such that, denoting

the corrections by Oj, we have

n

b, - : ) = - T
{ Zaij(yJ + QJ) 0 1i=1,2, ,m
j=1



or

n
g = za O. . 131,2,...,“1 (2'2)

The Oj must also be chosen such that yj + Oj > 0, for all
j. We cannot guarantee this condition, but we can attempt
to choose small values for Oj. One way to do this is to

minimize

subject to (2.2), where w, is the 'weight'" or relative
J

importance of minimizing Oj. This reduces to the problem

n , such that

of finding Lagrange multipliers TLOTERETL

with
n m n
1 2
L =3 ZWjOj - Z"i zaijgj - 8 (2.3)
j=1 i=1 j=1
we have
oL
36 - 0 . j=1,2,...,n (2.4)



Equation (2.4) becomes

wie, = zaij"i j=1,2,...,n (2.5)

and substituting (2.5) into (2.2) we have

m n

a, .a,.
- A1 1] i
g, =y 7| Y= ) =12, (2.6)
1=1 j=1 3
The terms
n a .a,.
13714
) =
j=1

can be immediately evaluated; let us denote these terms

by
1
a,.a.
it T (2.7)
=1
Note that q,; =9, Then, (2.6) becomes
m
g; = E:qii"f . i=1,2,...,m (2.8)



Equation (2.8) is a set of m simultaneous equations 1in

the m unknowns, oM These equations may be

O IRE

solved for = ,M , and then these values may be sub-

1,"2a°-° m’

stituted in (2.5) to get 01,0 .,On. There remains the

90
question of choosing values for the weighting factors
wj. In tests of this method, it has been found that

using

ylelds satisfactory results. The choice of the weighting
factors depends, to some extent, on the available com-
puters. Using these weighting factors, we can summarize

the computation of Oj in the following three equations:

n
= 1] 25,5 .,Mm
Ui " zaf.jaijyj 1=1,2,....m (2.9)
j=1
m n
z q,4m, = by - Zaijyj i=1,2,...,m (2.10)
=1 j=1
m
0, =y, ; j=1,2,... :
§ =5 zaiJﬂi Il 20t R (2.11)
i=1

where



3 = yj + OJ : ij=1,2,...,n (2.12)

X

The xJ from (2.12) will satisfy (1.1). However, the

x, need not all be strictly positive. If any xJ is zero

3
or negative, this method of obtaining the initial solution,

which we shall call the projection method, has failed. 1If

the projection method fails, or if no initial estimate 1is

provided, then a linear programming method may be used.

THE LINEAR PROGRAMMING METHOD

The terminology used in linear programming is similar
to the terminology used above in describing the chemical
equilibrium problem. The statement of a linear program-

ming problem includes a set of linear restraints

n
Zaijxj - b, i=1,2,...,m (2.13)
i=1

together with a set of constants Cl’CZ’C3""’Cn’ called

costs. A feasible solution to a linear programming problem

1s any set of non-negative xJ such that (2.13) is satisfied.
The costs are used to form the following expression, L,

which 18 called the objective function
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n
L = C.x. . 2.14
z i (2.14)

For every set of feasible xj, we can evaluate L. The set
of feasible xj for which L has the minimum value that it
can have with any set of feasible xj, is called a solution
of the linear programming problem. A problem which has
sets of feasible xj is called a feasible problem, and a
problem in which there are no sets of feasible xj is called

an infeasible problem. An infeasible problem has no solu-

tions, while a feasible problem has at least one solution.
In this discussion, we will not be concerned as to whether
a problem has moi : than one sclution: we will only be
concerned with finding a solution to the problem. Since
the means of finding a solution to a linear programming
problem has been the subject of many papers and books, we
will not give an actual method of solving the linear pro-
gramming problem here. The reader may refer to Dantzig
[2] for a complete discussion of the problem.

The problem of finding a feasible solution to a
linear programming problem is itself a linear programming

problem--that is, it involves finding a solution to the
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problem with all C, equal to zero. With all C, = 0, L in

J

hence, L {s at

3
(2.14) 1is zero for any set of feasible xj;
its minimum value for any set of feasible xj. Since L 1is
at its minimum value for any feasible set of xj, any
feasible set of xj is, by the above definition, a solution
to the linear programming problem.

However, we must not only find a feasible solution to
the linear programming problem, we must also find a positive
feasible solution to the problem. In order to do this, we

let

xJ - yj + Y41 J=1,2,...,0 (2.15)
1f we can find non-negative values of ST JYREREY A
which satisfy
n
Zaij(yj +y.,) = b, {=1,2,...,m (2.16)
i=1

then xj, as defined by (2.15), will be a feasible solution.

If we can somehow assure that Y1 1s positive, then all

x, will be positive. Rewriting (2.16), we have

3
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n n
Xaijyj + Zaij Yoo = b . i=l,2,...,m  (2.17)
j=1 j=1

If we now specify Cl’CZ""’Cn+1’ we have a linear program-

ming problem in n+l unknowns. In order to guarantee that

Y41 is positive, if it is possible for it to be positive,
we can maximize Yoal It is easy to see that we can maximize
Yo+l by setting

L = - Yo+l (2.18)
which is equivalent to setting Cl=C2=C3=...=Cn=O, Cn+1 = -1,

If the solution to the resulting linear programming problem

is feasible and y 0, then we have, by (2.15), a positive

n+1 g
feasible solution to the analogous chemical equilibrium
problem (1.1). If the linear programming problem is feasible
but T 0, then the analogous chemical equilibrium problem
is degenerate, since there is no strictly positive solution

to the problem. However, this is a rather trivial kind of
degeneracy, and its occurrence usually indicates that a
mistake was made in setting up the problem. Hence, this
linear programming method gives us a way of finding a positive

feasible solution to the chemical equilibrium problem if

the chemical equilibrium problem is non-degenerate.
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The positive f2asible solution that we obtain by this
method will generally not resemble the final solution of
the chemical equilibrium problem. The initial positive
feasible solution can be improved by the following tech-

nique. Define bm+ to be some multiple, between zero and

1
one, of the value of Y4l that was obtained above. Then,
adjoin to the linear restraints (2.17) one more restraint

of the form Yo+l - b Ne.'t, solve the linear program-

m+l°
ming problem with these restraints and with Cl-cl’ C2-c2,

., C =C_» C ,,=0 (recall that the lower-case c's here

n n+1l

refer to the c¢'s in the chemical equilibrium problem (1.3)).
The solution to this linear programming problem will give a
set of components more nearly resembling the solution to the
chemical equilibrium problem than did the components calcu-
lated from Eqs. (2.17) and (2.18). This new solution, in
turn, may be improved by solving another linear programming
problem (the details of which can be seen in SUBROUTINE LP in
Appendix A) and averaging the new solution with the old solution.
In order to solve an elaborate chemical equilibrium
problem it is not sufficiernt to simply use a method which
we can prove converges to the correct solution. Proofs
of convergence generally assume infinite computational

accuracy, but since we are usually limited in practice to
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about eight significant digits, the numerical solution will
not always converge. However, it has been observed that
the closer we can get to the solution by the initial solu-
tion methods described above, the greater will be the
probability that the numerical procedure will converge.
Furthermore, not only will the probability of convergence
be greater, but the number of iterations to get to the
solution will be fewer, and hence--when an improved initial
solution is used--the computation time will be shorter.
Unfortunately, the mathematical methods that are available
for analyzing convergence of iterative processes do not,

in the case of the chemical equilibrium problem, enable us
to prove convergence when we are limited to finite mathe-
matical accuracy. Only experience with a particular method
will tell us whether it is a useful numerical procedure

to use.

In the next section we consider a somewhat more general
problem than the chemical equilibrium problem. This prob-
lem is considered first because the numerical results take
on an especially simple form when the additional generality

is admitted.
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3. THE LINEAR-LOGARITHMIC PROGRAMMING PROBLEM,
FIRST-ORDER METHOD

In this section we consider the problem of minimizing

N
F(xl,xz,...,xN) = jzaxj(cj + dj log xj) (3.1)

while satisfying the linear restraints

N
Za. X, = b, . i=1,2,3,...,M (3.2)

The symbols a bi’ cj’ and d. denote constants, and

ij’
X1 9Xgs e oo Xy are the unknowns that we seek. We restrict

the problem to the case that dj #0 for j = 1,2,3,...,N,

We note that if xj < 0, the term in (3.1), xj(cj + djlog xj),
is undefined, whereas if xj > 0 this term is defined. If

xj = 0 we define xj(cj + djlog xj) = (0, since this expression
apprcaches zero as xj > 0 approaches zero. From this dis-

cussion, we see that, in order for a solution of Eqs. (3.1)

and (3.2) to be defined, we must assume that xj 2 0 for
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We may attempt to solve this problem using Lagrange

*
multipliers, In this method we let

M N
L o= F(xp,xp0%g,00%y) = ) [y zaijxj =

i=1 j=1
and then set
oL _
x, -V
for j = 1,2,3,...,N. Performing the partial differentia-
tion, we get
M
.+ d. lo x + d ! 8.3
Sk HRL z (3.3)
j=1,2,3,...,N
or, when rearranged,
M
-1
1 . = d, r.a,, -c, -d,|. 3.4
ngJ J leJ J J ¢ )
i=1

j=1,2,3,..

* .
See Kaplan, Ref.. 3, p. 128, or Dantzig, Ruf. 2,
p. 140.



_ -1
x; = exp [ d] Zﬂ.a . -die, - 1]. (3.5)

j=1,2,3,...,N

Note that for (3.5) to be a solution to the problem, we
must have all xj > 0. We assume, in the remainder of this
section, that the solution does have all xj > 0. Then,
the problem reduces to the problem of determining the M "
so that the xj from (3.5) satisfy (3.2) Equivalently,

the M + N equations (3.2) and (3.5) must be satisfied simul-
taneously by the proper choice of the M + N unknowns,
"1’"2""’"M’ Xy 9Xgs ooy Xy We now consider two methods

of approximating the solution.

In the first method, we suppose that we have an esti-
mate of the xj which may or may not satisfy (3.2). We
denote this estimate by yj, and, in this method, solve
Eqs. (3.2) and (3.4) simultaneously by making a iinear
approximation to log xj. Since we have the estimate that

X, Is near yj, we note that the first-order Taylor ex-

J

pansion of log x, about yj is

]
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X.-y,
log Xy u* log yj + —J;—l + (higher-order terms) . (3.6)
]

Dropping the higher-order terms, and substituting (3.6) into

(3.4) and solving for xj, we have

M
-1 -1
x. =vy,. |d. m.a,, - d,.¢c. - lo 1. 3.7
] yJ J z 1 1) ) ] gyJ ( )
i=1

j=1,2,3,...,N

Now, if we substitute these xj into (3.2), we get

M N N
-1 -1
d,a..a_ .y, |]n =Db, + a,.v,(lo .+ d, ¢,
z 3 5075 | T i z iJ'J( &7 j J)
1=1 \j=1 j=1
i=1,2,3,...,M
Denoting
N
-1 1=1,2,3,...,M
i 45 2152373 {=1.2.3,....M (3.8)
J=1
and
N
s, = b, + za .y.(log y, + djlc ) (3.9)
i i 1373 3 j ]
j=1
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we have

M
zrunL -5, . i=1,2,3,... M (3.10)
L=1

Equation (3.10) is a set of simultaneous equations which

1TgreeesMy

With the above results, we can now define the iterative

can be solved for 7n

process for the first method. At each iteration we have a

set cof values for X19Xgs oo Xy At the beginning of the
iteration these values are called Yys¥orer s Yy and at the
end of the iteration the values are Xy9Xgs ooy Xy I1f
X.-Y.
#
3

is small for each j, then we say we have converged. The
magnitude of "small" depends on the nature of the problem.

If

is not small for some j, then we have not converged and
the iteration must be repeated. One iteration consists of

the following three steps:
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1) Evaluate terms in Eqs. (3.8) and (3.9), these
terms depending on YysYgr s Yy
2) Solve Eq. (3.10) for T aMgseeesMys
3) Substitute LELOYRRRIL into (3.7) to get
XpsXgs e e Xy
For this problem, in this generality, we can say noth-
ing about whether this iterative process converges. In
the next section we will show that the chemical equilibrium
problem is a special case of this problem, and one for which,

with appropriate modification, this method does converge.
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4, THE FIRST-ORDER METHOD FOR- SOLVING THE
CHEMICAL EQUILIBRIUM PROBLEM

The chemical equilibrium problem is a special case
of the linear-logarithmic programming problem. In order
to put Eqs. (3.1) and (3.2) into the form of Eqs. (1.1)

and (1.3), we first define

N = n+p

M = mtp

where, as stated previously, p is the number of compartmerts

in the problem. Then we define aij’ bi’ xj, and cj’ for

i >mand j > n, as follows
b, =0 i=m+l,m+2,...,M (4.1)
c, =0 j=r+l,n+2,...,N (4.2)

X = S k=1,2,...,p (4.3)



1 if i
a, =< 0 if 1
-1 if i

0 if 1

For all j, we define

+1 1if j

-1 if

— 7272

m, j >n
m, j <n, and [(j] = i-m
m, i £n, and [j] # {i-m

m, j >n, and i-m = j-n

m, j >n, and i-m # j-n .

n

(4.4)

(4.5)

With these definitions, it has been shown [4] that the two

problems are identical.

i

k". + log S

Next, we let

ism

+ 1. i>m

i-m

(4.6)

Substituting Eqs. (4.1) through (4.6) into (3.7) through

(3.10) and simplifying, we have



m
A
(4] - LI - ' .
g7y | 2oyt eyt o8 Syt g et
i=]
j=1,2,...,n
/
n
zaijal.jyj LSm, i<m
j=1
>
Z aéjyj 1<m, i>m
je(i-m)
Ty, =4 (4.8)
S
z aijyj >m, ism
je(rL-m)
0 t>m, i>m
\
/ n
A ,
b, + a,.y.(c, + 1c . -1 i<m
{ z lJyJ( 3 8 Y )
j=1
' =
5i J (4.9)
N
.(c. + 1o . i>
z YJ( 3 g yJ) m
je(i-m
\
M
v = ! =
zruni s) . i=1,2,... M (4.10)
1=1

The directional derivative of F in the direction

(01,92,...,0n) is given by [1, Theorem 8.11)] to be



-2=

n
0,/c, + lo f .
) 8,lcy + log §)) (4.11)
j=1
N 2
But, if we compute z—-—l—i where by (3.7)
j=1 ')
]
Oin = Si [nmk - log s, - 1] S T (4.12)
k=1,2,...,p
we show, in Appendix'B, that
N 04 n m n
%1% .
= - .(c, ) o+ , - . . (4.1
Loy ZOJ(CJ °8 9J) Z"l by ZainJ L)
J- ] im=
Thus, if we assume that (yl,yz,...,yn) is feasible, we get

the in:eresting result that the directional derivative of

F in the direction (6,,0 ,...,On) is

1’72
n N 2
ZQ(C +logy)=-z—-L-150. (4.14)
j=1 j=1 ’3

However, it is also shown in App dix B that the
equality on the right side of (4.14) holds if and only if
the values for yj are optimal. We further note that if

(yl,yz,...,yn) is feasible, then
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n
zaijgj =0

for i = 1,2,...,m. Herce, if (yl,yz,...,yn) is feasible,

then (yl+A9 +10 .‘,yn+AOn) will be feasible for any

l’yz 2)’
A for which each yj + XGj is positive,

We now state the first-order chemical equilibrium
algorithm:

1) Calculate (91,9 ,On) using Eqs. (4.7) through

IR
(4.10).

2) Calculate the directional derivative of F in the
direction (01,92,...,9n) as given by Eq. (4.11);

if thi¢ quantity is not negative, we are done.

3) Calculate

1 n 0. 2
(~—Z;~1
=1\

€ is a number that represents the root-mean-square
error in {yl,yQ,...,yn). If € is less than some

given number (say, 0.001), we are done.
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Calculate the ratio -yj/Qj for every j for which
Oj < 0. Let Al be the minimum of all such ratios
and let A = min (1,ﬁkl), where B8 is a number less
than 1 but close to 1 (say, 0.99). We now per-
form the following steps until the test at c) be-
low is satisfied:

a) Let Zj = yj + Agj;

b) Compute the directional derivative of F at

zj in the direction (91,97,...,9n): £(\)

—

A
8.(c, + log z.);
J( J E

J
c) If f(\) < 0, go directly to step 5);
d) Replace x by yx, where § < y < 1, e.g., y =

Finally, replace yj by yj Ty AQj for j = 1,2,...

Steps 1-5 are repeated until either the test in step 2 or

the test

in step 3 is satisfied.

If this process terminates, the solution will be

optimal within the specified limits of accuracy. It may

happen that the process does not terminate. Since the

*

objective function F is convex and assuming infinite

computational accuracy, non-termination can occur only be-

cause the values chosen for x become smaller on every

*.

Ref.

1, Theorem 8.13; Ref. 5.

3 Nl
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iteration. This will occur only if some yj is approaching
zero, and hence (yl,yz,...,yn) is approaching a point at
which, if it were the optimal solution, the problem woulc
be degenerate. It is possible for this to happen for a
non-degenerate problem for which the initial solution
chosen was too far from the optimal solution. Convergence
can be guaranteed by imposing the condition that the value
of F at the initial solution be less than the value of F
at any feasible, degenerate point. However, it is not
practical to impose this condition on the initial solution
since it may be very difficult to find such a point. In
practice, it has been found that round-off errors cause
more difficulty than the possible selection of a poor

initial solution.
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5. THE LINEAR-LOGARITHMIC PROGRAMMING PROBLEM,
SECOND-ORDER METHOD

In the first-order method, presented in Sec. 3, the
iterative process was initiated with an estimate of the

,X... In the second-order method, we

1 £
value of x N

IR
assume that the problem is as defined by Eqs. (3.1) and

(3.2), but that we have initial estimates for the values

7 . Let us denote these estimates by

of nl,ﬂz,..., M

A A . The xj can then be evaluated by Eq. (3.95),

A
172277 M
substituting Ai for m. - These Xj’ however, probably will
not satisfy Eq. (3.2). The problem of the second-order

method is to find numbers AAl,AA ,...,AAM, such that

2

m., = A, + OA, i=1,2,...,M (5.1)
when substitited into (3.5) will give X, that satisfy (3.2).
In order to accomplish this, we first use the xj

calculated from Eq. (3.5) to get

N
g. = b, - Zaijxj i=1,2,... M (5.2)
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where g; represents the amount that equation i is in error.

Next, we evaluate

o8

i
oA
’4
by
g N
i d
—— =— |b, - E:a..x
e ; 8A£ 1 o 1j ]
J=
N
3
= - EalJ _axl exp | d
j=1
N
2: -1
=N e a,.d. x = -
1] ] L]
j=1

where r,. is given by Eq. (3.8).

change, dAl, dAz,..., in A_,A

is given by dgl,dgz,..., where

EAVIEE

(5.3)

If we make a very small

i=1,2,.

., the change in 81189«
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or

M
dg. = - zr, dx, . i=1,2,...,M (5.4)

We would want dgi to be equal to -g; as computed by

Eq. (5.2). If we make the approximation that

is constant over the domain considered, we can set

dg. = -g., let dA = AA , and write
i i A /)

M
8y = ZrciA)\l . i=1,2,...,M (5.5)
F’=1

Equation (5.5) consists of M equations in the M unknowns

We may thus solve Eq. (5.5) for

A\ o, DA

1’72 M

AAL,AMZ,...,AAM and compute nl,ﬁz,...,ﬂM from (5.1). If

the assumption about

85

3A

L

being constant over the domain considered was correct, then
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the xj computed from (3.5) with these values for T will
satisfy (3.2). However, in general, they will not satisfy
(3.2), but, if we were close enough to the solution so

that the

did not vary greatly in the domain considered, then the new
values for xj should come closer to satisfying (3.2) than
did the first set of xj.

With this assumption, we may now state the iterative

process:

a) Using the values at hand for M sMoseeesMys
evaluate (3.5).

b) Using the values for xj obtained in step a,
evaluate (5.2). If the |gi| are sufficiently
small, we are done.

c) Compute T, using (3.8) and solve (5.5) for AAi.

d) Denoting the m. in step a by Ai’ we get new m,
by (5.1).

Steps a-d are repeated until the |gi|, computed in step

b, are sufficiently small, or until they show no more

improvement.
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There is no proof of convergence for this method.

In fact, the method presented here is unlikely to converge
unless the starting values of "1’"2""’"M are very good,
and even then there may be no convergence. This method may
be used on the chemical equilibrium problem after the first-
order method has resulted in a reasonably good solution.

If the m. obtained from (3.10) in the final iteration of

the first-order method are used to initiate the second-order
method, the ac.curacy produced by the second-order method
will generally be better than that which could be achieved

by use of the first-order method only.
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THE SECOND-ORDER CHEMICAL EQUILIBRIUM ALGORITHM

In order that the second-order linear-logarithmic

method be set 1n the form of a chemical equilibrium problem,

the same definitions as given in Sec. 4--i.e., Eqs. (4.1)

through (4.5)--are used here.

is best used after the rirst-order method has

the initial values of "i

be specified.
which are related to m by Eq. (4.6).
means of (4.6) are appropriate initial values

order method.

for the second-order

The first-order method gives a

Since the second-order method

been applied,
method must

set of n'
i

i computed by

for the second-

Using these initial values for T the second-

order chemical equilibrium algorithm is an iterative process

for which each iteration consists of the following steps:

1)

2)

3)

Using the current values for (1r1

evaluate x

Calculate Y -PERE

gml’gm+2’

B IEEE

X
>“n

» By equal to zero.

)"2)0")"

W)

by means of (3.5).

B by means of (5.2) and set

Compute r., from (4.8) and solve (5.5) for

Akl, 2,...,AKM.

Let
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If P < 6, where 8§ is a small positive number such
as 10-5, we are done; otherwise, let Q = min (%,1).
5) Replace m by " + Q AAi for i = 1,2,...,M.
Steps 1-5 are repeated until the test at 4) is satisfied.
P should decrease at every iteration; hcwever, when the
values for L get close to their optimal values, P may
not become zero due to round-off error. In order to prevent
an endless repetition.of steps 1-5 due to the selection of
too small a 6, we can test P against the value of P at the
previous iteration. If this value has increased over the
previous iteration, it can be assumed that this method has
obtained as accurate a solution as possible, and we can
terminate the iteraticn process. The reason for inserting
the factor Q above is to prevent the L from varying too

much on one iteration.
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7. SUMMARY OF THE COMPUTATION PROCEDURE

The best method for starting the solution of the
chemical equilibrium problem depends on whether an estimate
for the solution vector is available. The projection methiod
should be used when the problem being solved is a slignt
variation from a problem previously solved, and in this
case, the values used for Y in (2.9 - 2.12) should wve the
solution vector to the previous problem., Even when the
estimate is no better than an intuitive guess, the pro-
jection method may still be used. The linear programming
method, then, may be used as a back-up if the proiection
method produces a non-positive component. Of course, if
no estimate is available, the linear programming method
would be used immediately to provide an estimate,

The recomm~nded procedure is, then, to use the first-
order method until either no further progress can be made
with this method or until the amount of change becomes
small from iteration to iteration, and then to use the
second-order method. It has been found that, for reason-
ably large problems (say m = 30, n = 100), the point at
which progress ceases in the first-order method usually

occurs when the indicated corrections to the components
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of the solution vector average about one per cent of the
components; that is, when (3.5) is accurate to about two
significant digits. A switch to the second-order method

at this point usually yields quite accurate results in two
iterations of the second-order method. The second-order
method usually satisfies (l1.1) to an accuracy of about

five significant digits on a machine that carries eight
significant digits. This accuracy is typically about three
orders of magnitude above what is usually obtained in
experimental data.

To summarize, the typical procedure for solving a
chemical equilibrium problem is the following:

1) If an estimate is available, use the projection
method to obtain a feasible estimate.

2) 1f step 1 yields a strictly positive estimate, go
to step 3, but if the projection method yields non-positive
components, or if there was no initial estimate, then use
the linear programming method to get an estimate,

3) Use the first-order method until one of the tests
described in Section 4 is satisfied.

4) Use the second-order method as described in Section
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Appendix A

A FORTRAN-IV PROGRAM FOR SOLVING THE
CHEMICAL EQUILIBRIUM PROBLEM

GENERAL DESCRIPTION

The program described here is a set of FORTRAN-IV
subroutines for solving chemical equilibrium problems.

The calling sequence used is merely the statement:

CALL SOLVE

Communication of data into and out of the subroutines
is accomplished by a block common statement:
COMMON/SLVE/1IV(30),TOL(20),NR(55,2),B(55),KN(120),X(121),C(121),
1 KL(26),NAM(25,2),A(55,121),PIE(65),V1(65),V2(65),V3(65),
2 V4(65),XMF(120),X1(121),X2(121),X3(121),XBAR(25),R(65,65)
The data that must be input before CALL SOLVE is

executed consist of the following:

COMMON Location Quantity
IV(1l) m
IV(2) M ( = mp)
IV(3) P
IV(4) n

1V(6) Number of the output unit.
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COMMON Location Quantity
IV(7) Print flag: -1 = minimal amount of

messages; 0 = one message per itera-

tion step; +1 all messages.

IV(9) Maximum number of iterations to be
allowed.

B(1i) bi’ 1 = 1,25 ,m.

X(j) yj, j=1,2,...,m, where yj is the

initial estimate of the solution.
If no estimate is available, set
X(J) = 0.
(i) c., j=1,2,...,n.
J
A(I)J) aij, i=1,2)--°’m; j=1’2)°")n'
In addition, all components in one compartment must

have consecutive subscripts. That is, components 1,2,3,...

must be in compartment 1; components k1+1, k1+2, RN k2
must be in compartment 2; ...; and components kp-1+1’
kp_1+2, N kp must be in compartment p. These k's are

communicated to the subroutines by setting

KL(1) =1
KL(2) = k +1
KL(3) = k,+l
KL(p) = k )+l

KL(p+l) = kp+l
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In other words, KL(k) is the number of. the first component
in compartment k, and KL(p+l) is equal to n+l.

The above are the only numbers that need be set in
order that CALL SCIVE will solve the chemical equilibrium
problim. However, in order that the program can write
messages, in cases of infeasibility, etc., names tor the

rows, components, and compartments may be input:

COMMON Location Quantity
NR(I,1), NR(I,2) Two-word row name for row I.
KN(J) One-word component name for

component J.

NAM (K,1), NAM(K,?2) Two-word compartment name for

compartment K.

In addition, TOL(l) through TOL(5) are tolerances used
by the program. 1I1f they are zero when the program is
entered, they are set by the subroutines to nominal values.
These valuves may also be set by the user of the subroutines,
in which case the nominal values will not be set in the sub-

routines. These tolerances are the following:

Nominal
Tolerance Value Meaning
TOL(1) 0.01 € in step 3 of the first-

crder method (see Sec. 4).



Tolerance

TOL(2)

TOL(3)

TOL(4)

TOL(5)

Nominal

Value

10°°

10-12

10

10
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Meaning

6 in step 4 of the second-

order method (see Sec. 6).

Minimum value any xj is

allowed to have.

Minimum starting value that
any component will have is
the lesser of TOL(4) and

L
5Y 041 (see Sec. 2).

Problem is assumed to be
degenerate if any S

k
becomes less than TOL(5).

With the above as input, the statement CALL SOLVE will
cause an attempt to solve the chemical equilibrium problem.
I[f, upon completion of this attempt, a solution is obtained,
the cell

IvV(10)

will contain a 1 and the following data will be in storage:

COMMON Location Data
X(i) X, i=1,2,...,n (the solution).
XBAR (k) S,.» k=1,2,...,p.
PIE(1i) ™o i=1,2, ,m
XMF (i) X, i=1,2,...,n
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If IV(10) is not 1, the subroutines have failed to solve
the chemical equilibrium problem. The reason for this
failure is written on output unit IV(6). 1In such a case,

X(i) will contain the latest value of these quantities.

SUBROUTINES

There are nine subroutines in the set used for the
solution of the chemical equilibrium problem. A brief
description of these subroutines follows.

1. Subroutine SOLVE

SOLVE is the master subroutine, and is divided into
four functional segments. Each segment calls other sub-
routines which do specific tasks. The four segments
are:

a) The projection and linear programming routines

for obtaining the initial solution (lines 18-42).
b) The first-order method (lines 43-122).
c) The second-order method (lines 123-163).
d) Output messages (lines 164-203).

2. Subroutine BAR

BAR calculates the Sk'
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Subroutine BERROR

BERROR calculates

N
g. = b, - Za..x. . i=1,2,... M
i i ij’j
j=1
Subroutine DEL
DEL sets
m
wj = Zaiqu j=1,2, , N

Subroutine RCALC

RCALC calculates the r,, array (4.8).

Subroutine CLOG

CLOG computes

Subroutine LP

LP sets up the linear programming problems.

Subroutine SIMPLE

SIMPLE solves the linear programming problems.

Information is communicated to this routine via a
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calling sequence rather than by COMMON as in sub-
routines 1-7. The dimension of A in SIMPLE should
agree with the dimension of A in the first seven
subroutines, but all other dimensions are dummy
statements.

9. Subroutine MATINV

MATINV solves simultaneous equations. As in
SIMPLE, no COMMON is used. The dimension of A in
MATINV should agree with that of R (not A) in SOLVE.
All other dimensions are singly subscripted and are

irrelevant as to magnitude.

Each of the first seven subroutines has a COMMON
statement which should be the same in all seven. The
dimensions of the variables in this COMMON statement may
be set to the values for the largest problem to be solved.
With m, M, p, and n as previously defined, these dimen-

sions must be at least:



Symbol

Minimum Dimension

IV 30
TOL 20
NR (m,2)
B m

KN n

X n+1l

C n+l
KL pt+l
NAM (p,2)
A (m,n+1)
PIE M
V1,v2,V3, V4 M
XMF n
X1,X2,X3 n+l
XBAR )

R (M,M)

A listing of these subroutines follows. This listing does
not necessarily represent an actual program. The language
used was that version of FORTRAN described in [6]. The
machine used for the solution of chemical equilibrium
problems was the IBM-7044, which uses a floating-point
number with eight bits for the exponent and 28 bits for

the sign and mantissa.
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LISTING

SUBROUTINE SOLVE
COMMON/SLVE/ZIV(30)9TOLI20U)sNR(5592)9B(55)sKN(120)9X(121)9C(121)
1 KL(26)9sNAM(2592)9A(559121)sPIE(6S)eV]I(65)9V2(65)9VIIES)
2 V&(65) 9 XMF(120)eX1(121)eX2(121)9X3(121)9XBAR(25)sR(65965)
INTEGER PF
EQUIVALENCE (TOLE3) o XMIN) o (TOL (&) o XSTART) o (TCL(5) yBARMIN)
EQUIVALENCE (IV(1) M) o (IVI2)sMEND) o (IVI3)sNCUMP) o (IVI4)sNsNTUT)
1 (IVIS)eNIT)Is(IVIO)sNCT) o (IVIT)sPF)o(IVIB)SITER) o (IVIF) o ITMAX ) »
2 (IVI1U)»IERROR) 9 (IVI11)sLASTCP) s (IV(12)sKE)
DIMENSION DX(1)sALPAA(L1) s TH(1)sG(1)
EQUIVALENCE (GeV1) 9 (OXeX1) s (ALPRAIX2)s(THIX3)
IF (TOL(1)elLEeQeD) TOL(1) = CeCl
IF (TOL(2)eLEeCeD) TOL(2) = leE-5
IF (XiMINeLEeLeQO) XMIN = lec=-12
IF (LARMINeLE«CeQ) CARMIN = let=-8
IF (ITMAXelC o) ITMAX = &4u
CO 152 J = 1y NTUT
IF (X(J)elLEeCe) GO TC §
152 CONTINUE
C IF X IS STRICTLY POSITIVEs o0cGIN PROJECTION
CALL BAR( XesXBAR )
2 CALL bERRCRI(ERR)
CALL RCALC
CALL MATINVImsMENUIGe=19V29V3sV4KE)
IF (KEeNEosC) GO TO 5
CALL DEL (CXs90)
DC 3 K = 1enCu4P
KTA KL(K)
KTB KL(LK+]1)-1
MK = M + K
Do & J = KTAWKTS
X(J) = X(J) = ( 1le + UX(J) + GI(VvVK) )
XF (X(J)QLE.‘UO) GO TO 5
4 CONTINUE
3 CONTIN.
GO 170 7
C  LINEAR PRUGRAMMING RCUTINE
5 CALL LP(KF,
IF (KFeNEeU) GO TU 10u06
7 CALL BAR(XsXOAR)
CALL CLOG(X9sXDAR)
FE2 = leE+2v
C FIRST ORUDER METRLUD LLOP
DO B899 ITER=1,1TMAX
CALL BERRORI(ERR)
DC 7110 1=1eMEND
PIE(I) = .o
711v CONTINUE
DO 7111 K = 1, NCOMP
KTA = KL(K)
KTe = KL(K+1) -1
MK = M + K
DU 7112 J = KTAs KT3
AX = ALPHA(J) * X(J)
PIE(MK) = PIE(MNK) + AX
DO 7113 I = 1M
PIE(L) = PIL(]l) + AX ® A(i+J)
7113 CONTINUE
7112 CONTINUL
7111 CCNTINUE

S0u01
5CC02
50003
S0004
S5C0G5
50006
59007
50C06
S0009
50010
S0011
SO0C12
50013
S5Cll«
Sudld
50016
50017
SCo18
53019
50C20

3021
$3022
53023
50024
5CC25
S0026
50027
50020
50029
50030
SC031
S0C32
50033
50034
50C35
50036
50037
50038
50039
S00«C
o0C«el
50042
50043
50044
50065
50046
Su067
50048
SuLbk9
SCC50
SuCl51
SuusZ
50053
SCCo54
SUL55
SC056
50057
5C0%38
5CC59
50060



7114

7105

7103
7106

8266

8264
8265

828

8281

8231
8288
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DO 71164 I = 1,4
PIE(I) = Gil) + PIE(D) "
CONTINUE
CALL RCALC
CALL MATINVIRsMENUIPIEs=19V29V3sV4eKE)
IF(KEeNEeuU) GO TO 12003
DMAX = lec+2C
CALL DEL(THLPIE)
GNORM=_ ,
TOA = O.
FE = Qe
DO 71l4 K=14NCOMP
MK = M + K
KTA = KLI(K)
KTo = KL(K+1) =X
DO 7103 J = KTA, KT3
TH(J) = TH(J) +PlE(M4K)= ALPHAL(J)
GNORM = GACRM + TH(J) ==2
TH(J) = THtJ) * X(J)
TDA = TCA + TrlJ) = eLpHA(J)
IF (X(J)elLTe=UMAX®TH(J)) OMAX = =X(J)/THIJ)
FE = FTo + X(J) ® ALPHAL(J)
CONTINUE
CONTINUE
EPS= SGQRT ( GNORM/FLOAT (NTUT) )
DFE = FE - FZ2
FE2 = FE
IF (ITERectWel) GO TO 712v
ITR = [TER -1
IF(PFeGEev) WRITE(NOTS799) ITRe CFESOPTLIEPS
GPTL =AMINI ( les eS9®*UMAX )

IF(PFeGTou)wRITE (NCTs8241) DVMAXsOPTL 9 TOASERK

IF (EPSeLETOL(1)) GO TC B8¢59
IF (TDAeGEele) GO TO Bl
DO 8265 Il =1,54
DO 831 J = 1N
CX(J) = AMAXLI(X(J) + CPTL*Tr(J) s AMIN)
CONTINUE
CALL UARI(UX9XCAK)
CALL CLUGIDX9AZAR)
TCA = e
DO 8266 J = 1eNTOT
TOA = TUA + Tr(J)*ALPRA(J)
CUNTINUC
IF(PFeGTe ) wRITLINOTs c262)11+0PTL TOA
IF ( TOAeLTeOe) GO T2 828
OPTL = UPTL /1le4l42
CONTINUE
CALL BAR(XsXBAR)
GO TO 8271
DO 0281 J =1eNTOUT
X(J) = DX(J)
CONTINUE
FE = Qo
DO 6231 J=1N
FE = FE + ALPHA(J)®#X(J)
CONTINUE
CALL SSATCHI(S5sLA3ZL)
IF (LABELeN(C&2) GC TO lOQrk

699 CONTINUE

50C61
S50l62
50063
50064
SCC65
50066
oL067
sCoés8
50069
S007¢
SCCT1
SCC72
SCC73
S0C74
50075
50076
S0077
S0078
$0079
2CC8o
sCCsl
s0082
50083
50086
50085
ouCBe6
suvk?
50088
50Cd89
SCC90
5Cu91
Su092
50093
SL094
$0C95
so(96
50097
50098
50099
5010¢C
30101
50102
50103
50104
50105
50136
50107
50108
50109
50110
50111
50112
50113
50114
50115
50116
50117
50118
50119
50120
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C END GF FIRST ORCER METHCD LCOP S0121
GO TC 1ulu2 S0122

60Uu ITER1 = ITER + 1 50123
PMAX = leE+2u 50124

PMAX] = leE+21 30125

C SECCND ORDER METHCC LCOP 50126
DO 6Cu2 ITER = ITER1sITMAX 50127

CALL DELI(DX,HPIE) 50128

DG 6UJu3 K =1sNCOMP 50129

MTA = KL(K) 50130

T8 = KL(K+1) - 1 50131

DO 6ul. J = MTA.MTE 50132

XMF(J) = EXP ( Dx(J) =CtJ) ) 50133

X(J) = XMF(J)#X3ARI(K) 5C134

601v CUNTINUL 50135
ir (X3AR(K)eLEesARMIN) GO TC 12025 50136

6Cvi3 CCNTINUE 50137
IF (P'4AXQLL0T0L(2)OOQQ(P’lLX.Gtop"'AxlQANIJ.P.'-'.AXCGL-OPMAXZ) ) SU138

1 GO TO 1luwvvl 50139

CALL BERRCUKI(ERR) 5C140

60ub CALL RCALC 50141
CALL MATINVIRSIMENCG =19V29V39sV4,eKE) 50142
IF(KEeNEev) GO TO 1.003 50143

PMAX2 = P1AX1 50144

PMAXL = PAAX 5J145

PMAX = Je 50146

DC 6Lls I = 1eMENVD 50147

PMAX =AMAX1 ( PMAXs Acs (G(I)) ) 50148

Uk CONTINUE 50149
IF (PMAXetLWelLel) GU TO 1vu.vl 50150

ZM =AMIN] ( le/PMAXsle) S0151

DO 6ulU5 I =1eM 50152

PIE(I) = PIE(]) + ZM#® G(]) 50153

605 CONTINUE 50154
DC 6C11 K = 19NCOMP 50155

MK = M+K 50156

XSAR(K) = XBAR(K)® EXP (24 # G(4K) ) 50157

6vll CCNTINUE 50158
IF (PFeGEeu) WRITLINOT96059) ITCRIPMAXIEKK 50159

CALL SSWTCH(S5sLASEL) 50160

IF (LABELeNZe2) GO TO 1luvuls S0161

602 CONTINUE 50162
C END CF ScCOND ORCER METHOD LOOP 5C163
luvu2 TERROR = 2 50164
WRITE(NOTs2vul2) 50165

2002 FORMAT(27H ITERAION LIMIT cXCEEDED ) 50166
ITER = ITMAX S0167

GO TO 1lulCo 50168

10003 IERROR = 3 30169
WRITEI(NOTs2Vuo3) KE 50170

2.0u3 FORMATI(21H R MATRIX HAS NULLITYs13) Sul71
GO TO 1ulOuv 5C17¢

levvs [ERROR = & S5C173
WRITE(NOTs2vuvb) 50174

2uvub FORMATI(56H SOLVE RCUTINE TER'INATLU CECAUSE SENSZ SaliCr 5 IS DO«N 50175
1) 50176

GO TO 1C0u0 5C177

10005 IERROR = 5 Sul78
WRITE(NOTs2ULLH) NAM(Ksl) o NAF(Ke2) 50179

2.uu5 FORMAT(13H CUMPARTHMENT +2A6910H TCO SMALL ) 50180



48~

LASTCP
GO TO

lucué [ERROR
GO TGO luolce

100Ul TERRCOx = ]

l1uduv RETURN

8241 FORMAT(15H oA MAX=]1PE12e4s13He OPT LAMUDA=E1Ce396Hs TDA=E]LR
leS5916rs MAX Kew FARUR=EL12e5)

8267 IFf PFeufe-.) WwRITE (NCTe8268) ITLR

8260 CRMAT(1.H ITERATIONsIGs3CH POSIIIVE 1IDAs GO 10 MEIHOD 2 )

GG TO 6Cl.u

8269 IF (PFeGZe.) WRITC (NQOT,827 ) ITER

B27v FURMAT(IoH LTTURATIONeIGo&2 AV THeTA LESS IRMAN 10L(1)s GU TU MHETHL
10 2)
GO TO 60°.

8271 IF (PFeGEeU) wRITL (NJOTeb272) ITER

8272 FORMAT(1Cn ITLRATIONsl&e36n STEP LIZE TCO SMALLY GO TU METHOD 2)
GO TO 63CC

8262 FURMAT (1. Xy 4HSTEPsI2s 9H LAMCCA=]1PEL1Ce396Hy TDA=EL15eb)

759 FORMAT (1 un ITERATICNsl&4e241 ChHaANOE IN FRLL ENERCY=]1PE1Se8912H

1STEP SIZE=E15e89]1 H AV THETA=EL1245)

6099 FCRMATI(1.H ITERATIONslGel19r MAX CHANZE IN PIE=1PE15e8915H MAX RO«
1ERRCR=E]1548
END

= K
10000
= 6

28183
50183
50184
50185
sSulsé
53187
sol88
50189
S0190
S0191
S0192
SUl93
S0194
S0195
50196
50197
50198
50199
50200
S0201
53202
502013
50204
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SUBROUTINE bAR(7yw3AR) w0C01
COMMON/SLVE/ZIVI3D)sTOLI2C)IINR(5592)eB(55) sKN(22UI s X(121)9Ct1211)0 w002

1 KL{26)sNAMI2592)9A(555121)sPIE(E6S)sVYIIE5)9v2165)sv3IiEES) CIVIVIVE: !

2 VG(65) o XMFI120)eX10121)9X21121)9X3(121)92XBAR(25)+R(65965) »wC004
EQUIVALENCE (IVIY1)YoM)o LIVI2)»MEND Yo LIVII)VsNCOMPI»LIVIG)sNsNIOT ) » w3005

1 CIVESHaNIT)I2CIVIE)sNOT) s CIVIT)IsPFY o (IVIBIoIIcR)Y s IVII)sITMAX) wC0C6

2 (IVIIU)sIERROR) s (IVI11)sLASTCP)Y»(1lVI(]12)9KE) w007
DIMENSION wW(l)sWBARI(]) w0008

7 DO 701 K = 1sNCOMP wJ009
KTA a KL(K) w0C10

KTB = KLI(K+]1) = 1 waCll
WBARI(K) = 0O, n0Cl2

DO 702 J = KTAKTB wdJ1l3
WBARI(K) = WBARI(K) + W(J) wuCla

792 CONTINUE w0015
701 CONTINUE «CCl6

END w0017



192

vl

11y

12v
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SUORUUTINE cEvROR(L7AK)
COMMUNZLLVEZLVEIC s TOLL2 0P o NRI5592) s 1SS oKNE120) X 112119 CH121)
1 RLE2E) sNANMTZ502) 0AI559 1211 sPIELES) V) (AS)IIV2(D5)sVILH5)
2 VOUOD) o XME U121 e X10121)eX20121) X7 (1211 9XEARI2Y9) 4RI65465)
EQUIVALENCZ (V1Y o) o CIVE2Y o MEND Y o LIV EAY o NCIYP Y o LIVLG) oo NTOT )
1 CIVEOS)YaNT T CIVIO)IsNCT) o LIVIT)IwPF Yt Ivi8)l ol it RIstIvViIO)Y sl 1imAR) Y
2 CIVELO ) o TERRCRIwIVILI s LASTITFY ot IVI12)9KT)
DIMENSICN Gt
EQUIVALLNCe oVl
CO 1l 1 = 1y
ST = L,
Vi 1v2 J = 1lai
[TFLACT oY eNLeve) LT = LT = XUJ) * A(]lvJ)

CINTINUE
Glly = 27T + {1y
CONTINUL
vO 11v K = 1eNCOMP
2T = &
MTA = KLIK)
MTE = KLI{K+]1) - 1

DO 111 J = MTAWNTUY
ZT = 27 + xX(J)
CONTINUE
MK = M + K
Gliin) = XDARIK) = 2T
CONTINUE
BMAX = _,
DO 120 I = 14END
[F (ABSIGUT))eGTe ApSIAMAX) } ZHAX = (1)
CONT I NUE
RETURN
END

60C21
bhuvd2
LGCo3
bOOOG
BN Ti2H
buLl6
bUC27?
suC0d
buCI9
bullo
voCll
bulle
0013
20Cle
tbbu0l5
ECClé
¢ull?
voiCl18
ba3C19
p0C2C
80021
volld
8uC<e3
50024
BOC25
LCoeeé
BONR27
EGC2¢E
60029
Bu( 30
bC031
oCC32



SUBROUTINE DEL(wsu) , 0OC01
COMMON/SLVEZIVIBC)IoTOLI2. Y olhRE5202192(055) okin(120) X121 9C(121) L3ile2

1 KLI26) o NACT 25921 0AlS50121 )P TLtES avItHD)ev2165)9v2t65]) ouLu3

2 VGU(65) o XMFE12,)eX14121)eX28121)9X2(012)1 )9 X ARE25)9R169965) Lo2C0o4
EQUIVALENCE CIVI1 e CIVI2)oMEND I LIVIZIaNCT I PYatIVIG) s s N1D1 )y L3705

1 CIVES)aNTT) e CIVIEE) sNOT) o LIVET)IoPF ) o (IVIBI s T ILK I LIVEI) I TTAX Yy oLrre

2 (IVEL Vo TLRRORY o LIVELIT ) s LASTCR Yt 1w (12)9K2) DL 2IT
DIMENSION W(1)eG(1) oLco

00 20 J = 1loiv OGCLSY

VWAS Ve viCle

0C lu I = 1M L.Cl1

1F (A(leJ)eNCele) Aw T e + AlLLJd) # L(]) bCO1¢2

10 CCNTINUE vCC1l3

WiJ) = ww LLile

2v CONTINUE DC215

RETURN Vudleé

END vull?
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SUBROUTINE RCALC
COMMON/SLVE/ZIVIIO)Y»TULI20) sNRI5592) ¢3(55) oKNL12U) o X1121)9C1121)
1 KLI2E)oNAMI2532)0A1553 121 )9PIE(ED) s VIIES)9V2(65)9VIL65)
2 VL(65) s XMF 12019 X110121)9X21121)eX3(121)9X0AR(25)sR(65965)
EQUIVALENCE (IVI1) oM s LIVI2YoMEND)I o (IVI3) e NCONMPIw (LIVI&L)oliaNIOL )
1 CIVIS)IeNIT)Is CIVIGYINOT)Y o CIVITYIPF Yo LIVIB) s ITERIOLIVIF) o ITHiAX)
2 (IVIIC) s IcRROR) 2 (IVIL1)9sLASTCP) st IVI12) sKE)
COMPUTE R
OO 1 I = ]1,MEND
DO 2 J =1l
RUlsJ) = Vo0
2 CCNTINUE
1 CONTINUE
DO 1u K =" oNTQT
DO 11 1=l
IF (A(l9K)eEQeQe) GO TO 11
AIKX = A(]l4K) #* X(K)
DO 12 J =11
IF (A(JsK)eNEeQOa) Rl oJi = AlJyK) # AIFKX + R(]sJ)
12 CONTINUE
11 CCNTINUE
1¢ CONTINUE
DO 20 K = 1+NCONMP
[IH = K + M
MTA =KL (K)
MTB =2KL(K+l) = 1
DO 21 L =MTAMTL
DO 22 J =14
IF (AGJsL)eNEeQe) FlIhsoJ) = RUIHsJ) + A(JaL) * XiL)
22 CONTINUE
21 CONTINUE
20 CONTINUE
DO 30 J = 2sMEND
JL = J-1
DO 31 I = 1lyJL
R(IeJ) = R(JsI)
31 CONTINUE
3u CONTINUE
5V RETURN
END

RCCO1
RGQQ2
R30C3
RCCO4
RCCO5
ROCO6
RoOCO7
ROCOH
RCCO9
RGC10
RGO1l1
RGO12
RCC13
RCC1le
RGO15
ROClé
ROC17
RCOla
RO0O19
R0020
RON21
ROC22
RC023
ROOQZ2¢4
RQ025
RO0Z26
RO0Z27
ROGC28
ROCZ2S
RCC30
RC0O31
ROC32
RO033
RO034
R0O035
RO0O36
RO037
RGC 38
RO039
R3Q40
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SUBROUTINE CLOG(AWULAR) CGCal
COMMON/SLVE/ZIVI3D)sTCLI2C) sNR(5592)93(55) e KNI120)9X(121)9CH1121) CCCo2
1 KLUZ26) 9 NAMI2592)19AL55012]1)ePIE(6E5)sV]ILEDIV2I65)90VII6E5) 0003
2 Vel6S5) o XMFU120)9X10121)9X20221)eX2{121) 9 X0 ARI2D) sRI65065) C0cl4
EQUIVALENCE (IVEYI) oMo CIVE2) 0 END o CIVLA) o NCOMPY s LIVIG) ainaNTUT ) CCCo5

1 (IV(5),NKT)!(IV(6)’NOT);(1V(7)’PF)|(IV(8)91TLR).(lV(‘i)’XT»']AX)o CoC3
2 (IVI1IC)sIEFROR) o (IVI11)sLASTCPY ot IVI12)9KE) cooo7
DIMENSION will)swcArR(]l)sALPNHALL) cceos
EQUIVALENCE +X2sALPRA) €009
DO 1 K = 1y NCOMP CCClo
KLA = KLI({K) CoCll
KLB = KL{K+1)-1 gl

DO 2 J = KLALKLUL Co013
ALPHA(J) = C(D) CLlly

XXX =z wilJYy/wpAR(K) Clo15
IFIXXXeOGTelel) ALPHALJ)Y = ClLII+ALCCIXXX) cCole

2 CCNTINUE CCol17
1 CONTINUE ciols
RETURN CuCly

END Cocde
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SUBKUUTINE LP° (CN) Luuvl
COMMUN/SLVEZIVIIZS) e Tl L2 o (3502 ) 0 (S0 okt 12.) 90X U12100CL121) CCo2

1 KLIEZ2EYINAMIZ25432 )1 9A(559 121 VPl 16D eVYIIALIsV2165)sVIILYS) L0003

2 VG(E5) o XMF 120 9AL 01210 X20121)9X31121)sXCARI2S) oR(55965) L3I0
IMTEGER PF L0ras
EQUIVALENCE CTOLO3) o X TINY o {TOCLIG ) XSTLRT ) (T (5)eDARIIN) LOCOG
EQUIVALENCE (IVEL ) o2 ) o (IVI2)y ENOY e CIVI3YoNCEI'PY o (IVIG) sNeNTOT ) LCCco7?

1 CIVUSYIeNTIT) o CIVIOIINIOT ) o IVETIoPE Y s LIVIBIsITLRIUIVIO) oI TinAX) » (WexoXe].)

2 CIVIIO o ILRRORY o LIVIL1 Y sLASTCP)Y » IV I(12)9KED LICCS
DIMENSION XX{1) e OJT(ET)sCCUY)PIL]) Luo10
EQUIVALENCEI(CCo MF o (XA sX2)s(PsV]) LOO11
MON= LOD12

[F (XSTARTeLEeQeC) XSTART = l.E-6 L0013

DO 10 I = 1M LOC1lé4
P(T) = BLI) LO21S
A(ToNTOT+1) = CW0 LCCle

DO 15 J = 1sNTOT LOCLl7
AULToNTOT+]1) = A(TWNTOT+1) + AllJ) LCC18

15 CONTINUE LCC19
1v CONTINUE LOC20
DO 1 J = 1eNTOQOT LOCZ1
CC(J) = Cev L0022

1 CONTINUE LJC23
CCIN+1) = =lev L0024

C LERO=-TH SIMPLEX IS TC CETERMNINE FEASICILITY L0025
CALL SIMPLE(C st laintl vAsP sCCoNCUTIXXIPIEsV29V3sVaesX3sR) LO0Z26

2T = XX{N+1l) L0027
IF{PFeOEWCINRITE (NCT19]1J06)KCUTI2) 92T KOUTI(]) L0D28

1v6 FORMAT(LI2HISIMPLEX CToldae26m ITERATICNSy MAX MIH ELEMENT=1PE15.8) LIN2S
1 12Hs CONDITICN »13) LOUQ30
227 sAMINLIZT /2629 XS5TART)H L3331

DO 1C4 | = 1M LUC32
PlLI) = P(l) = 2ZT*A(1sN+)) LO"33

luae CONTINUE L3C34
2uu DO 2C1 J = 1WNTOT LUG3S
X(J) = XX(J) LCo36
XMFI(J) = leo Lac37

vl CONTINJVE LCC3d
[IF (ZTelCeleeUReKUUTII)eNEeL) GO T2 40 LOG3Y

C SIMPLEX LGCOP LST40
FR2=1et+2C L3Ca1

DO 3C1 NN = 1y NCUMP LOO42

DO 302 U = 1y NTOT LCD4&3

cCtJ) z C{J) + XYF(J) = 1.0 LOC44

3.2 CCNTINUE LCC&S
FN = FLOAT(AN) = leu LUCLE
CALL SIMPLE(LsMaN vAIP s CCoKOUT o XXoPILsV29V3eVasX34R) LCO47

IF (KOJT(l)eNceo) GC TC 5¢ LJJ4Y

3uv DO 3.3 J = 1eNTUT LUGGY9
XtJ) = xx(J) LOQ0SO

X(J) = ( FNREX1(J) + XUJ) ) 7 (Fiv + 142 LGOS
X1(J) = X(J) L3C52

3uvl CONTINUE LCC53
CALL BAR(X s XBAR) LCC54

K = 1 LV055

FR = el LOO56

DU 310 J = 1N -0057

IF (JeGrL eKLI{K*+1)) K = K + 1 S o LJOOS§

1F (J.Eu.-:l_(f:)cn;\d.xor\'v"(ﬂ).bToCoC)FP=FP\-XJAR(K)’I\LJG(XUAR‘F\)) LOO5Y%

IF (X(J)eGTeleC) FR = FR + XEJI®(ALCCUIXIJY) + CLU) ) LOC60
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XMF(J) = e
IF ( XBAR(K)eNEeOe) XMF(J) = X{(J) / XBAR(K)
310 ZONTINUE
IF (PFoeGESQO) WRITE(NOT$305) NNskOUT(2)sFR
3u5 FORMAT(8H SIMPLEXsI3slHsslGs12H ITERATIONS +8H FR ENG=1PE1546)
IF (FR.GE«FR2) GO TO 2399
FR2=FR
301 CONTINUE
399 DO 4J0 J = 1N
X(J) = X(J) + 227
«UU CONTINUE
RETURN
4. IF (KOQUTI(1)eSTel) GO 10 50
WRITE (NOTs4l)
41 FORMAT(72HOTHIS PROBLEM IS INFEASIJ3LE THE FOLLOWING LINEAR Cumol
INATION OF ROwWSy 71X)
DO 14v | =19M
1F (PIE(I)eNEeOo) WRITE(NOT»141) PIE(LTI)sNR(TI 1) 9NRITs2)
141 FORMAT(1uXs3H+ (sF156895H ) #® 42A6)
lau CONTINUE
WRITE (NOTsl142)
142 FORMATI(G4EHO LEADS TO THE FULLOWING IMFLASIbLL EQUATIONS /1X)
DO 15v K =1sinCOnP

MTA = KL(K)

MTy = KLI(K+1) = 1

DO 151 J = MTA, MTB
D = 0.

DO 152 | =1sM
O = Ple(l)y# A(lsJ) + C
152 CONTINUE
IF (DeNEwove) WRITE (NOT»143) OsKNIJ)aNAMIKS1) s NAMIK2)
143 FORMAT(13Xs3H+ (sF154835H ) #* 2A694H IN 42A6)
151 CONTINUE
150 CONTINUE
D = 0o
DO 16V | =]1M
D = PIE(I)®*o(]) + D
160 CONTINUE
WRITE (NOTsl44) O
146 FORMAT(1HO»15Xs TH+ 0e0 =39F1548)

70 MON = 1
RETURN

5¢ IF (KOQUT(1)eNEe2) GO TO 60
JT = KOUTI(T)
DO 51 K = 1sNCOMP
IF € JT+GEeKL(K)) GO TO 52
51 CONTINUE
52 WRITE (NOT»752) KNUGJT)eNACIKo1) o NAM(K2)
952 FORMAT(14H Tt VARIADLE #+A6s4H IN 92A6,33H IS UNBOUNDED AND MUST B
1€ REMOVED)
GO 10 7v
60 WRITE (NOTs560)
96U FORMAT(6UH SIMPLEX ROJTINE mAS FAILED DUL TO EXCESSIVE ROUND-OFF E
1RROR)
GO TO 70
END

LCG61
L0062
LC0o3
LOCGS
LCOGé
LO0DG6S
LODGT
LoN68
LOCG6Y
LOJ70
LOGT71
L0072
L0073
LOCT4
LO075
L0O76
Loo77
LOO78
L3079
LGO8O
L3031
L0032
LCCHB3
LCO84
L0C85
L0086
LOC87
1.0068
L0089
LCO90
LCCI1
L0092
L0093
LOC94
LCC9S
LOC96
L0097
L0093
L0099
L0109
L0101
L0102
L0103
L0104
LCG10b
LO106
Lol107
L0108
L0109
L0110
L0111
L0112
Lo113
LOl1l4
L0115
L3116
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Calling Sequence for Simplex Subroutine

The simplex subroutine, SIMPLE, may be used to solve

a general linear programming problem of the form: Minimize
n
C.x. 1
), ©5%s 2
j=1

subject to

15%3 i=1,2,3,...,m (2)

np~™] o
)
®
N
o
pbe

The a, . is stored in a two-dimensional array, A, with

a,, in cell A(i,j); Cj is stored in a one-dimensional array,

1]
C, with Cj in cell C(j); and bi is stored in a one-
dimensional array, B, with bi in cell B(i).

The calling sequence is

CALL SIMPLE(II,M,N,A,B,C,K0,X,P,JH,XX,Y,PE,E)

where

11 = 0;
M = No. of rows, m;

N = No. of variables, n;



A, B, C

KO

P, JH, XX, Y, and PE
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Are as above;

A subscripted variable of
dimension 7;

A subscripted variable of dimen-
sion n or more;

Subscripted variables of
dimension m or more; and

A subscripted variable of

. , 2
dimension m or more.

Upon exiting from the subroutine,

X(1),X(2),...,X(n)

P(1),P(2),...,P(m)

KO(1)

KO(2)

KO(3)

KO (4)

KO(5)

Contains X 9 Xgs oo X (the solution);
Contains the shadow prices;

Contains an 0 if the problem was
feasible, 1 if the problem was
infeasible, 2 if the problem had

an infinite solution, and 3, 4, or

5 if the algorithm did not terminate;
The number of iterations taken;

The number of pivots performed since
the last inversion;

The number of inversions performed;

The number of pivot steps performed;
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KO(6) A logical variable that is 'true"
1f and only i{f the problem was
feasible; and

KO(7) Contains, if the problem had an
infinite solution, the number of
the variable that was infinite.

The dimension of A (line X0009) must agree (at least
in the first subscript) with the dimension of A in the
calling program. The other dimensions need not agree with
those of the calling program.

If an initial basis is available, this basis may be

communicated to the subroutine by letting

II = 1,
0.0 1f variable i1 is not in basis,
X(1) =
(non-zero) if variable i is in basis,
and the other quantities remain as above,

This subroutine differs from other linear programming
routines in several respects, If the restreints (2) are
linearly dependent, the problem is considered to be in-
feasible. This is the case because the chemical equilibrium

problem cannot be solved if the restraints are dependent.

In addition, this subroutine was written to be as scale-free
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as possible; this was accomplished by computing tolerances

internally in the subroutine.
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C AUTOMATIC SIMPLEX REDUNDANT EQUATIONS CAUSE INFEASIGILITY

C THE

13461

SUBROUTINE SIMPLE(INFLAG MX 9 NN A9 CyKOUTIKBIPsJHXoYsPEHE)

DIMENSION BOL)oClL)oKOQUT(T) o JHIL o X{1)9PIL)aY (1)
KBUL)SEC(L)oPE(L)oKO(T)

EQUIVALENCE (KoKO(1)) o LITERWKQO{2) ) o L INVCIKO(3) )
{NUMVRIKO(G) ) o INUMPVIKOLS ) )9 (FEASIKCIB) o (JT9KD(T))

EGQUIVALENCE (XxXoLL)

FOLLOWNING DIMENSION SHCULD BE THE SAME HERE AS IT IS IN CALLER.

DIMENSION A(55,121)

LOGICAL FEAS»VIRWNEGITRIGIKWweA3SC

MCVE INPUTS +ese 2ERO QUTPLTS

DO 1341 I = 1,7

KClly = ¢
CONTINUE
M = MK
N s NN
TEXP s ,S5%8]1¢4
NCUT = 4#M + 10
NVER = M/2 <+ 5§
M2 & M#a2
IF  (INFLAGeNELC) GO TO 14400

C* 'NEW! START PHASE CNE WITn SINGLETCN BASIS

leul

l6v2
16400

lévl

DO 14v2 J = 1N
KB(J) =& v
KQ = (FALSE.
DO lev) l = 1M
IF (A(LlsJd)eEQeQe0) ST TO 1403
IF (KQeORsA(]I9J)eLTe0sC) GO TG 1402
Kd & (TRUE,
CONTINUE
KE(J) s ]
CONTINUE
IF (INFLAG.OTs)]l ) GO TO 1320
DO 14Vl | s]lM
JH () = =]
CONTINUE

C* 'WER? CREATE INVERSE FROM 'KB' AND 'JUNW!

132v
1121
1122

11ul

1113

nn
o
P
b

1114

VER s (TRUE.
INVC = (
NUMVR = NUMVR ¢}
OO 1lilvl I = 1.M2
E(I) = Qoev
CONTINUE
MM= ]
DO 1113 1 = ]14M
E(MM) = leu
PE(I) L] velQ
xtly = (05
IF (JR(]) eNEC) JH(]) = =]
KM 8 MM ¢ Mo+ ]
CONTINUE
FORM INVERSE
DO 1llv2 JT s 1N
IF (KQ(JT)IeEQeQ) GO TO 110C2
GC 10 630

CALL JAy
CHOOSE PIVOT

TY 3 (.0
00 1134 1 = 1M

X0001
X0002
Xx0003
X0004
X3C05
X0006
x0007
X0008
X0009
X0010
X001l
X0012
X0013
X0014
X0C15
X0016
X0017
x0C1l8
X0019
X3020
X002l
X0022
x0023
X0024
X0025
X0026
X0027
X0028
X0029
Xx003¢0
X0031
x0032
X00133
X0C3¢
X0035
X0036
X0037
Xx0038
XC039
X0040
X0041
X0042
X0043
X0044
X0045
X006
X0047
X0048
X0049
X0050
X0051
XQ0052
X0C53
X0054
X0055
X0056
X0057
X00586
X0C59
XCC60
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IF (JH{I)eNEe-1) GO TO 1104
IF ¢ ABS(Y(1))eLEsTY) GC TO 11C4
IR = 1
TY = ABS(Y(]))
11v4 CONT "NUE

KB(JT) = 0
C TEST PIVOT
IF (TYsLE«TPIV) GO TC 1102
C plvor

JHUIR)Y = JT
Kb(JT) = IR
GC TO 9(0
C Soeo CALL PIlV
11¢2 CONTINUE
C RESET ARTIFICIALS
0C 11v9 1 = 1M
IF (UH(I)eEQe=1) Jn(]) =20
11u9 CONTINUE
‘12uv VER = JFALSCE.
C PCRrOK™ CNE JTLRATICN
Ce +XCK? DETERMINE FEASILILITY
FEASE oTRUE.
NEG = oFALSEe
00 12v1 1 = 1M
F (X(I)YelLTeCel) GO TO 1250
IF (JUH(I)1eEQeT) FEAS = oFALSE.
1201 CONTINUE

Ce 'GET GET APPLICAUSLE PRICES
IF («NOTSFEAS) GO TO 501
C PRIMAL PRICES

DO 503 | = 1M
PULYy = PELL)

5u3 CONTINUE
ABSC = oFALSE.

GO TO %599
C COMPOSITE PRICES
1250 FEAS = .FALSE.
NEG = oTRUE.
501 DO 5C4& J = 1ls M
PtJ) = Co

5.4 CCNTINUE
ABSC = oTRUES
DO 5C5 1 = 1y
UM ]
IF (X(])eGEeCeOQ) GO TO 537
ABSC =z LFALSE.
DO 508 J = 1M
PlLJ)Y = PLU)Y + £ (M)
MM = MM+ N
508 CONTINUE
GC TO s5C5
507 IF (JH(I)eNCWD) GO TO 5Co
IF (X(I)eNEeCe) AULSC = oFALSES
DO 510 J = 1M
PlJ)y = PlJ) = E(M)
MM =2 MM ¢+ ™
51v CONTINUE
5.5 CONTINUE
Cw NN FIND MINIMUY REODUCLL CUST
599 JT = v

X0061
X0062
X9C63
XCOo64
X30C65
xQo66
xuiC67
x0068
XKoe69
XCC170
Xuo?l
) SOTON V4
XQ0073
X0C T4
XuQ7%
XCc16
Xuo11?
X0d17d
XC319
X0089
xJ2081
X0002
x0083
x0084
X0085
XJo086
xXco087
xocesg
xXuce9
X0090
X3091
XC092
X0093
XC09¢4
X0095
X009¢
X2097
xXoo9s
x309¢
X0100
x0101
XQ0102
x0103
X0104
X01355
X0106
X0l07
Xcl08
X0109
X0110
x0111
Xollz2
XQ113
XUlle
Xulld
Xvlle
X0ll1l7
Xollé
X0119
XJ3120
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vB = UL0
DO 7C1 J =1»N
C SNIP COLUMNS
[F (KE(J)eNESC) GO TO 7101
OT = Caev
DO 303 | = 1™
IF (ALl 9J)eNE«QeQ) oT
3v3 CONTINUE
[F (FEAS) T = 0T + CLU)
[F (ARSC)Y DT = = ABSI(OT)
[F (DTeGEevO) wd TO 701
bb = OT
JT = U
7v1l CCNTINUE
@« TEST FOR NO PIVUT COLUNMN
IF (JTelLEWwr) GO TC 2373
C TEST FOR ITERATION LIMIT EXCEEULED
IF (ITER.GE«NCUT) GO TO 16¢C
I[TER = [TER +1
Ce MY e MULTIPLY
6vv DC 61+ [= 1M
Y(l) = Cev
61. CONTINUE
LL =
COST = C(tJM)
DO 605 I= 1M
ALJT = AL JT)
IF (AlJTecWeDe) GO TO 602
COST = COST + AlJT # PEL(I])
DO 6UE J = 1M
LL = LL + 1
Y{J) = Y(J)
6uvb CONTINUE
GO TO 605
6J2 LL = LL + M
6U5 CONTINUE

= DT + P

INVERSE TIMLS AlesuT)

+ ALJT = c(LL)

C COMPUTE PIVOT TOLERANCE
YMAX = U400
PN g2 ] = 1M

YMAX = AMAX1( AcSIY (1)) YMAX )
62v CONTINUE
TPIV = YMAX # TEXP
C RETURN TO INVERSION ROUTINE
IF (VLR) GO TO 1114
C COST TOLERANCE CONTROL
IF (TRXG.ANO.QU-Gt.’TpXV)
TRIG = +FALSLe
IF (BUeGEe-TPIV) TRIG =
C# tRQ0wW? SELECT PIVOT kCw
C AMONG EuSe WITH X=Cy FIND MAXIMUM Y
C GET MAX POSITIVE Y1) AMONG REALSe

GO TO 203

«TRUE .

1000 IR = U
AA = veuJ
KG = oFALSE.

=1aM

CC 1v50 I

IF (X{I)eNE«OeOeOReY([)elLTWaTPIV)
IF (JH{1)eEQeU) GO TC 1044
[F (KQ) GO TO 1.5V

1545 IF (Y(l)eLbteaA) GO TO 1090

GO TO 1lua?

IN BASIS

Iy # AtClsd)

IF INVERTING

AYONG ARTIFICIALS,

GO TO 1050

OR»

[F NONE,

X0121
X0122
X0123
x0124
X0125
X0126
X01217
X0128
x0129
x0130
X0131
X0132
X0133
X0134
X0135
X0136
XQ1317
X0138
X0139
X0160
XJ141
X0l42
X01la3
X0144
X0145
X0146
X31a7
X0148
XCl49
X0150
XQ0151
X0152
X0153
X0154
X0155
X0156
X0157
X0158
X01565
X0160
X0161
X01l62
AC163
X0l&4
XQ165
X0166
X0167
X0168
X0169
X0170
X0171
X0172
X0173
XCl74
X017>5
X0176
X0117
X0178
X0179
X0180
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1044 IF (KQ) GO TO 1045 x0181
KQ = <TRUE. X0182

1067  AA = Y(I) X0183
IR = | xQ0l84

1050 CONTINUE X0185
IF (IR<NE.O) GO TO 1099 X0186

1001 AA = 140E+2V x0187
C FIND MINe PIVOT AMONG POSITIVE EQUATIONS Xx0188
DO 1010 1 = 1M x0189

IF (Y(I)eLteTPIVaOReX(I)oLEsOeOeORY(I)®AALLESX(]) ) GO TO 1010 X0190

AA = X(1)/Y(]) X0191

IR = | X0192

101v CONTINUE X0193
IF (oNOTeNEG) GO TO 1099 X0194

C FIND PIVOT AMONG NEGATIVE EGUATIONSs IN WHICH X/Y 1S LESS THAN THE X0195
C MINIMUM X/Y IN THE POSITIVE EQUATIONSs THAT HAS THE LARGEST ABSF(Y) X0196
1016 88 = = TPIV X0197
DO 1030 I = 1M X0198

IF (X(1)eUEe0eeGReYIl)eUtoenssOReY(I)#AALGTX(1) ) GO TO 1030 X0199

Bb = Y(1) X0200

IR = 1 X0201

1030 CCNTINUE X0202
C TEST FCR NO PIVUT ROW X0203
1099 IF (IReLEev) GO TO 207 X02G4
Ce PV PIVOT ON (IR JT) X0205
C LEAVE TRANSFORMED COLUMN IN Y(1) X0206
9C0 NUMPV = NUMPV + 1 X0207
YI = =Y(IR) Xx0208

Y(IR) = =1lev X0209

LL = o x0210

C TRANSFORM [NVERSE Xx0211
DO 9vb  J = 1M X0212

L = Ll + IR X0213

IF (ELL)eNECeC) GO TO 905 X021«

LL = LL + M X0215

GC TO 9C4 X0216

905 XY = E(L) /7 YI X0217
PE(J) = PE(J) + COST # XY Xx0218

E(L) = Oev X0219

DO 906 1 = 1M X0220

LL = LL + 1 Xx0221

E(LL) = E(LL)Y + XY # Y(]) X0222

906  CONTINUE X0223
G4 CONTINUE X0224

< TRANSFORM X X0225
XY = X(IR) / YI X0226

DO 9L8 I = 1, M X0227

XNEWN = X(]) + XY ® Y(]) x0228

IF (VEReOReXNEWeGLos  eeOReY(I)eGTeTPIVeOReX(I)eLTeOs) GO TO 07 X0229

X{I) = Caev x0230

GO TO 908 X0231

Go7 X(]) = XNEwW Xx0232
908 CONTINUE X0233

@ RESTORE Y (IR) X0234
YUIR) = =YI X0235

X{IR) = =XxY X0236

IF (VER) GO TO 1102 X0237

221 1A = JH(IR) X0238
IF (1AGT.C) KB(IA) = 0 X0239

213 KB(JT) = |R X0240
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JHUIR) = JT
IF (NUMPVeLZeM) GO TC 12300

C TEST FCR INVERSIUN ON TrlS [TERATIOUN

INVC = [NVC +1
IF (INVCeEWeNVER) GO TO 1320
60 TC 120

C® c©NO UF ALGORITHM, SET EXIT VALULEO

C
2w

l6vu

2.3
Z5v

INFINITE SCLUTION

K = 2
G2 TC 2590

PrROgLEM I35 CYCLING
K = 4
GC 10 25.

FEASIoLE R INFCASTSLL SCLUTION
K = v
DC 1399 J = 1N

XX = Ve
Kod = KolJ)
[F (KBJeNCLowv) XX = X{KvJ)
Ko(Jd)y = LL
CONTINUE
SET +xXKQUT?

DO 1363 1 = 1.7
KCUTI(T) = KulD)
CONTINUE
RETURN
END

X0241
X0242
X0243
X0244
XG245
X0246
X0241
x0248
X0249
X0¢250
Xu2bsl
X0252
X0253
X054
X0255
X0256
X0257
X0258
X0259
X0260
X0261
x0262
X0263
X0264
X0265
X0266
X0267
X0268
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C MATRIX INVERKSION wlTh ACCUMPANYING SOLUTIUN OF LINEAR ELJUATIONS
SUBROUTINE MATINVIASNsooMs INASINC [Py ]ISING)
C
DIMENSION BUL1IoINACL)INBUL)IP(])
LOGICAL P
DIMENSION A(65,465)
C
C INITIALIZATICN

DC 20 J = 1N
IPLJ) = .FALSE.
2v CONTINUE
C blG LOUP UN |
DO 575 I = 1N
AMA X z Jevu
C SEARCH FOR PIVOT CLEMENT
DO 1uS U = 1N
IF  (IP(tJ))y GO TO 1ud
DO 1.0 K = 1N

IF (IPIK) «ORe ABSTAMAX)eGLe/A2SIAIJIKY) ) GO TO 1¢0
[IRON = )
ICOL = K
AMAX = A(JK)
luv CONTINUE

1u5 CONTINUE
I1F (AMAX.cWeCeD) 0O TO 75¢C
IPCICOL) = «TRUE.,
C INTFRCHANGE RCWS TO PUT PIVOT ELEMENT CN DIAGCNAL
r (IROWeEW.]COL) GO TO 260
0 200 L = 1N
SWAP = A(IROWsL)
A(IROWsL) = A(CICOLIL)
ACICOLsL) = SWAP
200 CONTINUE
IF (MeEQel) GO TO 260
SWAP = B(IRUAN)

bOIROW) = BLICOL)
bICOL) = SWAP
l6u INACT)Y = IROwW
INB(T) = 1Q0L
C OIVIDZ PIVCT ROwW bY PIVOT ELEMENT

ALICOLsICOULY = 14U
DO 35. L = 1N
ACICOLsL)Y = ACICCLWL) / AMAX
350 € ST e
IF (MeNEev) L(ICLL) = SCICOL) / AvAX
C COMPLLTE Tl PLvOT

280 ODC 550 LL = 1A

[F (LLecwellCLY ou To 550

SwAP = ALLLICOL)

ACLLsICLLY = Cov

R T S

ACLLsL) = ALLLoL) = ACICcLlL) * SwAP
45, CuNTINUL
TF (MeNCev) (LL) = (Ly) - ACICCL)Y # SaAD

550 CCNTINUE
275 CTINTINUE
6. IF (V.LTov) RETUR\
C INTERCHANGE CoLUYNS
vC Tl I = 1N

MC0OI1
w5052
A'oC‘: ‘:13
MOC D6
VISV !
w06
Mu0d7
40000
MGCO3I
wmusl10
MOO11
MULl2
1406013
mMOQl4
MU0l15
MCJ16
MOC LT
MOCl38
MOQ19
M00290
M0021
M0C22
40323
MO0 24
M0025
M0026
M0027
M0028
M0029
MO0 30
M0031
M0032
M0033
MO0 34
MO0 35
MO0 36
MO0 37
MG0 38
M0013?
MO040
MOO&1
MCC4L2
MCC43
MOJ 46
MUC&S
MAC &b
MICW?
MGQ4o
MOQ&y
ICBIE
N0OS1
MIUS2
MOOS3
MOC 546
RIVIVE-)
CTH56
1357
M305b
RIVIV L)
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L = N+ 1 -1 MOC6L

IF (INA(L)eEQeINBIL)) OGU TO 710 Mo061l

IRCw = INA(L) ' MuoChe

1CCL = INBIL) MCC63

DO 795 K = 1N vo064

SNAP = A(KyIROW) MCC65
A(KsIRCW) = A(KsICOL) MOC66
A(Ks1COL) = SwAP 10067

7.5 CCNTINUE MO06b
71v CONTINUE M0069
T40 RETURN MO0 7C
C SINGULARITY FLAG 0071
750 ISING =1 + N = | Mu0 T2
6C 1C 627 M0073

END M3Q 76
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Appendix B

MATRIX NOTATION AND FURTHER PROUFS

The derivations in the preceding sections would be
facilitated by the use of matrix notation rather than sub-
scripted variables. We introduce the following symbols to
correspond to the subscripted variables used in Sec. 3.

Subscripted Variable Matrix Size of Matrix

aij A MxN

bi B Mx1
k Y Nx1

75

d. D Nx1
J

c C Nxl
j

"1 n Mx1

ri£ R MxM

X, X Nxl
J

The single-column matrices may also be thought of as vectors.
We use here the convention that an operator applied to a

matrix means that the operator operates on each element of
the matrix. For example, log Y is the Nxl matrix consist-

ing of
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h
(log Y1

log y2

log yN
\ /

. T o § I
The superscript indicates the transposition of a matrix.

We assume that the elementary results of matrix theory are
known. For example, it is known that the inverse of an
invertable symmetric matrix is symmetric. The square
diagonal matrix whose diagonal is one of the vectors pre-
viously defined will be denoted by the previously defined
vector in elongated type; that is,

D = diag (D)
and
Y = diag (Y)

Equations (3.2) and (3.7) in matrix notation are
AX = B (B.1)

=Y (0 taTr -0 - 10g V) . (B.2)

>
!
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To see the ease cf matrix notation, we may substitute (B.2)

into (B.1l) to get

AYD " ATr = B + AY(DlC + 1log ¥) . (B.3)
By letting

R = AYD"1AT (B.4)
and

S =B + AY([)'lc + log Y) , (B.5)

we see that

Rm =S (B.6)
corresponds to (3.10).
In Sec. 4, we evaluated
N o4d,
Ly, (8.7

j=1
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but we did not give the details of the computation. The
algebra of this evaluation is very difficult unless matrix

. . . . Tny-1
algebra is used. In matrix notation, (B.7) is 8 DY '@,
where 8 = X-Y. From (B.2) we have

-1, 7 -1
0 =Y A7 -) C-1logyY -Y. (B.8)
Hence,

o 0¥ 2o = (n"aD™! - c"D7! - 10g YTH)YDY 1o - YDV g

A"a YO e - (€Dt + 1og ¥HDYY le - YTy e

77a0 - (¢'D°L + 10g YT)Do - D0 . (B.9)

Since AX = B, AQ = AX-AY = B-AY. Also, in the chemical

equilibrium formulation,

)

N
o= Yoy - Yo = )l L8 Om

j=1 j=n+l  k=1\je (k)

]
o

and
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€t + 10g YN0
n N

- 4 log ¥.)8, + log y. (=9
Z(CJ og ¥,)9, Z og y;(-8,)
j=1 j=n+l

p

_ +1log y,) - 8 log S
) zej(cj og y,) - & log S,
k=1 \je (k)

p

(c. + log y. - S
Z ZOJ(cJ og y; - log S)
k=1 \je (k)

]
]
©
7~
0
[ S
<+
=
O
gQ
<
N’

Hence,

n

n
A
a,.y.| - 0.(c. + 1o ) B.10
) Ve ) §¢ey g ¥y (B.10)
j=1 j:l

Ng2g,
z:_l_l.= z:"' b. -
y. il'i
j=1 3 =1
in the context of the chemical equilibrium problem used in

Sec. 4,

Next we wish to show that
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N 9%,
Ly 20

j=1

as stated in (4.14). First, we prove

Lemma 1: Let Y1:Ygsee s, be positive numbers and let
91,92,...,0r be any real numbers., Let
)9 2
r g2 (.:19j!
G = E: - ,
y. r
j=1 J Ty,
j=1
Then,
i) 6 =0

ii) G =0 1if and only if

% _
Yi Yo g
Proof: Let o, =0./y., j=1,2,...,r. Then,
— J J 7]
( r 2
r > a.y)
o1 J7J
G Z:GZY- i=1
! J°] r
j=1 Y
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r -1 r Y r 2
%
Lt . a.V. O .Y.
<Zy3> zyJ z 373 ZaJyJ
j=1 j=1 j=1 j=1
r -1 r r
‘(ZYJ) ) (z ik LA RO
j=1 i=1 \j=1
r -1 r i
_ 2 . 2
- (Z%) Z (Z @YYy - 2ee.yiYy t egyyy,
j=1 i=1 \j=1
r -1
_ 2
-<2yj Xyiyj(aj ai) 20,
j=1 j<i

which is result i). The proof is completed by noting that
G =0 if and only it o, = aj for all i and j; this proves
ii).

Now we can prove

Theorem 1: In the chemical equilibrium problem

N 624,

ii) E:-§74-= 0 1if and only if there exist

j=1 )
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numbers «,,0,,...,0_ such that
1’72 P
a) 98, = o.,-y. jsn
) i [JJyJ ]
b) O, = j>n

} a. S, .
] J-n J-n

Proof: The proof follows by noting that for i > n

je 'i-n’
Then,
N 924 n g2 P g2
2:_1_1 = 2: o z:_h__
y. % Sy
jal 4 j=1 k=1
2
P 0* (.Lh ?j)
= 2: 4 _ Alek ; 2 0

by lemma 1. Furthermore, by lemma 1, if the equality holds,
then for each k there is a number 2% such that Oj = akyj if

j € k. This, noting that b) follows from the fact that
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9, = zgj for i>n ,

je(i-n)

completes the proof of the theorem.
Our final result is

Theorem 2: In the chemical equilibrium problem, with

(ylayZ’--'syn) feasible and gl,gz,...,gn calculated as in
(4.7)
n
A
i 0.(c. + 1o ) <0
ENCNCE g y;)
j=1
n
ii) 2:9-(C. + log 9.) = 0 if and only if
J ] J
j=1
(yl,yz,...,yn) is optimal.

Proof: i) follows from Theorem 1, (B.10), and the fact
that (yl,yz,...,yn) is feasible.

To prove ii), we assume that

n

A
0.(c. +log $.) =0 .
z jey + log ¥))
j=1

Then,
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05d,
dd.

Y

j=1

and Qj is as in ii) of Theorem 1. Combining b) of Theorem

1 and (4.12) we have

or
= g
% = Ttk
Next, we combine a) of Theorem 1 with (4.7) to get
m
A
0. =y, 'a,, - c, -1 .+ on!,
i 2"1 ij ~ ¢; °8 Y3 T T[j)4m
i=1
— L, = _4”'
Y%7 T 737G +m
or

A
! - - =
E "iaij cj log y. 0 .



=7 7=

This last result is the optimality condition for
(yl,yz,...,yn) as given by (1.4), and this demonstrates
the forward implication of ii). The converse follows from

the fact that optimality implies that the objective function

cannot be decreased.
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