
y

o
Ci
Gi
Q, MEMORANDUM
»Q RM-4345-PR
^^ JANUARY 1965

£
c<:n' X

1 iM. ,

fuu.\uhJHL

. —

THE NUMERICAL SOLUTION OF
THE CHEMICAL EQUILIBRIUM PROBLEM

R. J. Clasen

'r

PREPARED FOR:

UNITED STATES AIR FORCE PROJECT RAND

RDIID
SANT* MONICA • CAIIFORNIA

LTUUJ^LTULI \i ub ^■..J U

MEMORANDUM
RM-4345-PR
JANUARY 1965

THE NUMERICAL SOLUTION OF
THE CHEMICAL EQUILIBRIUM PROBLEM

R. J. Clasen

Tlii> research is sponsored hy the I'nited State- Air Force under Project RAND —Ton-
traet No AF l9(f>,S8)-70() monitored hy the Directorate of Development Plans. Deputy
Chief of ^lalT. Kesearch and Development. Hq I SAF. Views or conclusions contained
in tin- Memorandum should not he interpreted as representing the official opinion or
policy of the I riited Stales Air Force.

DDC AVAILABILITY NOTICE
Qualified requesters mav obtain copies of this report from the Defense Documentation
Center (DDC).

mm
\ TQO MAIN St • S*NtA M (1 N II * ■ (.AtlfOINl* • •0«0i ■

-iil-

PREFACE

This Memorandum Is one In a continuing series of RAND

publications dealing with theoretical computational ques-

tions arising from the RAND program cf research In biology

and physiology. The Memorandum contributes to our ability

to apply computer technology to the analysis of complex

chemical systems by considering the "chemical equilibrium

problem," the problem of determining the distribution of

chemical species that minimizes the free energy of a system

while conserving the mass of each of the chemical elements.

Solutions to the chemical equilibrium problem pub-

lished up to this t .me [4,5] apply to those problems for

which an estimate of the solution exists. This Memorandum

considers a problem for which no estimated, solution exists

and solves that problem with the maximum precision now

available.

The mathematical aspects of this Memorandum should

also be of Interest In other fields where computational

analyses of complex chemical systems are under considera-

tion, e.g.. In studies of rocket propulsion systems,

planetary atmospheres, re-entry problems, etc.

-V-

SUMMARY

In physical chemistry, the "chemical equilibrium

problem" is the problem of determining the distribution

of chemical species that minimizes the free energy of a

system while conserving the mass of each of the chemical

elements. The reactions occurring within the chemical

system may be quite complex. However, in a great number

of cases, the mathematical statement of the problem can

be simplified to a particular mathematical form [7,8]

involving the minimization of a nonlinear objective func-

tion over a set of linear constraints.

This Memorandum presents the numerical solution of

the chemical equilibrium problem by describing methods

for starting the solution when an initial estimate is not

available, and for improving an initial estimate to make

it feasible. It presents a first-order method and a

second-order method for solving the chemical equilibrium

problem in the context of the linear-logarithmic program-

ming problem [4] and provides convergence criteria for

the majority of problems of this type that are likely to

be attempted.

-vii-

FOREWORD

In deciding between the languages of mathematics and

physical chemistry, we have chosen in this Memorandum to

use that of mathematics. The disadvantage of this choice

is that the physical chemist may experience some difficulty

in immediately identifying certain concepts. The advantage

is that mathematical language divorces the methods from

the physical assumptions involved in constructing a mathe-

iraticaJ. model of a physical system. The mathematical

methods are, hence, free to transcend their specific

chemical applications.

The methods given here do not solve every problem that

is specified in the given mathematical form. The solution of

a problem in which some phase vanishes (a degenerate problem)

requires further work. Some work has been done on particular

degenerate systems [13], but the accurate numerical solution

of a large general system of this type has yet to be accom-

plished. Until recently, a skilled physical chemist could

intuitively eliminate the degeneracies of his model and

The reader is referred to other works for the pro-
cedure of constructing the mathematical models of bio-
chemical systems [9-121.

-viil-

obviate the need for solving a degenerate system. But,

as problems grow, eliminating degeneracy becomes increasingly

difficult. Frequently, the point at which the problem be-

comes too large for the physical chemist to decide whether

or not to include a phase coincides with the point at which

the problem becomes numerically unwieldy. Hopefully, the

future will eliminate these difficulties.

Statements about, convergence and convergence tests

exist, unless otherwise indicated, in the context of finite-

accuracy numerics. Statements of this kind do not mean,

in the absence of qualification, that no problem exists

nor that no machine would serve as a counter example.

Rather they are simply descriptions of what was found to

occur in actual practice.

No attempt has been made to describe those methods

which were tried and found wanting. The methods presented

are those which are best for the largest number of cases.

Finally, it should be pointed out that although

computing time was a factor, it was consioered secondary

to accuracy of results.

-ix-

ACKNOWLEDGMENTS.

The author wishes to thank J. C. DeHaven, E. C.

DeLand, F. R. Gilmore, and N. Z. Shapiro for their many

constructive comments and suggestions.

-xi-

CONTENTS

PREFACE Ill

SUMMARY v

FOREWORD vll

ACKNOWLEDGMENTS Ix

Section
1. INTRODUCTION 1

2. THE INITIAL SOLUTION 5
The Projection Method 5
The Linear Programming Method 9

3. THE LINE/JR-LOGARITHMIC PROGRAMMING
PROBLEM, FIRST-ORDER METHOD 15

A. THE FIRST-ORDER METHOD FOR SOLVING THE
CHEMICAL EQUILIBRIUM PROBLEM 21

5. THE LINEAR-LOGARITHMIC PROGRAMMING
PROBLEM, SECOND-ORDER METHOD 28

6. THE SECOND-ORDER CHEMICAL EQUILIBRIUM
ALGORITHM 33

7. SUMMARY OF THE COMPUTATION PROCEDURE 35

Appendix
A. A FORTRAN-IV PROGRAM FOR SOLVING THE

CHEMICAL EQUILIBRIUM PROBLEM 37
General Description 37
Subroutines 41
Listing 45

Calling Sequence for Simplex
Subroutine 56

B. MATRIX NOTATION AND FURTHER PROOFS 67

REFERENCES , 79

-1-

1. INTRODUCTION

For the purposes of this Memorandum, the chemical

equilibrium problem is merely a name we use for a par-

ticular mathematical programming problem, i.e., the prob-

lem of minimizing a particular nonlinear function FCx^x«,

...,x), defined below, while satisfying the linear re-

straints or constraints

n

y a., x. = b. i-1,2,3,...,m (1.1)

j-X

with x. ^ 0 for j=l,2,...,n and a.,., b. given constants.

Assuming that the equations of (1.1) are linearly inde-

pendent, then in order to have a non-trivial problem it can

be assumed that m<n. The variables x. ,x,,,.. . ,x can be
i z n

considered components of a vector (x.,x9,...)x). Solving

the chemical equilibrium problem then is the problem of

determining this vector. The variable x, will be referred

to as the "j component"; also the numerical value of x.

may be referred to as the "component" rather than using

the perhaps linguistically correct but cumbersome term

"component value."

-2-

The components are partitioned into p non-empty

subsets called compartments. Let us denote these compart-

ments by <1), (2),..., (p). Then if the j component is

in the k compartment, we will say jc(k), where each

component is in exactly one compartment. The number of

the compartment that the j component is in is denoted

by [j]. Hence jc(k) implies [j] = k, and conversely.

Each compartment has associated with it a sum defined by

Sk = I x. . (1.2)
jc(k>

A A X'
The component fraction x. is defined by x. ■ ■=-"— whenever

J J !>[j]

S[j]>0.

The objective function to be minimized over (1.1)

is

n

F(x1,x2,. . . ,xn) - ^ Mci + lo8 '^p ^1*3^
j-l

where c,,c0,...,c are given constants, called objective
1 2 n —J

constants.

When an x. is zero, log x. is undefined: but we de-
j j

fine 0 log 0 to equal 0 so that we may evaluate F when

-3-

some components are zero. A feasible solution to the

chemical equilibrium problem is defined to be any set of

non-negative components that satisfies (1.1). The problem

is said to be feasible if it has feasible solutions. If

no feasible solution is arbitrarily large in any component,

the feasible problem is said to be bounded feasible; all

practical problems with which one might have occasion to

deal are bounded feasible.

A solution or optimal solution to a bounded feasible

problem is any feasible solution in which F(x.,...,x)
1 ' n

attains the minimum value over all feasible solutions. A

problem which has optimal solutions in which some component

is zero is called degenerate, and a bounded feasible prob-

lem in which the components in any optimal solution are

all strictly positive is called a non-degenerate problem.

It has been shown [1, Theorem 12.1] that a non-degenerate

problem has exactly one optimal solution. Hence, we may

speak of the solution to the problem. Furthermore, it has

also been shown for the non-degenerate problem that the

inimlzatlon of F is equivalent to the existence of numbers

TT.. jTT-, . . . ,7r , called Lagrange multipliers, which satisfy:

m

Ref. 1, p. 18.

-4-

m

I
1-1

ff.a.. ■ c. + log x.
i ij J J

j-l,2,3,...,n (1.4)

In the following sections we derive conditions,

analogous to (1.4), which are useful in solving the problem,

In Sec. 2 we are interested in finding a solution to (1.1)

with all x. > 0. A set of x. which satisfies these con-
J J

ditions is called a positive feasible solution. If (1.1)

is satisfied with x. * 0, we have called such a result a
J

feasible solution. The theory of linear programming gives

us methods of finding feasible solutions to problems with

linear restraints. In Sec. 2, we use a linear programming

technique to find a positive feasible solution. In Sec. 4

we show how to modify the initial ositive feasible solu-

tion to get the solution to the problem.

-5-

2. THE INITIAL SOLUTION

The algorithms presented in the following sections

require an initial positive feasible solution in order that

the procedure for solving the problem can be initiated.

Frequently, an individual with a problem to solve will be

able to give a rather accurate estimate of its optimal

solution. This estimate may be the exact solution of

another problem which differs from the one being considered

in relatively minor ways.

THE PROJECTION METHOD

Let us suppose that such is the case, and let us de-

note the estimate of the components by y,,y~,...,y . These

values, substituting y. for x. in Eq. (1.1), will not

generally satisfy (1.1), being somewhat in error. Let us

denote these errors by g,,g2i...,g ; that is, let

n

8i " bi ' Z aijyj ' i-1.2,...,m (2.1)
j-l

Then, we wish to find corrections to y. such that, denoting

the corrections by 9., we have
J

n

bi " 1 aij(yj + V " 0 i-1.2,...,m

or

-6-

n

g. =) a..6. 1=1,2 ,... ,111 (2.2)

The 9. must also be chosen such that y, + 9. > 0, for all
J J J

j. We cannot guarantee this condition, but we can attempt

to choose small values for 9.. One way to do this is to

minimize

n

I
j-i

w.O2
J J

subject to (2.2), where w. is the "weight" or relative
j

importance of minimizing 9,. This reduces to the problem

of finding Lagrange multipliers TT »TT. ,TT , such that

with

n m / n

j-l i-1 \j-l

(2.3)

we have

dL
d9

- 0 . j-1,2,...,n (2.4)

-7-

Equatlon (2.4) becomes

m

w.o. - Y a..n.

1-1

j-l,2,...,n (2.5)

and substituting (2.5) into (2.2) we have

tn

gi I "'A L w
at.a..

0-1

. 1-1,2, . . . ,in (2.6)

The terms

n
a..a. . u

ZJ W.

j»l

can be immediately evaluated; let us denote' these terms

by

n

ti ~ Z w

ao.a..
(2.7)

j = l

No te that q . = q. . Then, (2.6) becomes

m

gi " 1^1%
A = l

1=1,2,...,m (2.8)

-8-

Equation (2.8) is a set of m simultaneous equations in

the m unknowns, ff, .tr_ ,. .. ttr . These equations may be
12m

solved for ir. ,v„y . . . yv , and then these values may be sub-
12m

stituted in (2.5) to get O-.O-,...,© . There remains the

question of choosing values for the weighting factors

w.. In tests of this method, it has been found that
J

using

w. = —
j y

j

yields satisfactory results. The choice of the weighting

factors depends, to some extent, on the available com-

puters. Using these weighting factors, we can summarize

the computation of 9. in the following three equations:

n

q,• ") a .a..y•
i"l,2,...,m
^„"l, 2, . . . ,m

(2.9)

m n

l\i«< 'hi- laiiyi
f-i j-i

i"l,2,...,m (2.10)

m

9 ry3 I aijffi
i«l

where

j-1,2,...,n (2.11)

-9-

XJ * yj + ej " J*1,2 " (2,12)

The x from (2.12) will satisfy (1.1). However, the

x. need not all be strictly positive. If any x. is zero

or negative, this method of obtaining the initial solution,

which we shall call the projection method, has failed. If

the projection method fails, or if no initial estimate is

provided, then a linear programming method may be used.

THE LINEAR PROGRAMMING METHOD

The terminology used in linear programming is similar

to the terminology used above in describing the chemical

equilibrium problem. The statement of a linear program-

ming problem includes a set of linear restraints

n

V a^x. - bj^ 1-1,2 m (2.13)

J-l

together with a set of constants C,,C*,C.,...,C , called

costs. A feasible solution to a linear programming problem

is any set of non-negative x. such that (2.13) is satisfied.

The costs are used to form the following expression, L,

which is called the objective function

-10-

n

L = V C.x. . (2.14)

For every set of feasible x., we can evaluate L. The set
J

of feasible x. for which L has the minimum value that it
J

can have with any set of feasible x., is called a solution

of the linear programming problem. A problem which has

sets of feasible x. is called a feasible problem, and a

problem in which there are no sets of feasible x. is called
J

an infeasible problem. An infeasible problem has no solu-

tions, while a feasible problem has at least one solution.

In this discussion, we will not be concerned as to whether

a problem has moi i than one solution: we will only be

concerned with finding a solution to the problem. Since

the means of finding a solution to a linear programming

problem has been the subject of many papers and books, we

will not give an actual method of solving the linear pro-

gramming problem here. The reader may refer to Dantzig

[2] for a complete discussion of the problem.

The problem of finding a feasible solution to a

linear programming problem is itself a linear programming

problem--that is, it involves finding a solution to the

-11-

problem wich all C. equal Co zero. Wich all C. - 0, L In

(2.14) is zero for any sec of feasible x.; hence, L is ac

iCs minimum value for any sec of feasible x.. Since L is

ac iCs minimum value for any feasible sec of x., any

feasible sec of x. is, by Che above definicion, a soluCion

Co Che linear programming problem.

However, we musC noC only find a feasible soluCion Co

Che linear programming problem, we musC also find a posicive

feasible soluCion Co Che problem. In order Co do Chis, we

lec

Xj - yj + yn+1 . j-l,2,...,n (2.15)

If we can find non-negacive values of y-py-.-.-.y .,

which sacisfy

n

Z alj(yj + V^ ' bi i-l,2,...,m (2.16)

Chen x., as defined by (2.15), will be a feasible soluCion.

If we can somehow assure Chac y . is posicive. Chen all

x. will be posicive. Rewriting (2.16), we have

-12-

IaiJyj M Zaij)yn+l=bi
j-1 \j-l /

1-1,2,...,m (2.17)

If we now specify C ,C2,...,C -, we have a linear program-

ming problem in n+1 unknowns. In order to guarantee that

y . is positive, if it is possible for it to be positive,

we can maximize y .-i . It is easy to see that we can maximize

yn+l by set:t:in8

L = - yn+1 (2.18)

which is equivalent to setting C,=C=C~=...=C =0, C ,, = -1.
^ 0 1 2 3 n n+1

If the solution to the resulting linear programming problem

is feasible and y .1
> 0, then we have, by (2.13), a positive

feasible solution to the analogous chemical equilibrium

problem (1.1). If the linear programming problem is feasible

but y .-i := 0, then the analogous chemical equilibrium problem

is degenerate, since there is no strictly positive solution

to the problem. However, this is a rather trivial kind of

degeneracy, and its occurrence usually indicates that a

mistake was made in setting up the problem. Hence, this

linear programming method gives us a way of finding a positive

feasible solution to the chemical equilibrium problem if

the chemical equilibrium problem is non-degenerate.

-13-

The positive faasible solution that we obtain by this

method will generally not resemble the final solution of

the chemical equilibrium problem. The initial positive

feasible solution can be improved by the following tech-

nique. Define b 1 to be some multiple, between zero and

one, of the value of y .. that was obtained above. Then, J n+1

adjoin to the linear restraints (2.17) one more restraint

of the form y .-. * ^4.1 • Ne. t, solve the linear program-

ming problem with these restraints and with C -c., C »c«,

..., C »c , C ,,"0 (recall that the lower-case c's here
n n' n+1

refer to the c's in the chemical equilibrium problem (1.3)).

The solution to this linear programming problem will give a

set of components more nearly resembling the solution to the

chemical equilibrium problem than did the components calcu-

lated from Eqs. (2.17) and (2.18). This new solution, in

turn, may be improved by solving another linear programming

problem (the details of which can be seen in SUBROUTINE LP in

Appendix A) and averaging the new solution with the old solution

In order to solve an elaborate chemical equilibrium

problem it is not sufficient to simply use a method which

we can prove converges to the correct solution. Proofs

of convergence generally assume infinite computational

accuracy, but since we are usually limited in practice to

-14-

about eight significant digits, the numerical solution will

not always converge. However, it has been observed that

the closer we can get to the solution by the initial solu-

tion methods described above, the greater will be the

probability that the numerical procedure will converge.

Furthermore, not only will the probability of convergence

be greater, but the number of iterations to get co the

solution will be fewer, and hence--when an improved initial

solution is used--the computation time will be shorter.

Unfortunately, the mathematical methods that are available

for analyzing convergence of iterative processes do not,

in the case of the chemical equilibrium problem, enable us

to prove convergence when we are limited to finite mathe-

matical accuracy. Only experience with a particular method

will tell us whether it is a useful numerical procedure

to use.

In the next section we consider a somewhat more general

problem than the chemical equilibrium problem. This prob-

lem is considered first because the numerical results take

on an especially simple form when the additional generality

is admitted.

-15-

3. THE LINEAR-LOGARITHMIC PROGRAMMING PROBLEM.

FIRST-ORDER METHOD

In this section we consider the problem of minimizing

N

F(x1,x2,...,xN) = ^ x (c + d log x) (3.1)

j-l

while satisfying the linear restraints

N

7 ai.x. = hi . 1-1,2,3,...,M (3.2)

j-l

The symbols a.,, b,, c., and d. denote constants, and J ij 1 j j

x1,x„,...,xN are the unknowns that we seek. We restrict

the problem to the case that d, ^ 0 for j ■ 1,2,3,...,N.

We note that if x. < 0, the term in (3.1), x.(c. + d.log x,),
J J J j j

is undefined, whereas if x. > 0 this term is defined. If
J

x. » 0 we define x.(c. + d.log x.) ■ 0, since this expression

approaches zero as x. > 0 approaches zero. From this dis-

cussion, we see that, In order for a solution of Eqs. (3.1)

and (3.2) to be defined, we must assume that x. ^ 0 for
J

j = 1,2,3,...,N.

-16-

We may attempt to solve this problem using Lagrange

*
multipliers. In this method we let

M

i-1

N

TT. [) a. .x. - b.

and then set

dL
ox

= 0

for j = 1,2,3,...,N. Performing the partial differentia-

tion, we get

M

:. + d. log x, + d. -) Ti.a.. = 0 ,

1-1

j=l,2,3,...,N

or, when rearranged.

log x, = d.
J J

M

Zir.a, . - c, - d,
1 ij J J

1=1

j=l,2,3,...,N

(3.3)

(3.4)

See Kaplan, Ref.- 3, p. 128, or Dantzif, Rjf. 2,
p. 140.

-17-

Exponentiating both sides of (3.4), we.get

x. ■ exp

M
,-1 .-1 J. c ,

ij J J
Zu.a,. - d.'c. - 1

i=l

(3.5)

j=l,2,3,...,N

Note that for (3.5) to be a solution to the problem, we

must have all x, > 0. We assume, in the remainder of this
J

section, that the solution does have all x. > 0. Then,
J

the problem reduces to the problem of determining the M ir.

so that the x. from (3.5) satisfy (3.2) Equivalently,

the M + N equations (3.2) and (3.5) must be satisfied simul-

taneously by the proper choice of the M + N unknowns,

ff, »TT«, . . . ,Tr , x. ,x«,. . . jX,.. We now consider two methods

of approximating the solution.

In the first method, we suppose that we have an esti-

mate of the x. which may or may not satisfy (3.2). We

denote this estimate by y., and, in this method, solve

Eqs. (3.2) and (3.4) simultaneously by making a linear

approximation to log x.. Since we have the estimate that

x. is near y., we note that the first-order Taylor ex-

pansion of log x. about y. is

-18-

x.-y.
log x. = log y. + —J—* + (higher-order terms) . (3.6)

j J yj

Dropping the higher-order terms, and substituting (3.6) into

(3.4) and solving for x., we have

x. = y,
J j

M
.-1 -1

) TT.a. . - d. c. - log y.

i=l

(3.7)

j-l,2,3,...,N

Now, if we substitute these x, into (3.2), we get

M / N \ N

Z(V dT a..a,.y. 1 ff, - b. + ya,.y.(log y. + dT c.) .

l-l \j-l ^ j-1

i"l,2,3,...,M

Denoting

i^

N

I
j-l

,-1 d. a.,a .y. lml,2,3,...,M
i"l,2,3,...,M (3.8)

and

N

8t "bi+ Zaijyj(log yj+ dj cj)

j-l
i"!,2,3,...,M

(3.9)

-19-

we have

M

Z rU% " 81 • i-1.2,3,...,M (3.10)

Equation (3.10) is a set of simultaneous equations which

can be solved for ir, ,tr_ ,. .. .ir...

With the above results, we can now define the iterative

process for the first method. At each iteration we have a

set of values for x,tx«,...,3c.. At the beginning of the

iteration these values are called y,,yo,...,yN, and at the

end of the iteration the values are x1,x-,...,x^. If

is small for each j, then we say we have converged. The

magnitude of "small" depends on the nature of the problem.

If

h2A

is not small for some j, then we have not converged and

the iteration must be repeated. One iteration consists of

the following three steps:

-20-

1) Evaluate terms In Eqs. (3.8) and (3.9), these

terms depending on y1,y2,...,yN;

2) Solve Eq. (3.10) for ff.jff«,...,ff ;

3) Substitute ff.,ff0,....fl^ into (3.7) to get

1 * 7 > • • • > ^M •

For this problem, in this generality, we can say noth-

ing about whether this iterative process converges. In

the next section we will show that the chemical equilibrium

problem is a special case of this problem, and one for which,

with appropriate modification, this method does converge.

-21-

4. THE FIRST-ORDER METHOD FOR SOLVING THE

CHEMICAL EQUILIBRIUM PROBLEM

The chemical equilibrium problem is a special case

of the linear-logarithmic programming problem. In order

to put Eqs. (3.1) and (3.2) into the form of Eqs. (1.1)

and (1.3), we first define

N - n+p

M ■ m+p

where, as stated previously, p is the number of compartments

in the problem. Then we define a.., b. , x., and c, for

i > m and j > n, as follows

bi - 0 i-nH-l,nH-2, . .. ,M (4.1)

c. = 0 j-n+l,n+2,...,N (4.2)

\+n - Sk k-1.2,...,p (4.3)

-22-

a. . -<

0 if 1 i m, j > n

1 if i > m, j i n, and [j] - i-m

0 if i > m, j i n, and [j] jt i-m

■1 if i > m, j > n, and i-m - j-n

0 if i > m, j > n, and i-m ^ j-n

(4.4)

For all j, we define

V<
+1 if j i n

-1 if j > n .
(4.5)

With these definitions, it has been shown [4] that the two

problems are identical. Next, we let

x. - y. + 0.
J J J

(4.6)

'-l Um

ff. -

IT! + log S, + 1 . i>m
i i-m

Substituting Eqs. (4.1) through (4.6) into (3.7) through

(3.10) and simplifying, we have

-23-

Vyj

m

-hn

j-1,2,...,n

1-1

(4.7)

n

Za..a .y.

Za.-y«

jf<l-m)

^itn, Istm

^.^m, t>in

(4.8)

ijyj
^>in, l^m

jc(t-in)

0 C>ni, l>in

/ n

bi + I aijyj(CJ + lr8 ^j " 1) lim

'1 = (4.9)

^ y (c + log y)

jc(i-m^

i>m

M

Zr. nl - si .
1', 1 L

1-1,2,...,M (4.10)

^-1

The directional derivative of F in the direction

(91,92,...,0) is given by [1, Theorem 8.11] to be

-24-

n

£ OJCCJ + log ^) . (4.11)

N
e

2d
it, if we compute V J ^ where by (3.7) Bui

»k^r, " Sk Lk - lo8 Sk " ^ - Sk Ck (412)
k-1,2,•.•,p

we show, in Appendix B, that

z^-- ^j+ io« v+i "i (bi -1 VJ
j-i J j=i i-i \ j-i >

(4.13)

Thus, if we assume that (y-. ,y?,.. . ,y) is feasible, we get

the injeresting result that the directional derivative of

F in the direction (9.,9 ,...,9) is

N ^
Y ej(cj + log fy - - ^^-1 ^ 0 . (4.14)

j«l j-l j

However, it is also shown in Ap^ idix B that the

equality on the right side of (4.14) holds if and only if

the values for y. are optimal. We further note that if

(y^Xo»-• • »yn)
is feasible, then

-25-

n

V a..0. = 0
L ij j
j-l

for i = l,2,...,ra. Herce, if (y,,y2,...,y) is feasible,

then (Vn+XO.,y_+X0-,..,,y +A0) will be feasible for any y 1 1 y 2 2 n n

X for which each y. + X0. is positive.
J J

We now state the first-order chemical equilibrium

algorithm:

1) Calculate (91,02,...,9) using Erts. (4.7) through

(4.10).

2) Calculate the directional derivative of F in the

direction (0.,9-,...,0) as given by Eq. (4.11);

if this quantity is not negative, we are done.

3) Calculate

€ =

c is a number that represents the root-mean-square

error Ln (y, .V..,,. . . .y). If f is less than some \ J2 n

given number (say, 0.001), we are done.

-26-

4) Calculate the ratio -y./0. for every \ for which
J J

0. < 0. Let A, be the minimuin of all such ratios
J 1

and let A = min (1,/3A) , where j3 is a number less

than 1 but close to 1 (say, 0.99). We now per-

form the following steps until the test at c) be-

low is satisfied:

a) Let z. = y. + X0.;
J J J

b) Compute the directional derivative of F at

z. in the direction (0..0.,....9): f(X) =
j 1 2 n

0. (c. + log z.) •
J J J

c) If f(X) z 0, go directly to step 5);

d) Replace X by yX, where 0 < y <- I, e.g., y = ■=- \f2

5) Finally, replace y. by y. + X0. for j = l,2,...,n.

Steps 1-5 are repeated until either the test in step 2 or

the test in step 3 is satisfied.

If this process terminates, the solution will be

optimal within the specified limits of accuracy. It may

happen that the process does not terminate. Since the

objective function F is convex and assuming infinite

computational accuracy, non-termination can occur only be-

cause the values chosen for X become smaller on every

Ref. 1, Theorem 8.13; Ref. 5.

-27-

iteration. This will occur only if some y. is approaching

zero, and hence (y^y.^,...^) is approaching a point at

which, if it were the optimal solution, the problem woulc

be degenerate. It is possible for this to happen for a

non-degenerate problem for which the initial solution

chosen was too far from the optimal solution. Coiivergence

can be guaranteed by imposing the condition that the value

of F at the initial solution be less than the value of F

at any feasible, degenerate point. However, it is not

practical to impose this condition on the initial solution

since it may be very difficult to find such a point. In

practice, it has been found that round-off errors cause

more difficulty than the possible selection of a poor

initial solution.

-28-

5. THE LINEAR-LOGARITHMIC PROGRAMMING PROBLEM,

SECOND-ORDER METHOD

In the first-order method, presented in Sec. 3, the

iterative process was initiated with an estimate of the

value of x. ,x„ , . . . ,x%,. In the second-order method, we 1 z N

assume that the problem is as defined by Eqs. (3.1) and

(3.2), but that we have initial estimates for the values

of 77 TT . .,77 . Let'us denote these estimates by
i ^ M

A^A ,...,A The x. can then be evaluated by Eq, (3,5),
1 2 M j

substituting A. for 77.. These x., however, probably will
ii j

not satisfy Eq. (3.2). The problem of the second-order

method is to find numbers AA. ,AA~,...,AA , such that
1 2 ' M

77. = A. + AA. i = l,2, . . . ,M (5.1)
ill

when substituted into (3.5) will give x. that satisfy (3.2).

In order to accomplish this, we first use the x.

calculated from Eq. (3.5) to get

N

gi = b. - £ a..x. i=l,2,...,M (5.2)

-29-

where g, represents the amount that equation i is in error

Next, we evaluate

by

a
N

b. - > a..x.

N
dx.

1 aij TT1

N

I a.
ij dX

M

exp I d ■n Ahahj J J
- 1

h=l

N

= -) a..d. x.ao. = - r.. (5.3)

where r , is given by Eq. (3.8). If we make a very small

change, dX dX .., in X X .., the change in g ,g2,...,

is given by dg ,dg , ..., where

M
ög,.

^t^ ljrdX, i»l,2,....M

/-I

-30-

or

M

dg. = - ^ r.dA^ . i=l,2,...,M (5.4)

'.=1

We would want dg. to be equal to -g, as computed by

Eq. (5.2). If we make the approximation that

dX

Is constant over the domain considered, we can set

dg. = -g., let dA = AX , and write

M

g. = ^ r .M1 . 1=1,2,...,M (5.5)

t=l

Equation (5.5) consists of M equations in the M unknowns

AX-,AA.-, . . . ,AXM. We may thus solve Eq . (5.5) for

AÄ, ,M0 , . . . , A\w and compute TT. , ff- , . . . , trw from (5.1). If

the assumption about

dA

being constant over the domain considered was correct, then

-31-

the x. computed from (3.5) with these values for tr. will

satisfy (3.2). However, in general, they will not satisfy

(3.2), but, if we were close enough to the solution so

that the

ög.

ÖA

did not vary greatly in the domain considered, then the new

values for x, should come closer to satisfying (3.2) than

did the first set of x..
J

With this assumption, we may now state the iterative

process:

a) Using the values at hand for ff. ,ff-,. ., ,Tr0,

evaluate (3.5).

b) Using the values for x. obtained in step af

evaluate (5.2). If the |g. | are sufficiently

small, we are done.

c) Compute r. using (3.8) and solve (5.5) for AA..

d) Denoting the IT. in step a by A., we get new rr.

by (5.1).

Steps a-d are repeated until the |g.|, computed in step

b, are sufficiently small, or until they show no more

improvement.

-32-

There is no proof of convergence for this method.

In fact, the method presented here is unlikely to converge

unless the starting values of TT. , n . . . ,Tr are very good,

and even then there may be no convergence. This method may

be used on the chemical equilibrium problem after the first-

order method has resulted in a reasonably good solution.

If the n. obtained from (3.10) in the final iteration of
i

the first-order method are used to initiate the second-order

method, the accuracy produced by the second-order method

will generally be better than that which could be achieved

by use of the first-order method only.

-33-

6. THE SECOND-ORDER CHEMICAL EQUILIBRIUM ALGORITHM

In ordv»r that the second-order linear-logarithmic

method be set in the form of a chemical equilibrium problem,

the same definitions as given in Sec. 4--i.e., Eqs. (4.1)

through (4.5)--are used here. Since ehe second-order method

is best used after the first-order method has been applied,

the initial values of v. for the second-order method must
i

be specified. The first-order method gives a set of v\

which are related to it. by Eq. (4.6). The v. computed by

means of (4.6) are appropriate initial values for the second-

order method. Using these initial values for TT, , the second-
6 i'

order chemical equilibrium algorithm is an iterative process

for which each iteration consists of the following steps:

1) Using the current values for (ff-, ,ff„ ,TO ,
i Z n

evaluate x1,x«,...,x by means of (3.5).
12 n

2) Calculate g,,g0,...,g by means of (5.2) and set
i / m

8m+l'8m+2"-"8M e^ual t0 Zer0-

3) Compute r.. from (4.8) and solve (5.5) for

4) Let

M
P = max I AX. I .

1 = 1

34-

If P < 6, where Ö is a small positive number such

as 10 , we are done; otherwise, let Q = min (—,11.

5) Replace n by n. -f Q AA. for i = 1,2,...,M.

Steps 1-5 are repeated until the test at 4) is satisfied.

P should decrease at every iteration; however, when the

values for 77, get close to their optimal values, P may

not become zero due to round-off error. In order to prevent

an endless repetition .of steps 1-5 due to the selection of

too small a 6, we can test P against the value of P at the

previous iteration. If this value has increased over the

previous iteration, it can be assumed that this method has

obtained as accurate a solution as possible, and we can

terminate the iteration process. The reason for inserting

the factor Q above is to prevent the v. from varying too

much on one iteration.

-35-

7. SUMMARY OF THE COMPUTATION PROCEDURE

The best method for starting the solution of the

chemical equilibrium problem depends on whether an estimate

for the solution vector is available. The projection method

should be used when the problem being solved is a slight

variation from a problem previously solved, and in this

case, the values used for y, in (2.9 - 2.12) should u« the

solution vector to the previous problem. Even when the

estimate is no better than an intuitive guess, the pro-

jection method may still be used. The linear programming

method, then, may be used as a back-up if the projection

method produces a non-positive component. Of course, if

no estimate is available, the linear programming method

would be used immediately to provide an estimate.

The recommended procedure is, then, to use the first-

order method until either no further progress can be made

with this method or until the amount of change becomes

small from iteration to iteration, and then to use the

second-order method. It has been found that, for reason-

ably large problems (say m = 30, n = 100), the point at

which progress ceases in the first-order method usually

occurs when the indicated corrections to the components

-36-

of the solution vector average about one per cent of the

components; that is, when (3.5) is accurate to about two

significant digits. A switch to the second-order method

at this point usually yields quite accurate results in two

iterations of the second-order method. The second-order

method usually satisfies (1.1) to an accuracy of about

five significant digits on a machine that carries eight

significant digits. This accuracy is typically about three

orders of magnitude above what is usually obtained in

experimental data.

To summarize, the typical procedure for solving a

chemical equilibrium problem is the following:

1) If an estimate is available, use the projection

method to obtain a feasible estimate.

2) If step 1 yields a strictly positive estimate, go

to step 3, but if tt.e projection method yields non-positive

components, or if there was no initial estimate, then use

the linear programming method to get an estimate.

3) Use the first-order method until one of the tests

described in Section 4 is satisfied,

4) Use the second-order method as described in Section

-37-

Appendix A

A FORTRAN-IV PROGRAM FOR SOLVING THE

CHEMICAL EQUILIBRIUM PROBLEM

GENERAL DESCRIPTION

The program described here is a set of FORTRAN-IV

subroutines for solving chemical equilibrium problems.

The calling sequence used is merely the statement:

CALL SOLVE

Communication of data into and out of the subroutines

is accomplished by a block common statement:

COMMON/SLVE/IV(30),TOL(20),NR(55,2),B(55),KN(120),X(121),C(121),
1 KL(26),NAM(25,2),A(55,121),PIE(65),V1(65),V2(65),V3(65),
2 V4(65),XMF(120),X1(121),X2(121),X3(121),XBAR(25),R(65,65)

The data that must be input before CALL SOLVE is

executed consist of the following:

COMMON Location Quantity

IV(1) m

IV(2) M (= mfp)

IV(3) P

IV(4) n

IV(6) Number of

-38-

COMMON Location Quantity

IV(7) Print flag: -1 = minimal amount of

messages; 0 = one message per itera-

tion step; +1 = all messages.

IV(9) Maximum number of iterations to be

allowed.

B(i) b., i = 1,2,...,m.

X(j) y., j=l,2,.,.,m, where y. is the

initial estimate of the solution.

If no estimate is available, set

X(J) = 0.

C(j) c., j=l,2,...,n.
j

A(i,j) a^^ i=l,2,...,m; j»l,2,...,n.

In addition, all components in one compartment must

have consecutive subscripts. That is, components l,2,3,...,k1

must be in compartment 1; components k.+l, k1+2, ..., k9

must be in compartment 2; ...; and components k i+l.

k ,+2, k must be in compartment p. These k's are
P-l P

communicated to the subroutines by setting

KL(1) = 1

KL(2) = k +1

KL(3) = k2+l

KL(p) - k .-Kl
■r p-l

KL(p-H) - k +1

-39-

In other words, KL(k) is the number of the first component

in compartment k, and KL(p+l) is equal to n+1.

The above are the only numbers that need be set in

order that CALL SOIVE will solve the chemical equilibrium

problem. However, in order that the program can write

messages, in cases of infeasibility, etc., names for the

rows, components, and compartments may be input:

COMMON Location

NR(I,1), NR(I,2)

KN(J)

NAM (K,l), NAM(K,2)

Quantity

Two-word row name for row I.

One-word component name for

component J.

Two-word compartment name for

compartment K.

In addition, T0L(1) through T0L(5) are tolerances used

by the program. If they are zero when the program is

entered, they are set by the subroutines to nominal values.

These values may also be set by the user of the subroutines,

in which case the nominal values will not be set in the sub-

routines. These tolerances are the following:

Tolerance

T0L(1)

Nominal
Value

0.01

Meaning

c in step 3 of the first-

order method (see Sec. 4)

-40-

Nominal
Tolerance Value

T0L(2) ID"5

T0L(3) IQ"12

T0L(4) io-6

Meaning

6 in step 4 of the second-

order method (see Sec. 6).

Minimum value any x, is
J

allowed to have.

Minimum starting value that

any component will have is

the lesser of T0L(4) and

hyn+i (see Sec- 2)-
- 8

T0L(5) 10 Problem is assumed to be

degenerate if any S.

becomes less than T0L(5).

With the above as input, the statement CALL SOLVE will

cause an attempt to solve the chemical equilibrium problem.

If, upon completion of this attempt, a solution is obtained,

the cell
IV(10)

will contain a 1 and the following data will be in storage:

COMMON Location Data

X(i) x., i-1,2,...,n (the solution).

XBAR(k)

PIE(l)

XMF(i)

V k-1.2,. • • ,P.

V i-1,2,. . . ,m.

v 1-1,2,. . . , n.

-41-

If IV(10) is not 1, the subroutines have failed to solve

the chemical equilibrium problem. The reason for this

failure is written on output unit IV(6). In such a case,

X(i) will contain the latest value of these quantities.

SUBROUTINES

There are nine subroutines in the set used for the

solution of the chemical equilibrium problem, A brief

description of these subroutines follows,

1. Subroutine SOLVE

SOLVE is the master subroutine, and is divided into

four functional segments. Each segment calls other sub-

routines which do specific tasks. The four segments

are:

a) The projection and linear programming routines

for obtaining the initial solution (lines 18-42)

b) The first-order method (lines 43-122).

c) The second-order method (lines 123-163).

d) Output messages (lines 164-203).

2, Subroutine BAR

BAR calculates the S, .
k

-42-

3. Subroutine BERROR

BERROR calculates

N

81 = bi " Z aiiX1 " i=1'2'•••'M

j = l

4. Subroutine DEL

DEL sets

m

w. = ^aljqi . j=l,2,...,n

1 = 1

5. Subroutine RCALC

RCALC calculates the r. array (4.8)

6. Subroutine CLOG

CLOG computes

A
a. = c + log x . j-1,2,...,n

7. Subroutine LP

LP sets up the linear programming problems.

8. Subroutine SIMPLE

SIMPLE solves the linear programming problems.

Information is communicated to this routine via a

43-

calling sequence racher than by COMMON as in sub-

routines 1-7. The dimension of A in SIMPLE should

agree with the dimension of A in the first seven

subroutines, but all other dimensions are dummy

statements.

9. Subroutine MATINV

MATINV solves simultaneous equations. As in

SIMPLE, no COMMON is used. The dimension of A in

MATINV should agree with that of R (not A) in SOLVE,

All other dimensions are singly subscripted and are

irrelevant as to magnitude.

Each of the first seven subroutines has a COMMON

statement which should be the same in all seven. The

dimensions of the variables in this COMMON statement may

be set to the values for the largest problem to be solved,

With m, M, p, and n as previously defined, these dimen-

sions must be at least:

-44-

Symbol Mlnlmuin Dimension

IV 30
TOL 20
NR (m,2)
B m
KN n
X n+1
C n+1
KL p+1
NAM (P.2)
A (ni,n+l)
PIE M
VI,V2 ,V3,V4 M
XHF n
XI,X2 ,X3 n+1
XBAR P
R (M,M) .

A listing of nhese subroutines follows. This listing does

not necessarily represent an actual program. The language

used was that version of FORTRAN described in [6". The

machine used for the solution of chemical equilibrium

problems was the IBM-7044, which uses a floating-point

number with eight bits for the exponent and 28 bits for

the sign and mantissa.

-45-

LISTING

c

-....

c

SUBROUTINE SOLVE
C 01-11-10N I SL V E /IV I 3 0 I , T OL I 2 0 I • NR I 55, 2 I , B I 55 l , K, I 1 2 '-! I , X I 12 1 I , C I 12 l I ,

1 KL I 2 61 t NAM I 2 5 t 2 I t A I 55 t 12 1 I • P 1 £ I 6 5 l , V 1 I 6 5 I t V 2 I 6? I , V 3 I 6 5 I t
2 V 4 I 6 5 I , X MF I 12 0 l t X 1 I 121 I t X 2 I 12 1 I t X 3 I 12 1 I t X bAR I 2? I t R I 6? t 6 5 I

INTEGER PF
EQUIVALENCE ITOL ! 31tX MINitiT OLI 41tX S TARTitiT OLI51t GAR Ml NI
EQU IVALENCE 11VIllt MitiiV121t ME N01tiiV131t NCU,..,PlellVI4lt i oNTOTio

1 IIV151,NITit!IV 161t NO TI tllVI71tP F ie l lV I81tlT ERiol lV1 9 1eiT MAXI,
2 I IV I 1 ~ I , I E i< ROR I , I 1 VI 11 I , LA ST C P I , I I V I 12 I , K E l

DI MEN S ION OX I 1 I tALPrlAI 11, Trl I 11o GI 11
EQ UIVALENCE IG,Vl l ,(t) X,Xll• IALPnAtX21 9 ITHtX31
IF IT OLI1leLE •• 0 1 TOLI11 = CeCl
IF IT L12leL E. C. Ol TOLI21 = 1· E- 5
IF IX Ml eL E • ~ • O I XMI N = 1. ~ -12
IF l bARI-IIN eL E. eOI uAR ; I = . E-b
IF IIT MA X.L ' 1 IH'.AX: 4 u
DO 152 J = 1 , TuT

IF IXIJieL E • .:: .I G TC 5
152 CON TI NUE

IF X IS S TRICTL Y POS I TI VE o o cG I N PR OJECTION
CALL BAR I X tX 5 AR

2 CALL 6ERRCRIERR I
CALL RCALC
CALL t-ATl o vcr.. , ·-1E t Go-1t V2• V3 tV4tKEI
IF IK E:. . E. CI GO TO 5
CALL DEL I CXo I
DO 3 t<. =. lt •>~Cv ' P

KTA : KLI KI
KT6 = KLit<.•11-1
MK = M • I(

() ' 4 ,J: Ki AoK Tc
X (J I • X I J I * I 1 • • X I J I + G I YK I l
I F IXI JI .L E. el GOT 5

4 CO,... TI NUE
3 CONTI N'-­

GO TO 1
LI NEAR PROGi< AMM I G RCU TI ~ E

5 CALL LPIKF ;
IF IKFeNE. I GO TU l v 6

1 CALL dARIXtXoARI
CALL CLOG IXtX t.RI
FE2 • 1eE+2 u

FIRST ORDER ~ETnCD LGOP
DO 899 ITER= l ,I TMAX

CALl. BERROR I ERR I
DC 711 0 l=l t'lE:.N)

PI EIII = "' •
711 u CONTI NU E

7113
7112
7111

DO 7111 K = 1t C MP
KTA • t<.LIKI
KTo: KLIK+11 - 1
MK : M + K
D 7112 J • KTA t t<.T3

AX z ALPH AI J I * XIJI
PIEI ~t<. l z Pl E I ~ KI + AX
DO 7113 I z lt M

Pl :: lll: Pi Il l • AX * ldltJI
CONT I I E

CO Tl ~E
CONTI NuE

SOU 01
SCC0 2
S0003
S0004
SCOC 5
S0006
SJ00 7
S000 6
S00 0 9
S00 10
500 11
500 12
500 13
50 0 14
500 15
500 16
5001 7
SC0 18

:. 19
50C 2
5 0 21
500 22
S00 23
50024
5CC 25
5C026
50 0 27
S002 d
s 0 29
::.00 30
SC0 3l
SOC 32
500 33
500 34
SOC 35
500 36
500 37
500 38
500 39
5004C
.::>O C41
500 42
500 43
50044
500 45
suo 46
Sv0 47
!>00 46
~v C 4 9

~~:~ ...
SvC 5l
~uv52

S0 053
St:0 54
SU0 55
so 56
50057
:;cos a
SCC 59
500 60

7114

71 0 3
71 \J 4

712

8 3) 1

8266

8264
8265

828

82 8 1

8231
8288

699

-46-

DO 7 114 I • 1 , . 1
PIEIII • (d ll + PI Eill'

CONTINUE
CALL RCALC
CALL MAT! V C R , ~E ~~ · IE o-1o V2 oV3 oV4oKEI
IFIK Ee NE e0 1 GO TO 12 00 3
DMAX a 1e ~ +2

CALL DE LITt1oP IE I
GNORM•;::.
TDA • J e
FE = o.
DO 71 ~ 4 (• 1o NC OM P

M(• M + K
(. TA :: KL C(I
KTo :: KL I K+ll -1
DO 71 0 3 J • KTA , KTB

THIJI • Tt11 J I +PI E CMKI- AL PHAIJI
uNOR~ : GI\OR .'~ + Ttll J I ••2
THCJ I TH(J) • XCJI
TuA :: T ~ A + Tt1CJI • ALPt1ACJI
IF CXCJ ieL Te- J .'-IAX * Th CJ II ' "'AX :: - XI.Jl/lt11.JI
FE • F~ + XI.JI • ALPrl~I.J l

CON TI uE
CON TIN UE
E p 5 : 5 R T (G ~- r(~ I F L , A T (I Tv T)
DFE :: FE - FE2
FE2 :: FE
I F IIT ERe C: e ll GO TO 712 ...
ITR = ITER - 1
IFIPFeG Ee v l ~R I TE I I\0 To7 99 1 I TR , ~ F E o OP TL o EP~

PTL aA "' I 1 I leo e S9 • 0M AX I
IF IPF oG • v lwR!T r (CT o824ll D AA o P L oTu AoE Rk
IF I EPS e LEeT OLilll GO TO o~~9
IF ITJt. eGEeCe l C. TO 8:. •
DO d 2 6 5 I I = l , ':> 4

DO 63 :.: 1 J ,. l•
DXIJI • AMAX11XIJI + PTL * fn(J I oXY I I\1

CO T I uE
CALL A ~ l v X o X c A~ I

CALL CL I D X o ..< Jt.~ l

TUA a v •

DO 8266 J:: l o ~T T
Tu A :: TJ A + Tn iJI * ALP n AIJI

Cv TI NUE
I FIPF e GT e v) 'IIRIT :.. I . OT o d26 2llloOPTL.o
I F I TDt. eLT eOel GO TO 828
OPT L :: ~?T L /1e4 142

CONTINUE
CALL BARIXoX bAR I
GO TO 8 271
DO o281 J =1• T ~ T

XI.J) a () X(J)
CtiN T I NU E
FE "
DO d231 J=- 1 oN

FE ,. F E + ALP t1 AIJl•XI J I
CGN TI N:.JE
CALL 5S~TCH15 oLA3 E Ll
IF IL AdE L• N[.2l GO TO

CON TI NU E

TDA

50C61
;,u0 62
50 063
500 64
5C0 65
S00 66
~L.0 67

5C0 68
5 C.0 6 9
500 70
SCC71
sec 12
sec 73
5\JC 74
500 75
500 76
500 77
500 7!;
~ 0() 79

~ cc a o
SCG bl
.:.0 08 2
5008 3
50084
.:.00 85
~ v C 86
::.u !: 7
500 88
.:.CC d9
50 0 90
5C0 91
::,,J 92
500 9 3
.;:, " 0 94
S.J C9 5
~ .:. c 9 6
.;:, () 09 7
500 98
500 99
~ 1 oc
.J0 101
S0 1::l2
50 103
50104
50 10 5
50 1 06
::,0 10 7
50108
50 109
S0 11 0
50 111
50112
50113
50114
5Cll5
50 116
50 117
S0 118
s 119
S\J 12 0

-47-

C EN 0 OF FIRST OR DER ~ tTrlOO LOO P
GO TO 1u C. v 2

6Cu u ITER1 : ITER +
PMAX z 1oE+2 u
PI>1 AX1 = 1• E+21

C SECOND ORDER ~~ TrlOG L~ P

60 l u

6 ~ v3

60J 6

6J ..; 4

6vl1

DO 6Cu 2 ITER = ITE ~ 1t!T ~ A X
CALL ;)Ell XtPIEI
DO 6 UJ 3 K =1tNC O ~ P

MTA = Kll KI
MTB = KllK+11 - 1
DO 6u 1 ~ J = M TA. ~ T B

XMFlJI z EXP l DXlJI -ClJI I
XlJI = X~ FlJI*X~A~l~l

CON TI NUt.
IF l Xa ARlKiolEo~A R~ l N I GO TC 1 ~ · J 5

CO TIN UE
I F l P :~A X ol c. • T OL l 2 I • CR . l .-> ., t.. X • Gt • P it .t.. X 1 • A."~v • P -~ A X • G ~ o P I'. A X 2 I

GO TO }uvv1
CALL 8ERRCR lER RI
CALL RC ALC
CALL M ATI ~V lRti' ENG t G t -1oV2t V3tV4tK£1
IFlK EoNEo v l GO TO 1-00 3
PMAX2 = P:·1AX 1
PI- AX = P .~ ;.x

P1·\AX =
DC 6 C0 4 I = lo MEN~

p ;-.~ t.X : AI~A X 1 l p·.;Ax • A-:.. S l G l I I I
CO, T I UE
IF lPMAX o E~ •• :.. 1 G TO } J , 1
ZM =A MI NI l lo/P MA Xtlol
D:J 6 0 S I =}, ,"1

PI Ell l - P! El ll + ZM • Gill
CO TINUE
DC 6 "11 K z lt NCOV P

o"'K "' M+K
XdARlKI = X6A~lKI* EX P l Z~ • Gl~KI I

CON TINUE
IF IPF.G Eou l ~RITtlNOTt6u991 IT ~R .P"'AX,E ~~

CALL SS wTCH15tLAoELI
IF ILA a ELo NE o21 GO TO l v~04

6 · ... 2 CON TI NUE
C E~ D OF Sc.CO D ORCER ~ ETHOD LOO P
1v.Jv 2 IE~ ~o;< a 2

WRITEINOTt2 vu v21
2 0j ... 2 FORMA TI27H ITERAI N LI~IT ~ XCEE O E D

ITER = ITMAX
GO TO 10JCO

1000 3 !E RROR a 3
-RIT INOTo2 vvJ 31 ~E

2 ~0 v3 FORMAT121H R ~ATRIX HAS NULLITYol31
GO TO 1v0J.;

1v uv 4 lt. RROR = 4
WRITEIN0Tt2v uv41

2 uvv 4 FOR I-IATI56H 50 LV E ROU TI NE T£R •· J AT v SEC:\USt:.: !:>EN;,E :, ·,J IC rl 5 IS DOt.N
1 I

GO TO l wOuO
1000 5 !ERROR a 5

WRITEINOT,2 l..iuv 51 NAMIKo11oNA~ IKo21

2vuu5 FORMATI13H C OMPART ~ EN T t2A6o1 0H TCO S ~ALL

S0 121
::;0 122
:.0 123
::.0 124
50125
50126
50 127
50 128
50 129
S0130
50 131
50 132
50 133
5Cl34
s 135
50 130
!:.0 137
~ u 138

50 139
50 140
S0 141
S0142
S0143
50144

J 145
50 146
50 147
50148
~0 14 '1

50 15 0
S0151
~0152
50153
50 154
50155
50156
50157
501So
5:H 59
Svl60
50161
S0162
50 163
S0164
50165
50166
50167
50 166
5~ 169

50170
;:,i) 1 11
50 172
:.C173
SO l 74
50175
50176
5C1 71
Sv178
S0179
50180

LA S TCP c K
GO TO } 1.-::l

l vJv 6 l ERRO = 6

1 - \..I V 1
l vJ .J..,

-48-

8 £ 4 A T(l5H V,AX=l P E 1 2 e4 tl H , OP T L A~ A=E l Ce 3 t 6H t T A =E1
1 • 5 • 16 rl , :. A X

8 6 7 1
/:j 6o

= E12e 5)
Tt826 8 l I TLR

, 14, 3 i.. H P 5 I I I VE I A , GO I 0 ~E I H D 2

826 :: . ~ 1 , l TC: I T t 827 I TE
827v F ..., i· .I.T I -., H Ll ATiiJ tl4t4 n A THc.TA E!:> S I nA IJL(l l • G0 I J fi,£ TH L.

1 2)
G T 6 :J.; ...

8£71 I F I PF . C.t: . C l ,,RJ IN T t 62 7 l IT
8£7 F A T I 1Ch IT L. /. , tl 4 t36rl ::. T P :..1 ZE T 0 SMALL • GO Tu E THO 2)

G T 6 JJ::
8 2 6 F v R A 11 . , 4 H5T£P ,I 2 • 9H LA~ ~: A =lP E 1 0 e 3 t6 H t TDA = l l 5 e b l

7 9 F R-1/.Ti l .; n ER.'.TIC .'h l4 • 2 4 H C ,.. , E 1 F l~ E ERG Y= l PU5 e!l tl 2 H
15TE P ~ I Z£ a E l 5 e 8 •1 H AV TH E TA=El e 5 l

6 9'1 FC ATI } ..; H I T R ATI~ ' tl4tl n ' A (hA :i [I N P I E =1P E 1 5.8tl 5H AX RO,,
1 R=Els . a

END

::. 0 161
50 182
::.0 183
SJ 184
::. u 1d5
!:>J 11:l6
s.:; 1a1
SO lS !!
,:) 0 1!! 9
50 1 90
SJ 1 9 1
50 1 9 2
!:>J 1 93
50 1 9 4
s 1 9 5
50 1 9 6
!:>0 1 9 7
50 198
50 199
!:> U2 0
50 2 0 1
S:l2 0 2
50 2 0 3
50204

-49-

SUBROUTINE bAR('/.',v,3ARl AOCOI

COMMON/SLVE/IV{33)tTOL(20» »NR(55♦2)»B(55»iKN«12UJiXU21)»C(121»• *U0Ü2
1 KL(26)fNAM(25»2)»A(55tl21)»PIE(63)iVl(65).v2«65)iv3t65)» WUUU3
2 V4C65) tXMFC 120) iXK 12U »X2(1211 iX3(121) tXbAR(25) »Rl 65 »6 5) /.COOA
EQUIVALENCE (I V(1)»M).(IV(2 » »MEND)t(IV(3)»NCOKP).(IV(4)»NiNI 0 I)t «0005

1 (IV(5).NIT)»(IV(6)»NOT).(lV(7)iPF).(IV(8)tIlcR)»(IV(9)»I TMAX) . .VC006
2 IIV(1Ü)tIERROR)•(IV(11).LASTCP).(1V(12)»KE) WU007
DIMENSION tr.'(1) tWüAR(1) W000Ö

7 DO 701 < « l.NCOMP ^3009
<TA » <L(<) V.ÜC10
<TB » <L(K+1) - 1 IOC11
WBAR(K) » Ü, A3C12

DO 702 J = ICTA.KTB ^-3013
WBAR(K) = WBARttt) ♦ W(J) rtQCl*

7^2 CONTINUE W0015
7Ü1 CONTINUE '.GC16

END .VOO^

-50-

CO.X'-'.OA/^LVE/ I'M 3^ I .TOL (2 ^>-»N^(55 .2) . 5 (f;r.) .<Wl l^u) tA l 12 1) »C I 121) »
1 KL (i6 > i NAN', t 25 .2) • A1 5 5 »12 1) »P IE I 611 . V1 (65) . V2 (6 5) . V31 65) .
2 V'*(u-j) «X'^r (12 .) »Xl(121) .X2{ 121) .X'' (1 21) »XL A^(25) ,I<(6cJt65)

EuUlVALEMCl (IV(1) .v) » (IV(2) »MENJ) . (I V (3) i.NCCVP) , (I V(4) tN.KTOT) t
7).PF).(Iy(8)«liLR)fllvi9)tI
ICH) ti I vi 12) .<E)

1 (IV('j) tNI T) « (I V(6) »NCT) » (1 V(
2 (W(1,) , It^RCm .(IVIllJfLAb
DIisLNSlCN G(1)
EuUlVALLNiCL U.V1I
CO Kl I = 1,M

ZT = ..
uO 1 v.2 J = ItH

I F (A (I »J) . N L.«- . I ^T = ZT - x(J) » A(I»J»
1^2 CCMlNJc

G(I) = ZT t- L3(I)
Ul CONTINUE

DO 11- < = 1.NC0M?
2T = „.
M T A = < L (^ I
MTB = <L(< + 1) - 1
DO in j = y.TA.y.Td

ZT = ZT > X(J)
ill CONTINUE

WK. = M -f v
GdiN) = XuAR(K.) - ZT

llv. CONTINUE
BMAX = „,
DO 120 I » ItMEND

IF (AüS(G(I)) .GT, ADS(3MAX)) LAX = G(I)
12- CONTINUE

RETURN
END

IAX)

bOCOl
bU'J'J2
bCC03
bcnou
BOCCS
bO'COb
oven
b^COB
DÜC09
DUÜ10
ÜGCll
DUC12

bG013
bGC14
bJ015
buC.16
B0017
DGCI 8
b3C19
DUC2C

b0021
uGC22
BÜ023
bü024
BUC25
bC026
60027
BGC2c
BG029
boL30
bC031
oCC32

-51-

SUBRUJTINE l)EL<rt'»wJ
CGMMG^/3LVE/I V(3C) .TOL(2^) .'^(ODt^) ..3(55) .<•>.(120 1 tX(121) «C(121) t

1 KL(26).NA,%(25.2)»A(53»121)»PlLl6t;)fVlt63).v2»65)»v3(b5)f
2 V4(65l .XMFI 12-) »XK 121) .X2; 121) »X^l 121) »XcARI 25) .^(6rJt65)
EuU I VALENCE (I V (1 ; . I) . (I V (2) • f-E\ J) » (I V (3) . i\Cr: P) . (rv(4) .,\»MOI) •

1 (IV (p J tNI T) . I IV (6) ♦ NOT) » { I V (7) t PF) . (IV t 8) » I I LK) . t J V (9) » I I .XAX) i

2 (IV(1)iURRORJ•(IV(11) »LASTCP) ♦(lV(12»»<£)
DIMENSION .■,(1) .0(1)
DO 2L J = IHN

/. A = ^ •

DC lu I = l.M
IF (A(I ♦ J) .NL.O.) A".V =

CONTINUE
w (J) = ',v .v

CONTINUE
RETURN
END

♦ A(1,J) # ^(I)

DOC 01
00002
Duuu3
DOC 04

DC i" 06
D0C07
Ducoa
D0CC9
DCC1C
DvJCll
DÜ012
DCC13
Du014
D0015
L)0016

ÜJC17

-52-

SUBROUTINE RCALC
CÜMMÜi\/SLVE/IV(3C)»TüL(2ü)»NR(5>5>f2)i3(b5) iK.\(12u) .X1121)tC(12l)»

1 KL (26) tNAM(25.2)iAlt)5,121).PIE(65).Vl(6$).V2(6b)iV3(65)t
2 V4(&5J »XMF(120) tXl(12ll tX2l 1211 »X3(121) iXuAR(23) tR(63.65»)
EQUIVALENCE (IV (1) »M) . (IV (2) t MENO) . (IV (3) »NCOMP) •(I V (<♦) .f. »N I U I) .

1 I IV(5J »NIT) ♦ I IV(6) »NOT) . (IV(7l iPF) .UV«8)»1TLR) .(1VJ9) . ITi-lAXJ .
2 (IV(1C) , IcRROR).(1V(11).LASTCP).(IV(12).<E)

COMPUTE R
DO 1 I » I»MEND

DO 2 J «1.1
Rl I »J) • u.O

2 CONTINUE
1 CONTINUE

DO 10 K ■' »NTOT
DO 11 I»1.K

IF (A(1 .K) .EQ.O.) GO TO 11
AUX » A(I ,K) » X((C)
DO 12 J «1»I

IF (A(J.K).NE.O.) Rfl.Ji = A(J,K) » AIKX ♦ R(I.J)
12 CONTINUE
11 CONTINUE
10 CONTINUE

DO 2Ü < « ItNCOMP
IH = < ♦ M
MTA «KL(<)
MTb "KLCK+D - 1
DO 21 L »MTA.MTL

DO 2 2 J M.v
IF (A(J.L).NE.O.) K(Ih.J) = ^(IH.J) + A(J.L) » X(L)

22 CONTINUE
21 CONTINUE
2Ü CONTINUE

DO 30 J » 2»MENÜ
JL = J-l
DO 31 I « l.JL

R(I*J) « R(Jtl)
31 CONTINUE
3o CONTINUE
5o RETURN

END

RJC01
ROÜ02
K00C3
KCC04
RCC05
R0C06
RÜC07
ROCOü
R:CO9
R0C10
RG011
R0012
R0C13
R0C1<»
R0015
R0C16
K0C17
RGOlö
R0019
R0020
R0021
RÜC22
RC023
R002'»
R0025
RÜ026
RU027
RÜ028
R0C29
RCC30
PC031
R0C32
R0Q33
RÜ034
R0035
R0036
R0037
R0C36
R0039
R0040

-53-

SUBROUTINE CLÜG(A/.rtüAR (
COMMON/SLVE/IV(30).TGL(20)tNK(55♦2)»3t55)»KNC12U)»X(121» »C(121» »

1 KL(26)»NAM(25.2)tA(55.121)fPlt(65).Vl(6b)tV2t63I.V3(6cj).
2 V^(65)fXMF(12o).Xl(121).X2(121).X0(121)«XüAR(2 3)tR(65.65)
EQUIVALENCE (I V (1) f M) , (I V (2) .MENÜ) . (1V(3) »NCOMP) . (1VU) »N tNTüT J »

1 (IV(5)»NIT» »(1V(6)»NOT»♦(IV(7)»PF>»(IV<81»1TIR)»(IV(9I.ITMAX)♦
2 (IV(IC)tIcHRQR),(IV(11)»LASTCP) .(IV(12)»KE)
DIMENSION >v(1) »i/tfüAKJ 1) .ALPriA(1)
EQUIVALENCE .X2.ALPnA)
DO 1 K = 1, NCOMP

KLA - KLiK)
KLÜ = KL(<+1)-l
DO 2 J = fvLA.i^Lu

ALPHAIJ) = C(J)
XXX x W(J)/AüAR(K)

IF(XXX.üT,v,C) ALPHA
2 CONTINUE
1 CONTINUE
RETURN
END

J) = C<J)+ALCG(XXX)

C0C01
CCC02
C0003
COCO^
CCC05
CÜC36
C0007
CG00Ö
C0009
CCC10
COC11
CGC12
C0013
COCK
C0015
CCC16
C001 7
ccne

Cw>.2C

-54-

SUbKJuTINE L? CCNJ»
CuK.V«J^/SLVt/IV(3C) .TOLCZ:) • ^^ I j J . 2) . : (S :) »K..^ (1 ^ ,) . X (1 2 1) . C

1 KL{26).NA>1l25.2>.Alb5.12n.PlLiö:j).Vl(6>).V2(üt)).V3(o5>t
2 V<»(65).XN,Ml2.)tAl(l21).X2(12I).X3(121).A^AR(2:j)i.'i(65t63
IMTLGtS PF
v.Ul VALENCE I TCL« 3) »X.-.IN> » (TL.LU) »XCTAPT» »<T':L(!J» tfjAKII.NJ
u'b I VALENCE (IV(1) i.'-) . (IV(2) •XENJI t (I V (3) ..NiCC.'P) t (I V U 1 .N vMOT) i
(IV>b)tNIT) . (IV(6)»NOT) , (1V(7)»PF) t(IV(0) » ITLR) . (IV(9) »ITKAX)»
(IV(1^},ItKROKj . (IV(11)tLASTCP) . (IV(12) »<E)

1MENSION XX(1) .(tOJn 7) . CC (1) »P (1)
QUIVAL£NCE(CCfXMF)11XX .X2J i (P»Vl)
ON« w
C /vcrAOT.IE r^ ,^i VCTADT » i r — i

15

INTEGER PF
EC
E^'

I <
2
D
ECJ

MON
IF (XoTART.LE.O.C)
DG 1C 1 ■ l.M

P(I) » b(I)
A(I »NTOTM) = 0.0

DO 15 J « l.NTOT
A(I»NTOTfl) s

CONTINUE
CONTINUE
DO 1 J

CC(J)
CONTINUE
CC(N+1)

^(1 2 -) . X (1 2 1) . C (12 1) .

)

.X^TAPT) . (TCL (5) tfjAH UN J

XSTART = l.E-6

A(I »NTOT+l) + A(I tJ)

ItNTOT
C • u

-1.VJ
.dEKO-TM SIMPLEX IS TC OETE^MNE FEASIJILITY

CALL 5IMPLE(v»M»i\+l»A.P»CC»K.CUT»XXiPI£.V2«V3»V<MX3tK)
= XX{N*1)

RITE (NO! . IJ6)<CUT(2» iZTtKOL'TI 1)
) ELEMENT»lPE15.ä. Iu6

CALL SIMPLE (-»MtN+l »A»P »CC »KCUTtXX iPI£ .V2 •V3»V<i.
ZT = XX{N*1)
IF(PF.GE.:).vRITE (NO! .1 J6)<CuT(2) »ZTtKOUTI 1J
FUR^AT(12MCSIMPLEX C.U,29n ITERATIONS. MAX MIN

I 12M, CONDITION .13) 1 12M. CONDITION .13)
ZZT =AMlNl(ZT/2.0. XSTART)
DO 1C<» I » l.M

P(I) s P(I) - ZZT»A(I .N+l)
l\)k CONTINUE
2uo DO 2C1 J = l.NTOT

X(J) s XX(J)
XMF(J) « l.w

2v.l CONTINUE
IF (ZT.LE.0.«OR.KOUT(1J.Nt»0) GO TO 40

SIMPLEX LOOP
FR2«l.t*20
DO 30 1 NN « 1. NCOMP

DO 3^2 J s 1. NTOT
CC(J) = C(J)

3-2 CONTINUE
= FLOAT(NN) - l.w

.A,P,CC.<ÜUT.XX.PiL.V2.V3.VA.X3.R)
GO TO 50

+ XMF(J) - 1,0

FN
CALL SIMPLE(i.M.N

IF UOUT (1) .Nc.O)
3uu DO 3-3 J = l.NTOT

X(J) = XX(J)
X(J) = (FN»Xl(J) ♦

XI(J) = X(J)
3u3 CONTINUE

CALL BAR(X.XBAR)
< - 1

r K = u • w

DO 310 J = l.N
I

X (J)) / (F N ♦ 1 ,:)

310 J = 1 . N
IF (J.GL.KL(K>1)) < = < ♦ 1
It- (J.E«»i-L(<) .^N^.XjArvlK.) .UT.C.r)FP = FK-X^AR(K)*,'lLJGIXüAR(Kv))

IF (X(J).GT.3.C) FR = FR + XfJ)»(ALOG(X(J)) ♦ C(U))

Luuul
LCCD2
L0003
L0004
LO^Oä
L0006
LCC07
LC00Ö
L0CC9
LUÜlO
LÜÜll
L0012
L0013
LÜC14
LOOlb
L0ri6
LOCI 7
LCC18
LCC19
L0:20
L0C21
L0022
LÜC23
L0024
L002P
L002fa
L0027
L0028
L0029
LO030
L0G31
LOC32
L0n33
L0C34
LÜG35
LOO 36
L0G37
LCC3d
L0039
L004G
LGC41
L0042
LG043
L0C44
LCC<o
LGC46
LG047
L004Ü
LOG49
L005Ü
L0051
LGC52
LGG53
LCC54
LOÜ55
LO056
.0057
LO05Ö
L0059
L0C60

-55-

XMF(J) « u» LCG61
IF (XbAR(IC).NE.O.) XMF(J) = X(J) / XbA«(<) L0062

31Ü CONTINUE L00o3
IF (PF.GE.C) WRITE(NOTi305) NN.t <OUT (2 > .FR L0C6<»

3ub FORMATCÖH SIMPLEX»13»IH»»Ht12H ITERATIONS .8H FR ENG»1PE15.8) L006*
IF (FR.GE.FR2) GO TO 399 L0066
FR2SFR L0067

301 CONTINUE L0068
399 DO 4GC U ■ l.N L0069

X(J) ^ X(J) + ZZT L0070
hüü CONTINUE L0G71

RETURN L0072
U's IF UOUTd).GT.l) GO TO 50 L0073

WRITE (NOT.41) LOOT*
Ul FORMAT(72H0THIS PROBLEM IS INFEASIJLL. THE FOLLOWING LINEAR CÜMüI L0075

1NAT10N OF ROäS» /IX) L0076
DO U^ I «1»M L0077

IF (PIE(I) .NE.O.) WRITE(N0T.U1) P I E (I) »NR « I . 1) .NR (I .2) L007e
141 FORMAT (luXt3H-* <»Fl5«8»5H) » .2A6I L0079
Uo CONTINUE L0080

WRITE (NOT.142) LÜ081
142 FuRMAT(4dH0 LEADS TO THE FOLLOWING INFCAblöLL EQUATION. /1X) L00d2

DO 15« k »l.NCOKiP LCCÖ3
MTA = KL(<) LC084
MTb = ^L(iC*l) - 1 LÖC85
DO 151 J = MTA, MTB L0086

D « 0. L0G87
DO 152 I =1.M 10068

D = PIE(I)* A(I.J) + D L0089
152 CONTINUE LC090

IF (D.NE.w.) «RITE (NOT.143) O.KN (J) .NAM(K . 1) .NAM (IC,2) LCC91
143 FORMAT(10X.3H+ (,F15»8.5M) » .A6.4H IN .2A6) L0092
151 CONTINUE L0093
15o CONTINUE L0C94

D = ü. LCC95
DO 160 I «l.M L0C96

D « PIE{I)*a(I) ♦ D L0097
16U CONTINUE L009d

WRITE (NOT.144) D L0099
144 FORMAT(1H0.15X. 7H* 0.0 «.F15.8) LG100
70 WON « 1 L0101

RETURN L0102
50 IF (KOUT(l).NE.2) GO TO 60 L0103

JT = <OUT(7) L0104
DO 51 K « l.NCOMP L0105

IF (JT.GE.KL(K)) GO TO 52 L0106
51 CONTINUE L0107
52 WRITE (NOT.952) <N (JT) »NA^U » 1) .NAM(IC,2 I L0108

952 FÜRMAT(14H Tut VARIAoLE .A6.4H IN .2A6.33H IS UNSOUNDED AND MUST B L0109
IE REMOVED) L0110
GO TO 7^ L0111

60 WRITE (NOT.96^) L0112
960 FüRMAT(6JH SIMPLEX ROUTINE nAS FAILED DUE TO EXCESSIVE ROUND-OFF E L0113

1RROR) L01i4
GO TO 70 L0115
END L0116

-56-

Calllng Sequence for Simplex Subroutine

The simplex subroutine, SIMPLE, may be used to solve

a general linear programming problem of the form: Minimize

n

y c.x. (i)

subject to

n

Y a..x. - b. 1=1,2,3,...,m (2)

The a.. is stored in a two-dimensional array, A, with

a., in cell A(i,j); C. is stored in a one-dimensional array,

C, with C, in cell C(j); and b. is stored in a one-

dimensional array, B, with b. in cell B(i).

The calling sequence is

CALL SIMPLE(II,M,N,A,B,C,KO,X,P,JH,XX,Y,PE,E)

where

II - 0;

M - No. of rows, m;

N ■ No. of variables, n;

-57-

A, B, C Are as above;

KO = A subscripted variable of

dimension 7;

X = A subscripted variable of dimen-

sion n or more;

P, JH, XX, Y, and PE = Subscripted variables of

dimension m or more; and

E = A subscripted variable of

2
dimension m or more.

Upon exiting from the subroutine,

X(l),X(2),...,X(n) Contains X-»x«,...,x (the solution);

P(l),P(2),...,P(m) Contains the shadow prices;

K0(1) Contains an 0 if the problem was

feasible, 1 if the' problem was

infeasible, 2 if the problem had

an infinite solution, and 3, 4, or

5 if the algorithm did not terminate;

K0(2) The number of iterations taken;

K0(3) The number of pivots performed since

the last inversion;

K0(4) The number of inversions performed;

K0(5) The number of pivot steps performed;

-58-

K0(6) A logical variable that is "true"

if and only if the problem was

feasible; and

K0(7) Contains, if the problem had an

infinite solution, the number of

the variable that was infinite.

The dimension of A (line X0009) must agree (at least

in the first subscript.) with the dimension of A in the

calling program. The other dimensions need not agree with

those of the calling program.

If an initial basis is available, this basis may be

communicated to the subroutine by letting

II - 1 ,

0.0 if variable i is not in basis,

(non-zero) if variable i is in basis.
X(i) -

and the other quantities remain as above.

This subroutine differs from other linear programming

routines in several respects. If the restraints (2) are

linearly dependent, the problem is considered to be in-

feasible. This is the case because the chemical equilibrium

problem cannot be solved if the rescraints are dependent.

In addition, this subroutine was written to be as scale-free

-59-

as possible; this was accomplished by computing tolerances

internally in the subroutine.

-60-

C TH£

C
c

AUTOMATIC SIMPLEX REDUNDANT EQUATIONS CAUSE INFEASIJlLITY
SUBROUTINE SlyPLE(INFLAGiMXiNN.A,üiC.KOUT .<Ö.P.JM.XiY.PE.E)
DIMENSION 8(1»iC(l).<OuT(7)iJH{1) iX(1)»P(1)iY(1)»

1 <b(l).E(II iPEd) .<0(7I
EQUIVALENCE (K.<0(1 I).(ITER»<0(2)1»(INVC»KOC3))•

2 (NUMVRiKO«*))»(NUMPVtKOIS)I•(FEAS.<C(6)1i(JT»HO(7))
EQUIVALENCE (XXiLL)
FOLLOWING DIMENSION SHOULD BE THE SA^E HERE AS IT IS IN CALLER.
DIMENSION A(55il21l
LOGICAL FEAS.V-RiNEGfTRIG.i^iABSC

MOVE INPUTS ZERO OJTP-TS
I li7
C

1341

.5*»16
<»#M ♦ 10
M/2 ♦ 5

GO TO 1<»00
ONE WlTn SINGLETON BASIS

1402

) GO TO 1320

DO 1341
KO(I)

CONTINUE
M ■ MX
N ■ NN
TEXP ■
NCUT ■
NVER ■
M2 ■ M»»2
IF (INFLAG.NE.C)

C» »NEW START PHASE
DO 14-2 J » 1»N

KB(J) ■ w
KQ ■ .FALSE.
DO 14^3 I ■ liM

IF (A(I iJUCQ.O.O) GO TO 1403
IF UQ.OR.AIIiJI.LT.O.O) GO TO
KQ • .TRUE.

CONTINUE
KBUI > 1

CONTINUE
IF (INFLAG.UT.l
DO 14wl I >1»M

JH II) > -1
CONTINUE

CREATE INVERSE FROM »KB« AND «JH«
• .TRUE.

INVC ■ C
NUMVR ■ NUMVR
DO 11^1 I ■ 1»M2

E(I) • O.w
CONTINUE
MM«1
DO 1113 I ■ l.M

ETMMI ■ l.w
PE(I) > w.O
X(I) > 3(1)
IF (JH(I) .NE.OI
MM ■ MM ♦ M ♦ 1

CONTINUE
FORM INVERSE

DO 1U2 JT • liN
IF KJIJTI.EO.O) GO TO 1102
GO TO 600

14u3

14-2
14wC

I4wl
C« «VER«
132w VER
1121
1122

11^1

♦ 1

JH(I 1 • -1

1113

C
C

60^. CALL Jn
CHOOSE PIVOT

1114 TY
DO

■ J.Ü
1104 I 1 iM

X0001
X0002
X0003
X0004
X0C05
X0006
XÜ007
X0C06
X0009
X0010
XOOU
X0012
X0013
XÜ014
X0C15
X0016
X0017
xocia
X0019
X0020
X0021
X0022
X0023
X0024
X0023
X0026
X0027
X002Ö
X0029
X0030
X0G31
X0032
X0033
XÜC34
X0035
X0036
X0037
X0038
XC039
X0040
X0041
X0042
X0043
X0044
X0045
X0046
X0047
XU048
X0049
X0050
X0051
XÜ052
X0C53
X0054
X0055
X0056
X0057
X005Ö
X0C59
X0C6Q

-61-

IF (JH(I) .ME.-l) GO TO 1104 XC061
IF (ABS(Y{ 1) I .LE.TY) GC TO IICU X0062
IR » I XJC63
TY « A6S(Y(I)) XC06^

11J4 CON'"NUE XCC6b
<b(JT) « Ü X0066

C TEST PIVOT XuC67
IF (TY.LE.TPIV) GO TO 1102 XÜÜ6Ö

C PIVOT Xücby
JH(IR) « JT XCC70
Kb(JT) « IR Xu071
GO TO 9C0 XGC72

C 9v.u CALL PIV X0073
1K2 CONTINUE X0C7^

C RESET ARTIFICIALS XJ075
DO 11^9 I = ItM XCC76

IF (JH(I).EG.-l) JM(I) = 0 XJC77
liu9 CONTINUE XU076

■IZo^ VER « .FALSE. XGC79
C PtRrüKX ONE ITERATION XOOdO
C* 'XCK« DETERMINE FEASIulLlTY X0OÖ1

FEAS« .TRUE. X0Cö2
NEG « .FALSE. XÜ063
DO 12^1 I = 1,V| X0084

IF (X(I).LT.C.C) GO TO 1250 X00Ö5
IF (JHIIJ.EQ.C) FEAS = .FALSE. X0086

12C1 CONTINUE X0067
C* 'GET' GET APPLICAdLE PRICL'S X0C8Ö

IF (.NOT.FEAS) GO TO 531 X0C89
C PRI-IAL PRICES XGC90

DO 503 I » UM X0091
P(I) » PE(I) XGC92

5J3 CONTINUE X0093
ABSC = .FALSE. X009^
GO TO 599 X0C95

C -COMPOSITE PRICES X009fa
125u FEAS = .FALSE. X0097

NEG = .TRUE. XÜ098
601 DO 504 J » I» M X0099

P(J) = C. XÜ100
5w^ CONTINUE X01Q1

AbSC = .TRUE. XÜ102
DO 5C5 I = UM X0103

MM =1 X0104
IF (X(I) .OL.C.O) GO TO 5J7 X01G5
AbSC » .FALSE. X0106
00 5U8 J = l.M X0107

P(J) » P<J) + E(M,'1) XG108
MM = MM ♦ V, X0109

5J8 CONTINUE X0110
GO TO 5C5 X01 11

507 IF (JH(I).NE.J) GO TO 505 X0112
IF (X(I).NL.C.) AuSC = .^"ALSE. X0113
DO 51Ü J = 1.M XÜ114

P(J) « P(U) - El MM) Xoll5
MM ■ MM ♦ M Xollb

51w CONTINUE Xull7
5^5 CONTINUE XGllb

C* «MIN' FIND MINIMUM RLJUCEu COST X0119
599 JT ■ J X0120

-62-

b8
DO 7C1

ü.O
J «1 »N

IF (K L- (J) .
OT = „.u
DC 3U3 I =

ME..C)

1

GO
SKIP COLUMNS

TO 7C1
IN BASIS

A(I ,J) If- (A(I »J J ,NE.O»0) DT = DT •»• P(I)
i^i CONTINUE

IF (FEAS) DT = DT > C(J)
IF (A3SC) DT * - ADS(DT)
IF (üT.GE.üü) uO TO 701
bb = DT
UT = J

7ul CONTINUE
C TEST FOR NO PlVuT COLUMN

IF (jT.LE.u) GO TO 203
C TLST FOR ITERATION LIMIT EXCEEDED

IF (ITER.GE.NCUT) GO TO 16Ü
ITER = ITER +1

C* 'JMY' MULTIPLY INVERSE TI MlS A(.,JT)
6^w DC 61^ I« l.M

Y (I) = u.O
61- CONTINUE

LL = ^
COST = C(JT)
DO bob 1= ItM

AljT - A(IiJT)
IF (AIJT.cO.O.) GO
COST = COST ♦ AIJT
DO 606 J » l.M

LL = LL ♦ 1
Y(J) * Y(J) ♦ AIJT

6^6 CONTINUE
GO TO 605

602 LL = LL * M
6^5 CONTINUE

C COMPUTE PIVOT TOLERANCE
Y^IAX = 0,0

YMAX = AMAXK AüS (Y (I)) , YMAX)
62o CONTINUE

TPIV = YMAX » TEXP
RETURN TO INVERSION ROUTINE. IF INVERTING

TO 602
• PE(1)

» L(LL)

C

C
IF (VLR) GO TO 111^

COST TOLERANCE CONTROL
IF (TRIG.AND.Jb.GL.-TPIV) GO TO 203
TRIG ' .FALSE.
IF (BÜ.GE.-TPIV) TRIG » .TRUE.

C* •ROW» SELECT PIVOT ROW
C AMONG EOS. WITH X«C. FIND MAXIMUM Y
C GET MAX POSITIVE Y(I) AMONG REALS.
10JJ IR = ^

AA - u.O
KG = .FALSE.
DO l*bo I =1.M

IF (X(I).NE.0.Q.OR.Y(1).LL.TPIV)
IF (JH(I).EO.O) GO TO lUUU
IF (ICQ) GO TO 1-5 0

i:ub IF (Y(I).LL.AA) GO TO 1050
GO TO 1^7

AMONG ARTIFICIALS. OR. IF NONE,

GO TO 1050

X0121
X0122
X0123
X0124
X0125
X0126
X0127
XQ12Ö
X0129
X0130
X0131
X0132
X0133
X013^
X0135
X0136
XQ137
X0138
X0139
X0140
XOUl
X0142
X01^3
xom
X0145
X0U6
XOl'»?
X0148
XC1^9
XÜ150
X0151
X0152
X0153
X0154
X0155
X0156
X0157
XQ158
X0159
X0160
X0161
X0162
XC.16 3
X0164
X016.S
X0166
X0167
X0168
X0169
X0170
X0171
X0172
X0173
xom
X0175
X0176
X0177
X0178
X0179
X0180

-63-

1(H4 IF (KQ) GO TO 1045
KQ » .TRUE.

1Ü47 AA = Y(I)
IR = I

1050 CONTINUE
IF (IR.NE.O) GO TO 1099

1001 AA « U0E+2Ü
C FIND MIN. PIVOT AMONG POSITIVE EQUATIONS

DO 1010 I = 1,M
IF (Y(I).LL.TPIV.ÜR.X(I).LE.0.0.OR.Y(I)»AA,LE.X(1)) GO TO 1010
AA = X(I)/Y(I)
IR » I

lülu CONTINUE
IF (.NOT.NEG) GO TO 1099

C FIND PIVOT AMONG NEGATIVE EGUATIONSt IN WHICH X/Y IS LESS THAN THE
C MINIMUM X/Y IN THL POSITIVE EQUATIONS. THAT HAS THE LARGEST ABSF(Y)
1016 B6 = - TPIV

DO 1030 I = 1,M
IF (X(I).oc.0..uR.Y(I) .UL.Dö.OR.YCI)»AA.GT.X(I)) GO TO 1030
Bb = Y(1)
IR = I

1030 CONTINUE
C TEST FOR NO PIVUT ROW
1099 IF (IR.LE.u) GO TO 207

C« «PIV PIVOT ON (IR.JT)
C LEAVE TRANSFORMED COLUMN IN Y(I)

9C0 NUMPV = NUMPV ♦ 1
YI = -Y(IR)
Y(IR) = -1 .o
LL « 0

C TRANSFORM INVERSE
DO 9-4 J = 1»M

L = LI. ♦ IR
IF (EIL).NE.0.C1 GO TO 905
LL = LL ■»■ M
GC TO 904

9ob XY = E(LI / YI
PEI J) « PE(J) ♦ COST • XY
E(L) = 0.0
DO 9U6 I = 1»M

LL = LL ♦ 1
E(LL) = E(LL) ♦ XY • Y(I)

9o6 CONTINUE
904 CONTINUE

C TRANSFORM X
XY = X(IR) / YI
DO 90Ö I = 1. M

XNEw = X(I) ♦ XY » Y(I)
IF (VER.OR.XNEW.ÜL. ...OR.Y(1),GT.TPIV.0R.X(I) .LT.O.) GO TO 907
X(I) « Co
GO TO 908

9u7 X(I) « XNE*'
9oö CONTINUE

C RESTORE Y(IR)
Y(IR) = -YI
X(IR) = -XY
IF (VLR) GO TO 1102

221 IA « JH(IR)
IF (IA.GT.O) KB(1A) = 0

213 KB(JT) « IR

X0181
X0182
X0183
X0184
X0185
X0186
X0187
X0188
X0189
X0190
X0191
X0192
X0193
X0194
X0195
X0196
XÜ197
X0198
X0199
X0200
X0201
X0202
X020i\
X02C4
X0205
X0206
X02O7
X0208
X0209
X021Ü
X0211
X0212
X0213
X0214
X0215
X0216
X0217
X021Ö
X0219
X022C
X0221
X0222
X0223
X022^
XÜ225
X0226
X0227
X0228
X0229
X0230
X0231
X0232
XÜ233
X0234
XÜ235
XÜ236
X0237
X0238
X0239
X02'»0

-64-

JH(IR) = JT

IF (NU^PV.Lt.M) Gü TC 1200
C TEST FGK INVERSION ON THIS ITERATION

INVC = INVC >1
IF (lNVC.Ew.NV£R) GO TO 132U
GO TO 1 2 0 v-

C» £N0 OF ALGOR I Tn.V, StT LXIT VALULo
C INFINITE SOLOTIOiN

2^7 < = 2
GC TO 25Ü

C PROdLE.M 13 CYCLING
16o K = 4

GC TO 25^
C FLASIJLC: OS INFEASIJLt SOLUTION

2-3 K = ^
25- IF l.NOT.FEAS) < « IC ♦ 1

DO 13^9 J = l.N
XX = u »U
KöJ = ^oIJ)
IF (KBJ.NL. v) XX = X(KbJ)
KBfJI = LL

1399 CONTINUE
C SET 'ICOUT'
1392 DO 1393 I = 1.7

ICOUT (I) a <u(I)
1393 CONTINUE

RETURN
END

X02M
X02^2
X0243
X0244
X02'*i)
X0246
X0247
X024Ö
X0249
XÜ230
X0251
X02i2
X0253
X02^4
X0255
X0256
X0257
X0258
XÜ259
X0260
X0261
X0262
X0263
X0264
X0265
X0266
X0267
X0?6fl

-65-

c

c

c
c

2w
C blG

1J5

2ÜU

26u

100

^5-

lib
6 v..

ELEMENT

oO TO 1-3

AjS(AVAX) .GL.A3r(A(J.K))) GO TO ICO

GO TO 75C

PJT PIVOT ELEMENT ON DIAGONAL
GO TO 260

KATKIX INVERSION AITM ACCJKPANrlNG SOLUTION
SUdROUTlNE MATINV(AtN»BtMf I.NAtlNd.lP.lSlNG)

DIMENSION B(1).INA(1)iINB(1) i IP(1)
LOGICAL IP
DIMENSION A(65,65)

INITIALIZATION
DC 2ü J « l.N

1P(J) = .FALSE.
CONTINUE
LOOP ON 1
DO bib I = l.N

AMAX s D.v
SEARCH FOR PIVOT

DO 105 J s l.N
IF (IP(J))
DO 100 K. = l.N

IF (IP(KI .OR
I ROW = J
ICOL = K
AMAX = A(J,<)

CONTINUE
CONTINUE
IF (AMAX.tO.0.0)
IP(ICOL) - .TRUE.

INTERCHANGE ROWS TO
r" (IROW.LU.ICOL)

^0 200 L « l.N
SWAP a A(IROW.L)
A« IROW.L) = A(ICOL.L)
A(ICOL.L) » SWAP

CONTINUE
IF (M.EO.O) GO TO 260
bwAP = B(IROw)
b(IROW) = B(ICOL)
b(ICOL) = SWAP
1NA(I) = IROW
INb(I) = IC^L

DIVIDE PIVCT ROW bY PIVOT ELEMENT
A(I COL.I COL) = 1.0
DO 3 5.- L = l.N

A(ICOL.L) « A(ICCL.L) / AMAX
CONTINUE
IF (M.NE.-) Li (I COL)

COMPLETE Tu: PIVOT
DC 550 LL = l.N

IF (LL.b-.lCCD oO
S..AP = A(LL.ICOL)
A(LL.ICOL) = „.w

^v. ^3- L s 1 ,N
A(LL »L) = A(LL.L)

CUNTINUL

IF (M.\E,„) BILL) ^ :: < LL) - ;M ic;
CONTINUE

CONTINUE
IF (:•'. L T . „)
INTERCHANGE
DC 71- 1 =

iF LINEAR EQUATIONS

9(ICOL) / A"AX

5 50

A(ICwL.L) • S..AP

, .■. A P

RETURN
C-LU'/NS
1 .N

MO0 01
/.or. 02
i-.c:o3
KQQOk
KOOO'J

.••'.uCOö
MOO 0 7
MO 0 06
M000 9
M 0 010
MOO 11
MOC12
MOO 13
MOO 14
MOO 15
MC 016
M0C17
MOCia
M0019
M0020
MOO 21
MOC22
M002 3
M0024
M0025
M0026
M0027
M002ä
M0029
M0030
M0031
M0032
M0033
M003*
M0035
M0036
M0037
MC03Ö
M003'
MOOAO
MOG^l
M0042
MCC43
M00<»'»
MÜ045
M00<»6
M0047
MCO^o
M0049
.■iOC50
f.Qdbl
MO 0 52
M0053
M0C54
■1v05^
MCC56
M0C57
MOO 5b
MOC59

-66-

L = N ♦ 1 - I
IF (1NA(L).EQ.INBIL))
IRCU = I\A(L)
ICCL = INb(L)
DO 705 K. = UN

SAAP » AU. IROw)
A(Kt I RC*;) = A(< t ICCL)
A(KtlCOL) = SWAP

7-5 CONTINUE
7lo CONTINUE
T*j RETURN
blNüüLARITY FLAG
75- ISING = 1 + N - I

GO TO 603
END

bU TO 710

M006C
NO 0 61
M 0 0 62
MCC63
y.0C6^
MCC65
M0066
M0067
M006fa
MG069
MOO 70
MOO 71
Mw072
M0073
M007<»

-67-

Appendix B

MATRIX NOTATION AND FURTHER PROOFS
i ■ iii.

The derivations in the preceding sections would be

facilitated by the use of matrix notation rather than sub-

scripted variables. We introduce the following symbols to

correspond to the subscripted variables used in Sec. 3.

Subscripted Variable Matrix Size of Matrix

MxN

Mxl

Nxl

Nxl

Nxl

Mxl

MxM

Nxl

The single-column matrices may also be thought of as vectors

We use here the convention that an operator applied to a

matrix means that the operator operates on each element of

the matrix. For example, log Y is the Nxl matrix consist-

ing of

aiJ
A

b B

Xj Y

d D

c. C

TT. it

ru R

x. X

-68-

log y.

log y.

log y
N

\

T .
The superscript indicates the transposition of a matrix.

We assume that the elementary results of matrix theory are

known. For example, it is known that the inverse of an

invertable symmetric matrix is symmetric. The square

diagonal matrix whose diagonal is one of the vectors pre-

viously defined will be denoted by the previously defined

vector in elongated type; that is,

0 = diag (D)

and

Y = diag (Y)

Equations (3.2) and (3.7) in matrix notation are

AX = B (B.l)

X = Y(D"1ATtr -D^C - log Y) (B.2)

-69-

To see the ease of matrix notation, we may substitute (B.2)

into (B.l) to get

AYD'Vir - B + AYCO^C + log Y) . (B.3)

By letting

R - AYD'V (B.4)

and

.-1 S - B + AYCD^C + log Y) , (B.5)

we see that

RTT = S (B.6)

corresponds to (3.10).

In Sec. 4, we evaluated

N02d. l^f (B.7)

70-

but we did not give the details of the computation. The

algebra of this evaluation is very difficult unless matrix

algebra is used. In matrix notation, (B.7) is 9 DY 0,

where 9 = X-Y. From (B.2) we have

Hence,

6 = YCD"^ -D^C - log Y) - Y . (B.8)

9TDY"19 = (/AD"1 - c7!)"1 - log Y^YDY"^ - Y^Y"^

= TrTA(D'1YDY'1)9 - (cV1 + log Y^DYY"1© - YVV

= 7TTA9 - (CT0"1 + log Yr)D9 - Dr9 . (B.9)

Since AX = B, A9 = AX-AY = B-AY. Also, in the chemical

equilibrium formulation.

n N p / \

j=l j=n+l k=l^j€<k^ /

= 0

and

-71-

(CV1 + log YT)D9

n N

= ^ (Cj + log y)0 + ^ log XjC-e^

j=l j-n+1

k=l \jc(k)

+ log yj) - ek log sk

I (^9.(c. +logy. - logSk)

k=l \j€(k)

Hence,

N n2, m / n \ n

I^= Iffibi- Iaijyj - I^^j^^V (B-l0)

j-1 J 1=1 \ j»l / j-1

in the context of the chemical equilibrium problem used in

Sec. 4.

Next we wish to show that

-72-

N92d.
-LJL 2 o I ̂

as stated in (4.14). First, we prove

Lemma 1: Let y1,y?,...,y be positive numbers and let

0,.0o.....9 be any real numbers. Let 12 r J

G= I
r e2 (VJ

yi r

j-l J T. y.
j-1 J

Then,

i) G ? 0

ii) G = 0 if and only if

e, «o 0
1 2 r

yl y2 ^r

Proof: Let or. = O./y., j = l,2,...,r. Then,

I ^ o.y. I r
2

G r

j-i J

-73-

r \-l

0=1
Iyj)(lVj)-(l0jyj

L\j-1 / \j-l / \j-l

r \ -1

<j=l

r / r

i-1 \j-l

-1

1^
0=1

r /i

I (I Hvj
Li=l \j = l

la.a.y.y. + a.y.y.

Iyj) (Iyiyj(aj ■0fi)2)
j=l / \j<i /

^ 0 ,

which is result i). The proof is completed by noting that

G = 0 if and only if o. = o. for all i and j; this proves

ii).

Now we can prove

Theorem 1: In the chemical equilibrium problem

i)

N92d.

L yi j-i J

0

ii)

N92d.

L y>
j-i J

= 0 if and only if there exist

-74-

numbers or, ,a0.. . . ,or such that 12 p

a) 9. - orr. ,7. i^n

b) 9. = a. S. . j>n
J J-n j-n

Proof: The proof follows by noting that for i > n

9. = V 9.
i L 3

jc i-nN

Then,

N 92d. " 92 P 9^
Y i i = Y -i. yJs+n
L y. L y. L s
j=l J j=l J k=l

k=l \jc (k) J jc^ J

by lemma 1. Furthermore, by lemma 1, if the equality holds,

then for each k there is a number o-, such that 9, = a, y. if

j c k. This, noting that b) follows from the fact that

-75-

9. * y e' for i>n >
jca-n)

completes the proof of the theorem.

Our final result is

Theorem 2: In the chemical equilibrium problem, with

(y-i »YOJ . . • .y) feasible and 0. ,9»,....0 calculated as in w 1 2 yn 12 n

(4.7)

n

i) £ 0.(0. + log y.) ^ 0

i-i

n

ii) V 9.(c. + log y.) - 0 if and only if

j-l

(y1,y2»■••.yn) ls optimal.

Proof: i) follows from Theorem 1, (B.10), and the fact

that (y1,y2,....y) is feasible.

To prove ii), we assume that

n
A

£ 9.(c. + log y.) - 0 .

J-l

Then,

-76-

N92d.

L yi
o ,

and 0. is as in ii) of Theorem 1. Combining b) of Theorem

1 and (4.12) we have

ök+n = ViU = akSk

or

ök = ^m+k

Next, we combine a) of Theorem 1 with (4.7) to get

9. - y.
J J

m

I
Li=l

ff! a. . - c. - log y. + TT! . 1.
j 6 ^j [j]-hn

J Lj] J1 Lj +tn

or

m

I
i=l

nla.. - c. - log y. = 0

-77-

Thts last result is the optlmality condition for

(yi.y2»'''»y) as given by (1.4), and this demonstrates

the forward Implication of ii). The converse follows from

the fact that optimality implies that the objective function

cannot be decreased.

-79-

REFERENCES

1. Shapiro, N. Z., and L. S. Shapley, Mass Action Laws
and the Glbbs Free Energy Function, The RAND Corpora-
tion, RM-3935-1-PR, September 1964.

2. Dantzlg, G. B., Linear Programming and Extensions. The
RAND Corporation, R-366-PR, August 1963. Also pub-
lished by Princeton University Press, Princeton,
New Jersey, 1963.

3. Kaplan, Wilfred, Advanced Calculus. Addison-Wesley
Press, Inc., Cambridge, Massachusetts, 1952.

4. Clasen, R. J., The Linear-Logarithmic Programming
Problem. The RAND Ccvporation, RM-3707-PR, June
1963.

5. White, W. B., S. M. Johnson, and G. B. Dantzlg,
Chemical Equilibrium in Complex Mixtures, The RAND
Corporation, P-1059, October 8, 1957. Also pub-
lished in J. Chem. Phys., 28 (1958) 751-755.

6. International Business Machines Corporation, "IBM
7040/7044 Operating System, FORTRAN IV Language,"
IBM Systems Reference Library, Form C28-6329,
Poughkeepsie, New York, 1963.

7. Dantzig, G. B., and J. C. DeHaven, "On the Reduction
of Certain Multiplicative Chemical Equilibrium Systems
to Mathematically Equivalent Additive Systems,"
J. Chem. Phys., 36 (1962) 2620-2627.

8. Shapiro, N. Z., A Generalized Technique for Eliminating
Species in Complex Chemical Equilibrium Calculations,
The RAND Corporation, RM-4205-PR, August 1964.

9. Dantzig, G. B., J. C. DeHaven, I. Cooper, S. M. Johnson,
E. C. DeLand, H. E. Kanter, and C. F. Sams, "A Mathe-
matical Model of the Human External Respiratory
System," Perspectives in Biol. &Med.. 4 (1961)
324-376.

10. Maloney, J. V., Jr., M.D., J. C. DeHaven, E. C. DeLand,
and G. B. Bradham, M.D., Analysis of Chemical Con-
stituents of Blood by Digital Computer. The RAND
Corporation, RM-3541-PR. April 1963.

-so-

11. DeHaven, J. C., and E. C. DeLand, Reactions of Hemoglobin
and Steady States in the Human Respiratory System: An
Investigation Using Mathematical Models and an Elec-
tronic Computer, The RAND Corporation, RM-3212-PR,
December 1962.

12. DeHaven, J. C., E. C. DeLand, N. S. Assail, and W. Manson,
Physiochemical Characteristics of Placental Transfer,
The RAND Corporation, P-2565, March 1962.

13. Warga, J., "A Convergent Procedure for Solving the
Thermo-Chemical Equilibrium Problem," J. Soc. Indust.
Appl. Math., 11 (1963) 594-606.

