in the second se

COTY 2 1 3 R HARPION 3.00 MIGRUMCHE 7.0:75 88F

THE NUMERICAL SOLUTION OF THE CHEMICAL EQUILIBRIUM PROBLEM

R. J. Clasen

PREPARED FOR: UNITED STATES AIR FORCE PROJECT RAND

The RHIID Corporation MONICA + CALIFORN

Ruisnuvis & J

MEMORANDUM RM-4345-PR JANUARY 1965

THE NUMERICAL SOLUTION OF THE CHEMICAL EQUILIBRIUM PROBLEM R. J. Clasen

The RAND Corporation

This research is sponsored by the United States Air Force under Project RAND-Contract No. AF 19(638)-700 monitored by the Directorate of Development Plans, Deputy Chief of Staff, Research and Development, Hq USAF. Views or conclusions contained in this Memorandum should not be interpreted as representing the official opinion or policy of the United States Air Force.

DDC AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report from the Defense Documentation Center (DDC).

Approved Int. OTS referse

PREFACE

This Memorandum is one in a continuing series of RAND publications dealing with theoretical computational questions arising from the RAND program of research in biology and physiology. The Memorandum contributes to our ability to apply computer technology to the analysis of complex chemical systems by considering the "chemical equilibrium problem," the problem of determining the distribution of chemical species that minimizes the free energy of a system while conserving the mass of each of the chemical elements.

Solutions to the chemical equilibrium problem published up to this time [4,5] apply to those problems for which an estimate of the solution exists. This Memorandum considers a problem for which no estimated solution exists and solves that problem with the maximum precision now available.

The mathematical aspects of this Memorandum should also be of interest in other fields where computational analyses of complex chemical systems are under consideration, e.g., in studies of rocket propulsion systems, planetary atmospheres, re-entry problems, etc.

-iii-

SUMMARY

In physical chemistry, the "chemical equilibrium problem" is the problem of determining the distribution of chemical species that minimizes the free energy of a system while conserving the mass of each of the chemical elements. The reactions occurring within the chemical system may be quite complex. However, in a great number of cases, the mathematical statement of the problem can be simplified to a particular mathematical form [7,8] involving the minimization of a nonlinear objective function over a set of linear constraints.

This Memorandum presents the numerical solution of the chemical equilibrium problem by describing methods for starting the solution when an initial estimate is not available, and for improving an initial estimate to make it feasible. It presents a first-order method and a second-order method for solving the chemical equilibrium problem in the context of the linear-logarithmic programming problem [4] and provides convergence criteria for the majority of problems of this type that are likely to be attempted.

-v-

FOREWORD

In deciding between the languages of mathematics and physical chemistry, we have chosen in this Memorandum to use that of mathematics. The disadvantage of this choice is that the physical chemist may experience some difficulty in immediately identifying certain concepts. The advantage is that mathematical language divorces the methods from the physical assumptions involved in constructing a mathematical model of a physical system.^{*} The mathematical methods are, hence, free to transcend their specific chemical applications.

The methods given here do not solve every problem that is specified in the given mathematical form. The solution of a problem in which some phase vanishes (a degenerate problem) requires further work. Some work has been done on particular degenerate systems [13], but the accurate numerical solution of a large general system of this type has yet to be accomplished. Until recently, a skilled physical chemist could intuitively eliminate the degeneracies of his model and

^{*} The reader is referred to other works for the procedure of constructing the mathematical models of biochemical systems [9-12].

obviate the need for solving a degenerate system. But, as problems grow, eliminating degeneracy becomes increasingly difficult. Frequently, the point at which the problem becomes too large for the physical chemist to decide whether or not to include a phase coincides with the point at which the problem becomes numerically unwieldy. Hopefully, the future will eliminate these difficulties.

Statements about convergence and convergence tests exist, unless otherwise indicated, in the context of finiteaccuracy numerics. Statements of this kind do not mean, in the absence of qualification, that no problem exists nor that no machine would serve as a counter example. Rather they are simply descriptions of what was found to occur in actual practice.

No attempt has been made to describe those methods which were tried and found wanting. The methods presented are those which are best for the largest number of cases.

Finally, it should be pointed out that although computing time was a factor, it was considered secondary to accuracy of results.

-viii-

ACKNOWLEDGMENTS.

The author wishes to thank J. C. DeHaven, E. C. DeLand, F. R. Gilmore, and N. Z. Shapiro for their many constructive comments and suggestions.

CONTENTS

PREFACE	••••••••••••••••••	iii
SUMMARY	•••••••••••••••••••••••••••••••••••••••	v
FOREWORI	D	vii
ACKNOWL	EDGMENTS	ix
Section 1.	INTRODUCTION	1
2.	THE INITIAL SOLUTION The Projection Method The Linear Programming Method	5 5 9
3.	THE LINEAR-LOGARITHMIC PROGRAMMING PROBLEM, FIRST-ORDER METHOD	15
4.	THE FIRST-ORDER METHOD FOR SOLVING THE CHEMICAL EQUILIBRIUM PROBLEM	21
5.	THE LINEAR-LOGARITHMIC PROGRAMMING PROBLEM, SECOND-ORDER METHOD	28
6.	THE SECOND-ORDER CHEMICAL EQUILIBRIUM ALGORITHM	33
7.	SUMMARY OF THE COMPUTATION PROCEDURE	35
Appendix		
Α.	A FORTRAN-IV PROGRAM FOR SOLVING THE CHEMICAL EQUILIBRIUM PROBLEM General Description Subroutines Listing Calling Sequence for Simplex Subroutine	37 37 41 45 56
Β.	MATRIX NOTATION AND FURTHER PROOFS	67
REFEREN	CES	79

1. INTRODUCTION

For the purposes of this Memorandum, the chemical equilibrium problem is merely a name we use for a particular mathematical programming problem, i.e., the problem of minimizing a particular nonlinear function $F(x_1, x_2, ..., x_n)$, defined below, while satisfying the linear restraints or constraints

$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i} \qquad i=1,2,3,...,m \qquad (1.1)$$

with $x_j \ge 0$ for j=1,2,...,n and a_{ij} , b_i given constants. Assuming that the equations of (1.1) are linearly independent, then in order to have a non-trivial problem it can be assumed that m<n. The variables $x_1, x_2, ..., x_n$ can be considered <u>components</u> of a vector $(x_1, x_2, ..., x_n)$. Solving the chemical equilibrium problem then is the problem of determining this vector. The variable x_j will be referred to as the "jth component"; also the numerical value of x_j may be referred to as the "component" rather than using the perhaps linguistically correct but cumbersome term "component value." The components are partitioned into p non-empty subsets called <u>compartments</u>. Let us denote these compartments by $\langle 1 \rangle, \langle 2 \rangle, \ldots, \langle p \rangle$. Then if the jth component is in the kth compartment, we will say $j \in \langle k \rangle$, where each component is in exactly one compartment. The number of the compartment that the jth component is in is denoted by [j]. Hence $j \in \langle k \rangle$ implies [j] = k, and conversely. Each compartment has associated with it a sum defined by

$$S_{k} = \sum_{j \in \langle k \rangle} x_{j} . \qquad (1.2)$$

The <u>component fraction</u> \hat{x}_{j} is defined by $\hat{x}_{j} = \frac{x_{j}}{S_{j}}$ whenever $S_{j} \ge 0$.

The objective function to be minimized over (1.1)

$$F(x_{1}, x_{2}, ..., x_{n}) = \sum_{j=1}^{n} x_{j}(c_{j} + \log \hat{x}_{j})$$
(1.3)

where c_1, c_2, \ldots, c_n are given constants, called <u>objective</u> constants.

When an x_j is zero, $\log \hat{x}_j$ is undefined; but we define 0 log 0 to equal 0 so that we may evaluate F when some components are zero. A <u>feasible solution</u> to the chemical equilibrium problem is defined to be any set of <u>non-negative</u> components that satisfies (1.1). The problem is said to be <u>feasible</u> if it has feasible solutions. If no feasible solution is arbitrarily large in any component, the feasible problem is said to be <u>bounded feasible</u>; all practical problems with which one might have occasion to deal are bounded feasible.

A <u>solution</u> or <u>optimal solution</u> to a bounded feasible problem is any feasible solution in which $F(x_1, ..., x_n)$ attains the minimum value over all feasible solutions. A problem which has optimal solutions in which some component is zero is called <u>degenerate</u>, and a bounded feasible problem in which the components in any optimal solution are all strictly positive is called a <u>non-degenerate</u> problem. It has been shown [1, Theorem 12.1] that a non-degenerate problem has exactly one optimal solution. Hence, we may speak of <u>the</u> solution to the problem. Furthermore, it has also been shown^{*} for the non-degenerate problem that the minimization of F is equivalent to the existence of numbers $\pi_1, \pi_2, ..., \pi_m$, called Lagrange multipliers, which satisfy:

* Ref. 1, p. 18.

$$\sum_{i=1}^{n} \pi_{i} a_{ij} = c_{j} + \log \hat{x}_{j} . \qquad j=1,2,3,\ldots,n \quad (1.4)$$

In the following sections we derive conditions, analogous to (1.4), which are useful in solving the problem. In Sec. 2 we are interested in finding a solution to (1.1) with all $x_j > 0$. A set of x_j which satisfies these conditions is called a <u>positive feasible</u> solution. If (1.1) is satisfied with $x_j \ge 0$, we have called such a result a feasible solution. The theory of linear programming gives us methods of finding feasible solutions to problems with linear restraints. In Sec. 2, we use a linear programming technique to find a positive feasible solution. In Sec. 4 we show how to modify the initial positive feasible solution to get the solution to the problem.

2. THE INITIAL SOLUTION

The algorithms presented in the following sections require an initial positive feasible solution in order that the procedure for solving the problem can be initiated. Frequently, an individual with a problem to solve will be able to give a rather accurate estimate of its optimal solution. This estimate may be the exact solution of another problem which differs from the one being considered in relatively minor ways.

THE PROJECTION METHOD

Let us suppose that such is the case, and let us denote the estimate of the components by y_1, y_2, \ldots, y_n . These values, substituting y_j for x_j in Eq. (1.1), will not generally satisfy (1.1), being somewhat in error. Let us denote these errors by g_1, g_2, \ldots, g_m ; that is, let

$$g_i = b_i - \sum_{j=1}^{n} a_{ij} y_j$$
. $i=1,2,...,m$ (2.1)

Then, we wish to find corrections to y such that, denoting the corrections by θ_i , we have

$$b_{i} - \sum_{j=1}^{n} a_{ij}(y_{j} + \theta_{j}) = 0 \quad i=1,2,...,m$$

$$g_{i} = \sum_{j=1}^{n} a_{ij} \theta_{j}$$
. $i=1,2,...,m$ (2.2)

The θ_j must also be chosen such that $y_j + \theta_j > 0$, for all j. We cannot guarantee this condition, but we can attempt to choose small values for θ_j . One way to do this is to minimize

$$\sum_{j=1}^{n} w_{j} \theta_{j}^{2}$$

subject to (2.2), where w_{j} is the "weight" or relative importance of minimizing θ_{j} . This reduces to the problem of finding Lagrange multipliers $\pi_{1}, \pi_{2}, \ldots, \pi_{m}$, such that with

$$L = \frac{1}{2} \sum_{j=1}^{n} w_{j} \theta_{j}^{2} - \sum_{i=1}^{m} \pi_{i} \left(\sum_{j=1}^{n} a_{ij} \theta_{j} - g_{i} \right)$$
(2.3)

we have

$$\frac{\partial L}{\partial \theta_{j}} = 0$$
. j=1,2,...,n (2.4)

or

Equation (2.4) becomes

$$w_{j}\theta_{j} = \sum_{i=1}^{m} a_{ij}\pi_{i}$$
 j=1,2,...,n (2.5)

and substituting (2.5) into (2.2) we have

$$g_{i} = \sum_{\ell=1}^{m} \left[\pi_{\ell} \left(\sum_{j=1}^{n} \frac{a_{\ell j} a_{i j}}{w_{j}} \right) \right]. \quad i=1,2,\ldots,m \quad (2.6)$$

The terms

$$\sum_{j=1}^{n} \frac{a_{\ell j}a_{ij}}{w_{j}}$$

can be immediately evaluated; let us denote these terms by

$$q_{\ell i} = \sum_{j=1}^{n} \frac{a_{\ell j} a_{i j}}{w_{j}}$$
 (2.7)

Note that $q_{\ell,i} = q_{i\ell}$. Then, (2.6) becomes

$$g_{i} = \sum_{\ell=1}^{m} q_{\ell i} \pi_{\ell}$$
. $i=1,2,...,m$ (2.8)

Equation (2.8) is a set of m simultaneous equations in the m unknowns, $\pi_1, \pi_2, \ldots, \pi_m$. These equations may be solved for $\pi_1, \pi_2, \ldots, \pi_m$, and then these values may be substituted in (2.5) to get $\theta_1, \theta_2, \ldots, \theta_n$. There remains the question of choosing values for the weighting factors w_j . In tests of this method, it has been found that using

$$w_j = \frac{1}{y_j}$$

yields satisfactory results. The choice of the weighting factors depends, to some extent, on the available computers. Using these weighting factors, we can summarize the computation of θ_i in the following three equations:

$$q_{i} = \sum_{j=1}^{n} a_{ij} a_{jj} y_{j} \qquad i=1,2,...,m \qquad (2.9)$$

$$\sum_{\ell=1}^{m} q_{\ell} i^{\pi} i^{\pi} = b_{i} - \sum_{j=1}^{m} a_{ij} y_{j} \qquad i=1,2,\ldots,m \qquad (2.10)$$

$$\Theta_{j} = y_{j} \sum_{i=1}^{m} a_{ij} \pi_{i} \qquad j=1,2,...,n \qquad (2.11)$$

where

$$x_j = y_j + \theta_j$$
. $j=1,2,...,n$ (2.12)

The x_j from (2.12) will satisfy (1.1). However, the x_j need not all be strictly positive. If any x_j is zero or negative, this method of obtaining the initial solution, which we shall call the <u>projection</u> method, has failed. If the projection method fails, or if no initial estimate is provided, then a linear programming method may be used.

THE LINEAR PROGRAMMING METHOD

The terminology used in linear programming is similar to the terminology used above in describing the chemical equilibrium problem. The statement of a linear programming problem includes a set of linear restraints

$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i}$$
 i=1,2,...,m (2.13)

together with a set of constants $C_1, C_2, C_3, \ldots, C_n$, called <u>costs</u>. A <u>feasible</u> solution to a linear programming problem is any set of <u>non-negative</u> x_j such that (2.13) is satisfied. The costs are used to form the following expression, L, which is called the objective function

$$L = \sum_{j=1}^{n} C_{j} x_{j} .$$
 (2.14)

For every set of feasible x_i , we can evaluate L. The set of feasible x, for which L has the minimum value that it can have with any set of feasible x_{i} , is called a <u>solution</u> of the linear programming problem. A problem which has sets of feasible x, is called a <u>feasible</u> problem, and a problem in which there are no sets of feasible x_i is called an infeasible problem. An infeasible problem has no solutions, while a feasible problem has at least one solution. In this discussion, we will not be concerned as to whether a problem has mon than one solution: we will only be concerned with finding a solution to the problem. Since the means of finding a solution to a linear programming problem has been the subject of many papers and books, we will not give an actual method of solving the linear programming problem here. The reader may refer to Dantzig [2] for a complete discussion of the problem.

The problem of finding a feasible solution to a linear programming problem is itself a linear programming problem--that is, it involves finding a solution to the problem with all C_j equal to zero. With all $C_j = 0$, L in (2.14) is zero for any set of feasible x_j ; hence, L is at its minimum value for any set of feasible x_j . Since L is at its minimum value for any feasible set of x_j , any feasible set of x_j is, by the above definition, a solution to the linear programming problem.

However, we must not only find a feasible solution to the linear programming problem, we must also find a <u>positive</u> feasible solution to the problem. In order to do this, we let

$$x_{j} = y_{j} + y_{n+1}$$
. $j=1,2,...,n$ (2.15)

If we can find non-negative values of $y_1, y_2, \ldots, y_{n+1}$ which satisfy

$$\sum_{j=1}^{n} a_{ij}(y_j + y_{n+1}) = b_i \qquad i=1,2,...,m \qquad (2.16)$$

then x_j , as defined by (2.15), will be a feasible solution. If we can somehow assure that y_{n+1} is <u>positive</u>, then <u>all</u> x_j will be positive. Rewriting (2.16), we have

$$\sum_{j=1}^{n} a_{ij} y_{j} + \left(\sum_{j=1}^{n} a_{ij}\right) y_{n+1} = b_{i} . \quad i=1,2,\ldots,m \quad (2.17)$$

If we now specify $C_1, C_2, \ldots, C_{n+1}$, we have a linear programming problem in n+1 unknowns. In order to guarantee that y_{n+1} is positive, if it is possible for it to be positive, we can <u>maximize</u> y_{n+1} . It is easy to see that we can maximize y_{n+1} by setting

$$L = -y_{n+1}$$
(2.18)

which is equivalent to setting $C_1 = C_2 = C_3 = \dots = C_n = 0$, $C_{n+1} = -1$. If the solution to the resulting linear programming problem is feasible and $y_{n+1} > 0$, then we have, by (2.15), a positive feasible solution to the analogous chemical equilibrium problem (1.1). If the linear programming problem is feasible but $y_{n+1} = 0$, then the analogous chemical equilibrium problem is degenerate, since there is no strictly positive solution to the problem. However, this is a rather trivial kind of degeneracy, and its occurrence usually indicates that a mistake was made in setting up the problem. Hence, this linear programming method gives us a way of finding a positive feasible solution to the chemical equilibrium problem if the chemical equilibrium problem is non-degenerate.

The positive feasible solution that we obtain by this method will generally not resemble the final solution of the chemical equilibrium problem. The initial positive feasible solution can be improved by the following technique. Define b_{m+1} to be some multiple, between zero and one, of the value of y_{n+1} that was obtained above. Then, adjoin to the linear restraints (2.17) one more restraint of the form $y_{n+1} = b_{m+1}$. New, solve the linear programming problem with these restraints and with $C_1 = c_1$, $C_2 = c_2$, ..., $C_n = c_n$, $C_{n+1} = 0$ (recall that the lower-case c's here refer to the c's in the chemical equilibrium problem (1.3)). The solution to this linear programming problem will give a set of components more nearly resembling the solution to the chemical equilibrium problem than did the components calculated from Eqs. (2.17) and (2.18). This new solution, in turn, may be improved by solving another linear programming problem (the details of which can be seen in SUBROUTINE LP in Appendix A) and averaging the new solution with the old solution.

In order to solve an elaborate chemical equilibrium problem it is not sufficient to simply use a method which we can prove converges to the correct solution. Proofs of convergence generally assume infinite computational accuracy, but since we are usually limited in practice to

about eight significant digits, the numerical solution will not always converge. However, it has been observed that the closer we can get to the solution by the initial solution methods described above, the greater will be the probability that the numerical procedure will converge. Furthermore, not only will the probability of convergence be greater, but the number of iterations to get to the solution will be fewer, and hence--when an improved initial solution is used--the computation time will be shorter. Unfortunately, the mathematical methods that are available for analyzing convergence of iterative processes do not, in the case of the chemical equilibrium problem, enable us to prove convergence when we are limited to finite mathematical accuracy. Only experience with a particular method will tell us whether it is a useful numerical procedure to use.

In the next section we consider a somewhat more general problem than the chemical equilibrium problem. This problem is considered first because the numerical results take on an especially simple form when the additional generality is admitted.

-14-

3. THE LINEAR-LOGARITHMIC PROGRAMMING PROBLEM, FIRST-ORDER METHOD

In this section we consider the problem of minimizing

$$F(x_1, x_2, ..., x_N) = \sum_{j=1}^{N} x_j (c_j + d_j \log x_j)$$
(3.1)

while satisfying the linear restraints

$$\sum_{j=1}^{N} a_{ij} x_{j} = b_{i} . \qquad i=1,2,3,...,M \qquad (3.2)$$

The symbols a_{ij} , b_i , c_j , and d_j denote constants, and x_1, x_2, \ldots, x_N are the unknowns that we seek. We restrict the problem to the case that $d_j \neq 0$ for $j = 1, 2, 3, \ldots, N$. We note that if $x_j < 0$, the term in (3.1), $x_j(c_j + d_j \log x_j)$, is undefined, whereas if $x_j > 0$ this term is defined. If $x_j = 0$ we define $x_j(c_j + d_j \log x_j) = 0$, since this expression approaches zero as $x_j > 0$ approaches zero. From this discussion, we see that, in order for a solution of Eqs. (3.1) and (3.2) to be defined, we must assume that $x_j \ge 0$ for $j = 1, 2, 3, \ldots, N$. We may attempt to solve this problem using Lagrange multipliers. * In this method we let

$$L = F(x_{1}, x_{2}, x_{3}, ..., x_{N}) - \sum_{i=1}^{M} \left[\pi_{i} \left(\sum_{j=1}^{N} a_{ij} x_{j} - b_{i} \right) \right]$$

and then set

$$\frac{\partial \mathbf{L}}{\partial \mathbf{x}_{i}} = 0$$

for j = 1,2,3,...,N. Performing the partial differentiation, we get

$$c_{j} + d_{j} \log x_{j} + d_{j} - \sum_{i=1}^{M} \pi_{i} a_{ij} = 0$$
, (3.3)
 $j=1,2,3,...,N$

or, when rearranged,

$$\log x_{j} = d_{j}^{-1} \left[\sum_{i=1}^{M} \pi_{i} a_{ij} - c_{j} - d_{j} \right].$$

$$j=1,2,3,...,N$$
(3.4)

* See Kaplan, Ref. 3, p. 128, or Dantzig, Ref. 2, p. 140. Exponentiating both sides of (3.4), we get

$$x_{j} = \exp \left[d_{j}^{-1} \sum_{i=1}^{M} \pi_{i} a_{ij} - d_{j}^{-1} c_{j} - 1 \right]. \qquad (3.5)$$

$$j=1,2,3,\ldots,N$$

Note that for (3.5) to be a solution to the problem, we must have all $x_j > 0$. We assume, in the remainder of this section, that the solution does have all $x_j > 0$. Then, the problem reduces to the problem of determining the M π_i so that the x_j from (3.5) satisfy (3.2) Equivalently, the M + N equations (3.2) and (3.5) must be satisfied simultaneously by the proper choice of the M + N unknowns, $\pi_1, \pi_2, \ldots, \pi_M, x_1, x_2, \ldots, x_N$. We now consider two methods of approximating the solution.

In the first method, we suppose that we have an estimate of the x_j which may or may not satisfy (3.2). We denote this estimate by y_j , and, in this method, solve Eqs. (3.2) and (3.4) simultaneously by making a linear approximation to log x_j . Since we have the estimate that x_j is near y_j , we note that the first-order Taylor expansion of log x_j about y_j is

$$\log x_{j} = \log y_{j} + \frac{x_{j} - y_{j}}{y_{j}} + (higher-order terms) . (3.6)$$

Dropping the higher-order terms, and substituting (3.6) into (3.4) and solving for x_j , we have

$$x_{j} = y_{j} \begin{bmatrix} M \\ d_{j}^{-1} \sum_{i=1}^{M} \pi_{i} a_{ij} - d_{j}^{-1} c_{j} - \log y_{j} \\ i = 1 \end{bmatrix}.$$
 (3.7)

Now, if we substitute these x_j into (3.2), we get

$$\sum_{\ell=1}^{M} \left(\sum_{j=1}^{N} d_{j}^{-1} a_{ij} a_{\ell j} y_{j} \right) \pi_{\ell} = b_{i} + \sum_{j=1}^{N} a_{ij} y_{j} (\log y_{j} + d_{j}^{-1} c_{j})$$

i=1,2,3,...,M

Denoting

$$r_{i\ell} = \sum_{j=1}^{N} d_{j}^{-1} a_{ij} a_{\ell j} y_{j} \qquad \begin{array}{c} \ell = 1, 2, 3, \dots, M \\ i = 1, 2, 3, \dots, M \end{array} (3.8)$$

and

$$\mathbf{s_{i}} = \mathbf{b_{i}} + \sum_{j=1}^{N} \mathbf{a_{ij}} \mathbf{y_{j}} (\log \mathbf{y_{j}} + \mathbf{d_{j}^{-1}} \mathbf{c_{j}})$$
(3.9)
$$\mathbf{i=1,2,3,\dots,M}$$

we have

$$\sum_{\ell=1}^{M} r_{i\ell} \pi_{\ell} = s_{i} \qquad i=1,2,3,\ldots,M \qquad (3.10)$$

Equation (3.10) is a set of simultaneous equations which can be solved for $\pi_1, \pi_2, \ldots, \pi_M$.

With the above results, we can now define the iterative process for the first method. At each iteration we have a set of values for x_1, x_2, \ldots, x_N . At the beginning of the iteration these values are called y_1, y_2, \ldots, y_N , and at the end of the iteration the values are x_1, x_2, \ldots, x_N . If

is small for each j, then we say we have converged. The magnitude of "small" depends on the nature of the problem. If

is not small for some j, then we have not converged and the iteration must be repeated. One iteration consists of the following three steps:

- Evaluate terms in Eqs. (3.8) and (3.9), these terms depending on y₁,y₂,...,y_N;
- 2) Solve Eq. (3.10) for $\pi_1, \pi_2, \ldots, \pi_M$;
- 3) Substitute $\pi_1, \pi_2, ..., \pi_M$ into (3.7) to get $x_1, x_2, ..., x_N$.

For this problem, in this generality, we can say nothing about whether this iterative process converges. In the next section we will show that the chemical equilibrium problem is a special case of this problem, and one for which, with appropriate modification, this method does converge.

4. THE FIRST-ORDER METHOD FOR SOLVING THE CHEMICAL EQUILIBRIUM PROBLEM

The chemical equilibrium problem is a special case of the linear-logarithmic programming problem. In order to put Eqs. (3.1) and (3.2) into the form of Eqs. (1.1)and (1.3), we first define

> N = n+pM = m+p

where, as stated previously, p is the number of compartments in the problem. Then we define a_{ij} , b_i , x_j , and c_j , for i > m and j > n, as follows

$$b_i = 0$$
 $i=m+1,m+2,\ldots,M$ (4.1)

 $c_{j} = 0$ $j=r_{i}+1, n+2, ..., N$ (4.2)

$$a_{ij} = \begin{cases} 0 & \text{if } i \le m, j \ge n \\ 1 & \text{if } i \ge m, j \le n, \text{ and } [j] = i - m \\ 0 & \text{if } i \ge m, j \le n, \text{ and } [j] \neq i - m \\ -1 & \text{if } i \ge m, j \ge n, \text{ and } i - m = j - n \\ 0 & \text{if } i \ge m, j \ge n, \text{ and } i - m \neq j - n \\ \end{cases}$$
(4.4)

For all j, we define

$$d_{j} = \begin{cases} +1 & \text{if } j \leq n \\ -1 & \text{if } j > n \end{cases}$$

$$(4.5)$$

With these definitions, it has been shown [4] that the two problems are identical. Next, we let

$$\mathbf{x}_{j} = \mathbf{y}_{j} + \mathbf{\theta}_{j} \tag{4.6}$$

$$\pi_{i} = \begin{cases} \pi_{i}^{i} & i \le m \\ \\ \\ \pi_{i}^{i} + \log S_{i-m} + 1 & i \ge m \end{cases}$$

Substituting Eqs. (4.1) through (4.6) into (3.7) through (3.10) and simplifying, we have

$$\theta_{j} = y_{j} \left[\sum_{i=1}^{m} a_{ij} \pi_{i}^{i} - c_{j} - \log \hat{y}_{j} + \pi_{[j]+m}^{i} \right] \qquad (4.7)$$

$$j=1,2,...,n$$

$$f_{i,\ell} = \begin{cases}
 \sum_{j=1}^{n} a_{ij} a_{\ell j} y_{j} & \ell \le m, \ i \le m \\
 j \in (i-m)^{a} a_{\ell j} y_{j} & \ell \le m, \ i \ge m \\
 \sum_{j \in (\ell-m)^{a}} a_{ij} y_{j} & \ell \ge m, \ i \le m \\
 0 & \ell \ge m, \ i \ge m \\
 0 & \ell \ge m, \ i \ge m
 \end{cases}$$

$$s_{i}^{i} = \begin{cases}
 b_{i} + \sum_{j=1}^{n} a_{ij} y_{j} (c_{j} + \log \hat{y}_{j} - 1) & i \le m \\
 \sum_{j \in (i-m)^{a}} y_{j} (c_{j} + \log \hat{y}_{j}) & i \ge m \\
 \sum_{j \in (i-m)^{a}} y_{j} (c_{j} + \log \hat{y}_{j}) & i \ge m
 \end{cases}$$

$$\left\{ \sum_{j \in (i-m)^{a}} y_{j} (c_{j} + \log \hat{y}_{j}) & i \ge m \\
 \sum_{j \in (i-m)^{a}} y_{j} (c_{j} + \log \hat{y}_{j}) & i \ge m \\
 \sum_{\ell=1}^{M} r_{i,\ell} \pi_{i}^{\ell} = s_{i}^{\ell} & \ell \le 0 \\
 \end{array}$$

$$\left\{ x_{i,\ell} \pi_{i}^{\ell} = s_{i}^{\ell} & k \le 0 \\
 \end{array}$$

The directional derivative of F in the direction $(\theta_1, \theta_2, \ldots, \theta_n)$ is given by [1, Theorem 8.11] to be

$$\sum_{j=1}^{n} \theta_{j} (c_{j} + \log \hat{y}_{j}) . \qquad (4.11)$$

But, if we compute
$$\sum_{j=1}^{N} \frac{\theta_{j}^{2}d_{j}}{y_{j}}$$
 where by (3.7)

$$\Theta_{k+n} = S_k \left[\pi_{m+k} - \log S_k - 1 \right] = S_k \pi'_{m+k}$$
(4.12)
$$k=1,2,\ldots,p$$

we show, in Appendix B, that

$$\sum_{j=1}^{N} \frac{\theta_{j}^{2} d_{j}}{y_{j}} = -\sum_{j=1}^{n} \theta_{j} (c_{j} + \log \hat{y}_{j}) + \sum_{i=1}^{m} \pi_{i} \left(b_{i} - \sum_{j=1}^{n} a_{ij} y_{j} \right). \quad (4.13)$$

Thus, if we assume that (y_1, y_2, \dots, y_n) is feasible, we get the inceresting result that the directional derivative of F in the direction $(\theta_1, \theta_2, \dots, \theta_n)$ is

$$\sum_{j=1}^{n} \theta_{j} (c_{j} + \log \hat{y}_{j}) = - \sum_{j=1}^{N} \frac{\theta_{j}^{2} d_{j}}{y_{j}} \le 0.$$
 (4.14)

However, it is also shown in App ndix B that the equality on the right side of (4.14) holds if and only if the values for y_j are optimal. We further note that if (y_1, y_2, \ldots, y_n) is feasible, then

$$\sum_{j=1}^{n} a_{ij} \theta_{j} = 0$$

for i = 1, 2, ..., m. Hence, if $(y_1, y_2, ..., y_n)$ is feasible, then $(y_1 + \lambda \theta_1, y_2 + \lambda \theta_2, ..., y_n + \lambda \theta_n)$ will be feasible for any λ for which each $y_1 + \lambda \theta_1$ is positive.

We now state the first-order chemical equilibrium algorithm:

- 1) Calculate $(\theta_1, \theta_2, \dots, \theta_n)$ using Eqs. (4.7) through (4.10).
- 2) Calculate the directional derivative of F in the direction $(\theta_1, \theta_2, \dots, \theta_n)$ as given by Eq. (4.11); if this quantity is not negative, we are done.
- 3) Calculate

$$\epsilon = \sqrt{\frac{1}{n} \sum_{j=1}^{n} \left(\frac{\theta_{j}}{y_{j}}\right)^{2}}$$

 ϵ is a number that represents the root-mean-square error in (y_1, y_2, \dots, y_n) . If ϵ is less than some given number (say, 0.001), we are done.

- 4) Calculate the ratio $-y_j/\theta_j$ for every j for which $\theta_j < 0$. Let λ_1 be the minimum of all such ratios and let $\lambda = \min(1, \beta \lambda_1)$, where β is a number less than 1 but close to 1 (say, 0.99). We now perform the following steps until the test at c) below is satisfied:
 - a) Let $z_j = y_j + \lambda \theta_j$;
 - b) Compute the directional derivative of F at z_j in the direction $(\theta_1, \theta_2, \dots, \theta_n)$: $f(\lambda) = \theta_j(c_j + \log \hat{z}_j)$;
 - c) If $f(\lambda) \le 0$, go directly to step 5);
 - d) Replace λ by $\gamma\lambda$, where $0 < \gamma < 1$, e.g., $\gamma = \frac{1}{2} \sqrt{2}$.

5) Finally, replace y_j by $y_j + \lambda \theta_j$ for j = 1, 2, ..., n. Steps 1-5 are repeated until either the test in step 2 or the test in step 3 is satisfied.

If this process terminates, the solution will be optimal within the specified limits of accuracy. It may happen that the process does not terminate. Since the objective function F is convex^{*} and assuming infinite computational accuracy, non-termination can occur only because the values chosen for λ become smaller on every

* Ref. 1, Theorem 8.13; Ref. 5.

iteration. This will occur only if some y_j is approaching zero, and hence (y_1, y_2, \ldots, y_n) is approaching a point at which, if it were the optimal solution, the problem would be degenerate. It is possible for this to happen for a non-degenerate problem for which the initial solution chosen was too far from the optimal solution. Convergence can be guaranteed by imposing the condition that the value of F at the initial solution be less than the value of F at any feasible, degenerate point. However, it is not practical to impose this condition on the initial solution since it may be very difficult to find such a point. In practice, it has been found that round-off errors cause more difficulty than the possible selection of a poor initial solution.

5. THE LINEAR-LOGARITHMIC PROGRAMMING PROBLEM, SECOND-ORDER METHOD

In the first-order method, presented in Sec. 3, the iterative process was initiated with an estimate of the value of x_1, x_2, \ldots, x_N . In the second-order method, we assume that the problem is as defined by Eqs. (3.1) and (3.2), but that we have initial estimates for the values of $\pi_1, \pi_2, \ldots, \pi_M$. Let us denote these estimates by $\lambda_1, \lambda_2, \ldots, \lambda_M$. The x_j can then be evaluated by Eq. (3.5), substituting λ_i for π_i . These x_j , however, probably will not satisfy Eq. (3.2). The problem of the second-order method is to find numbers $\Delta \lambda_1, \Delta \lambda_2, \ldots, \Delta_M$, such that

$$\pi_{i} = \lambda_{i} + \Delta \lambda_{i} \qquad i=1,2,\ldots,M \qquad (5.1)$$

when substituted into (3.5) will give x_i that satisfy (3.2).

In order to accomplish this, we first use the x. j calculated from Eq. (3.5) to get

$$g_i = b_i - \sum_{j=1}^{N} a_{ij} x_j$$
 $i=1,2,...,M$ (5.2)
where g_i represents the amount that equation i is in error. Next, we evaluate

$$\frac{\partial g_i}{\partial \lambda_i}$$

by

$$\frac{\partial \mathbf{g}_{\mathbf{i}}}{\partial \lambda_{\ell}} = \frac{\partial}{\partial \lambda_{\ell}} \left[\mathbf{b}_{\mathbf{i}} - \sum_{j=1}^{N} \mathbf{a}_{\mathbf{i}j} \mathbf{x}_{j} \right] = -\sum_{j=1}^{N} \mathbf{a}_{\mathbf{i}j} \frac{\partial \mathbf{x}_{j}}{\partial \lambda_{\ell}}$$
$$= -\sum_{j=1}^{N} \mathbf{a}_{\mathbf{i}j} \frac{\partial}{\partial \lambda_{\ell}} \left[\exp\left(\mathbf{d}_{j}^{-1} \sum_{h=1}^{M} \lambda_{h} \mathbf{a}_{hj} - \mathbf{d}_{j}^{-1} \mathbf{c}_{j} - 1\right) \right]$$
$$= -\sum_{j=1}^{N} \mathbf{a}_{\mathbf{i}j} \mathbf{d}_{j}^{-1} \mathbf{x}_{j} \mathbf{a}_{\ell j} = -\mathbf{r}_{\ell \mathbf{i}}$$
(5.3)

where $r_{\ell i}$ is given by Eq. (3.8). If we make a very small change, $d\lambda_1$, $d\lambda_2$,..., in λ_1, λ_2 ,..., the change in g_1, g_2, \ldots , is given by dg_1, dg_2, \ldots , where

$$dg_{i} = + \sum_{\ell=1}^{M} \frac{\partial g_{i}}{\partial \lambda_{\ell}} d\lambda_{\ell} \qquad i=1,2,\ldots,M$$

$$dg_{i} = -\sum_{\ell=1}^{M} r_{i,i} d\lambda_{\ell} . \qquad i=1,2,...,M \qquad (5.4)$$

We would want dg_i to be equal to $-g_i$ as computed by Eq. (5.2). If we make the approximation that

$$\frac{\partial g_{\mathbf{i}}}{\partial \lambda_{j}}$$

is constant over the domain considered, we can set $dg_i = -g_i$, let $d\lambda_i = \Delta \lambda_j$, and write

$$g_{i} = \sum_{\ell=1}^{M} r_{\ell,i} \Delta \lambda_{1}$$
 (5.5)

Equation (5.5) consists of M equations in the M unknowns $\Delta\lambda_1, \Delta\lambda_2, \dots, \Delta\lambda_M$. We may thus solve Eq. (5.5) for $\Delta\lambda_1, \Delta\lambda_2, \dots, \Delta\lambda_M$ and compute $\pi_1, \pi_2, \dots, \pi_M$ from (5.1). If the assumption about

$$\frac{\partial g_i}{\partial \lambda_{j}}$$

being constant over the domain considered was correct, then

the x_j computed from (3.5) with these values for π_i will satisfy (3.2). However, in general, they will not satisfy (3.2), but, if we were close enough to the solution so that the

$$\frac{\partial g_i}{\partial \lambda_i}$$

did not vary greatly in the domain considered, then the new values for x. should come closer to satisfying (3.2) than did the first set of x_i .

With this assumption, we may now state the iterative process:

- a) Using the values at hand for $\pi_1, \pi_2, \dots, \pi_M$, evaluate (3.5).
- b) Using the values for x obtained in step a, evaluate (5.2). If the $|g_i|$ are sufficiently small, we are done.

c) Compute r_{il} using (3.8) and solve (5.5) for $\Delta \lambda_i$.

d) Denoting the π_i in step a by λ_i , we get new π_i by (5.1).

Steps a-d are repeated until the $|g_i|$, computed in step b, are sufficiently small, or until they show no more improvement. There is no proof of convergence for this method. In fact, the method presented here is unlikely to converge unless the starting values of $\pi_1, \pi_2, \ldots, \pi_M$ are very good, and even then there may be no convergence. This method may be used on the chemical equilibrium problem after the firstorder method has resulted in a reasonably good solution. If the π_i obtained from (3.10) in the final iteration of the first-order method are used to initiate the second-order method, the accuracy produced by the second-order method will generally be better than that which could be achieved by use of the first-order method only.

6. THE SECOND-ORDER CHEMICAL EQUILIBRIUM ALGORITHM

In order that the second-order linear-logarithmic method be set in the form of a chemical equilibrium problem, the same definitions as given in Sec. 4--i.e., Eqs. (4.1) through (4.5)--are used here. Since the second-order method is best used after the first-order method has been applied, the initial values of π_i for the second-order method must be specified. The first-order method gives a set of π'_i which are related to π_i by Eq. (4.6). The π_i computed by means of (4.6) are appropriate initial values for the secondorder method. Using these initial values for π_i , the secondorder chemical equilibrium algorithm is an iterative process for which each iteration consists of the following steps:

- 1) Using the current values for $(\pi_1, \pi_2, ..., \pi_M)$, evaluate $x_1, x_2, ..., x_n$ by means of (3.5).
- 2) Calculate g_1, g_2, \dots, g_m by means of (5.2) and set $g_{m+1}, g_{m+2}, \dots, g_M$ equal to zero.
- 3) Compute $r_{i\ell}$ from (4.8) and solve (5.5) for $\Delta\lambda_1, \Delta\lambda_2, \dots, \Delta\lambda_M$.

4) Let

$$P = \max_{i=1}^{M} \Delta \lambda_{i}$$

If $P < \delta$, where δ is a small positive number such as 10^{-5} , we are done; otherwise, let Q = min $(\frac{1}{P}, 1)$. 5) Replace π_i by $\pi_i + Q \Delta \lambda_i$ for i = 1, 2, ..., M. Steps 1-5 are repeated until the test at 4) is satisfied. P should decrease at every iteration; however, when the values for π_i get close to their optimal values, P may not become zero due to round-off error. In order to prevent an endless repetition of steps 1-5 due to the selection of too small a δ , we can test P against the value of P at the previous iteration. If this value has increased over the previous iteration, it can be assumed that this method has obtained as accurate a solution as possible, and we can terminate the iteration process. The reason for inserting the factor Q above is to prevent the π_i from varying too much on one iteration.

7. SUMMARY OF THE COMPUTATION PROCEDURE

The best method for starting the solution of the chemical equilibrium problem depends on whether an estimate for the solution vector is available. The projection method should be used when the problem being solved is a slight variation from a problem previously solved, and in this case, the values used for y_j in (2.9 - 2.12) should be the solution vector to the previous problem. Even when the estimate is no better than an intuitive guess, the projection method may still be used. The linear programming method, then, may be used as a back-up if the projection method produces a non-positive component. Of course, if no estimate is available, the linear programming method would be used immediately to provide an estimate.

The recommended procedure is, then, to use the firstorder method until either no further progress can be made with this method or until the amount of change becomes small from iteration to iteration, and then to use the second-order method. It has been found that, for reasonably large problems (say m = 30, n = 100), the point at which progress ceases in the first-order method usually occurs when the indicated corrections to the components of the solution vector average about one per cent of the components; that is, when (3.5) is accurate to about two significant digits. A switch to the second-order method at this point usually yields quite accurate results in two iterations of the second-order method. The second-order method usually satisfies (1.1) to an accuracy of about five significant digits on a machine that carries eight significant digits. This accuracy is typically about three orders of magnitude above what is usually obtained in experimental data.

To summarize, the typical procedure for solving a chemical equilibrium problem is the following:

1) If an estimate is available, use the projection method to obtain a feasible estimate.

2) If step 1 yields a strictly positive estimate, go to step 3, but if the projection method yields non-positive components, or if there was no initial estimate, then use the linear programming method to get an estimate.

3) Use the first-order method until one of the tests described in Section 4 is satisfied.

4) Use the second-order method as described in Section6.

Appendix A

A FORTRAN-IV PROGRAM FOR SOLVING THE CHEMICAL EQUILIBRIUM PROBLEM

GENERAL DESCRIPTION

The program described here is a set of FORTRAN-IV subroutines for solving chemical equilibrium problems. The calling sequence used is merely the statement:

CALL SOLVE

Communication of data into and out of the subroutines

is accomplished by a block common statement:

COMMON/SLVE/IV(30), TOL(20), NR(55,2), B(55), KN(120), X(121), C(121), 1 KL(26), NAM(25,2), A(55,121), PIE(65), V1(65), V2(65), V3(65), 2 V4(65), XMF(120), X1(121), X2(121), X3(121), XBAR(25), R(65,65)

The data that must be input before CALL SOLVE is executed consist of the following:

COMMON Location	Quantity
IV(1)	m
IV(2)	M (= m + p)
IV(3)	р
IV(4)	n
TV(6)	Number of the output unit

COMMON Location Quantity Print flag: -1 = minimal amount of IV(7)messages; 0 = one message per iteration step; +1 = all messages. IV(9) Maximum number of iterations to be allowed. $b_i, i = 1, 2, ..., m.$ B(i) y_{i} , $j=1,2,\ldots,m$, where y_{i} is the X(j) initial estimate of the solution. If no estimate is available, set X(J) = 0.

C(j) $c_{i}, j=1,2,...,n.$

A(i,j) a_{ij}^{i} , i=1,2,...,m; j=1,2,...,n.

In addition, all components in one compartment must have consecutive subscripts. That is, components $1, 2, 3, \ldots, k_1$ must be in compartment 1; components k_1+1 , k_1+2 , \ldots , k_2 must be in compartment 2; \ldots ; and components $k_{p-1}+1$, $k_{p-1}+2$, \ldots , k_p must be in compartment p. These k's are communicated to the subroutines by setting

$$KL(1) = 1$$

$$KL(2) = k_{1}+1$$

$$KL(3) = k_{2}+1$$

$$\vdots$$

$$KL(p) = k_{p-1}+1$$

$$KL(p+1) = k_{p}+1$$

In other words, KL(k) is the number of the first component in compartment k, and KL(p+1) is equal to n+1.

The above are the only numbers that need be set in order that CALL SOLVE will solve the chemical equilibrium problem. However, in order that the program can write messages, in cases of infeasibility, etc., names for the rows, components, and compartments may be input:

COMMON Location	Quantity
NR(I,1), NR(I,2)	Two-word row name for row I.
KN(J)	One-word component name for
	component J.
NAM (K,1), NAM(K,2)	Two-word compartment name for
	compartment K.

In addition, TOL(1) through TOL(5) are tolerances used by the program. If they are zero when the program is entered, they are set by the subroutines to nominal values. These values may also be set by the user of the subroutines, in which case the nominal values will not be set in the subroutines. These tolerances are the following:

Tolerance	Nominal Value	Meaning
TOL(1)	0.01	In step 3 of the first-
		order method (see Sec. 4).

Tolerance	Nominal Value	Meaning
TOL(2)	10 ⁻⁵	δ in step 4 of the second-
		order method (see Sec. 6).
TOL(3)	10 ⁻¹²	Minimum value any x is j allowed to have.
TOL(4)	10 ⁻⁶	Minimum starting value that any component will have is
		the lesser of TOL(4) and
		¹ ₂ y _{n+1} (see Sec. 2).
TOL(5)	10-8	Problem is assumed to be
		degenerate if any S _k
		becomes less than TOL(5).

With the above as input, the statement CALL SOLVE will cause an attempt to solve the chemical equilibrium problem. If, upon completion of this attempt, a solution is obtained, the cell

```
IV(10)
```

will contain a 1 and the following data will be in storage:

COMMON Location	Data
X(i)	<pre>x, i=1,2,,n (the solution).</pre>
XBAR(k)	S _k , k=1,2,,p.
PIE(i)	$\pi_{i}, i=1, 2, \ldots, m.$
XMF(i)	∧ i=1,2,,n.

-40-

If IV(10) is not 1, the subroutines have failed to solve the chemical equilibrium problem. The reason for this failure is written on output unit IV(6). In such a case, X(i) will contain the latest value of these quantities.

SUBROUTINES

There are nine subroutines in the set used for the solution of the chemical equilibrium problem. A brief description of these subroutines follows.

1. Subroutine SOLVE

SOLVE is the master subroutine, and is divided into four functional segments. Each segment calls other subroutines which do specific tasks. The four segments are:

- a) The projection and linear programming routines for obtaining the initial solution (lines 18-42).
- b) The first-order method (lines 43-122).
- c) The second-order method (lines 123-163).
- d) Output messages (lines 164-203).

2. Subroutine BAR

BAR calculates the S_{ν} .

3. Subroutine BERROR

BERROR calculates

$$g_{i} = b_{i} - \sum_{j=1}^{N} a_{ij} x_{j} .$$
 $i=1,2,...,M$

4. Subroutine DEL

DEL sets

$$w_{j} = \sum_{i=1}^{m} a_{ij} q_{i}$$
. $j=1,2,...,n$

5. Subroutine RCALC

RCALC calculates the r_{ii} array (4.8).

6. Subroutine CLOG

CLOG computes

$$\alpha_j = c_j + \log \hat{x}_j$$
. $j=1,2,\ldots,n$

7. Subroutine LP

LP sets up the linear programming problems.

8. Subroutine SIMPLE

SIMPLE solves the linear programming problems. Information is communicated to this routine via a calling sequence rather than by COMMON as in subroutines 1-7. The dimension of A in SIMPLE should agree with the dimension of A in the first seven subroutines, but all other dimensions are dummy statements.

9. Subroutine MATINV

MATINV solves simultaneous equations. As in SIMPLE, no COMMON is used. The dimension of A in MATINV should agree with that of R (not A) in SOLVE. All other dimensions are singly subscripted and are irrelevant as to magnitude.

* * *

Each of the first seven subroutines has a COMMON statement which should be the same in all seven. The dimensions of the variables in this COMMON statement may be set to the values for the largest problem to be solved. With m, M, p, and n as previously defined, these dimensions must be at least:

Symbol	Minimum Dimension
IV	30
TOL	20
NR	(m,2)
В	m
KN	n
Х	n+1
С	n+1
KL	p+1
NAM	(p,2)
Α	(m, n+1)
PIE	Μ
V1,V2,V3,V4	М
XMF	n
X1,X2,X3	n+1
XBAR	р
R	(M,M) .

A listing of these subroutines follows. This listing does not necessarily represent an actual program. The language used was that version of FORTRAN described in [6]. The machine used for the solution of chemical equilibrium problems was the IBM-7044, which uses a floating-point number with eight bits for the exponent and 28 bits for the sign and mantissa.

LISTING

```
SUBROUTINE SOLVE
                                                                                 50001
      COMMON/SLVE/IV(30),TOL(20),NR(55,2),B(55),KN(120),X(121),C(121),
                                                                                  SCC02
        KL(26),NAM(25,2),A(55,121),PIE(65),V1(65),V2(65),V3(65),
                                                                                  50003
     1
        V4(65), XMF(120), X1(121), X2(121), X3(121), XBAR(25), R(65, 65)
     2
                                                                                  50004
      INTEGER PF
                                                                                  30005
      EQUIVALENCE
                   (TOL(3),XMIN),(TOL(4),XSTART),(TOL(5),BARMIN)
                                                                                  50006
      EQUIVALENCE (IV(1),M),(IV(2),MEND),(IV(3),NCOMP),(IV(4),N,NTOT),
                                                                                  50007
     1 (IV(5), NIT), (IV(6), NOT), (IV(7), PF), (IV(8), ITER), (IV(9), ITMAX),
                                                                                 50008
     2
        (IV(10), IERROR), (IV(11), LASTCP), (IV(12), KE)
                                                                                 50009
      DIMENSION DX(1), ALPHA(1), TH(1), G(1)
                                                                                 50010
      EQUIVALENCE (G,V1), (DX,X1), (ALPHA,X2), (TH,X3)
                                                                                 50011
      IF (TOL(1).LE.0.0)
                             TOL(1) = 0.01
                                                                                 50012
      IF
                             TOL(2) = 1 \cdot E - 5
         (TOL(2).LE.0.0)
                                                                                 S0013
      1 F
         (XMIN.LE.0.0) XMIN = 1.E-12
                                                                                 50014
      IF (BARMIN.LE.C.O) DARMIN = 1.E-8
                                                                                 50015
      IF (ITMAX.LE.) ITMAX = 40
                                                                                 S0016
      DO 152 J = 1, NTOT
                                                                                 S0017
                                                                                 SC018
        IF (X(J).LE.O.) GO TO 5
  152 CONTINUE
                                                                                 50019
C
   IF X IS STRICTLY POSITIVE, BEGIN PROJECTION
                                                                                 50020
      CALL BAR( X+XBAR )
                                                                                 50021
    2 CALL BERROR(ERR)
                                                                                 50022
      CALL RCALC
                                                                                  50023
      CALL MATINV(R,MEND,G,-1,V2,V3,V4,KE)
                                                                                  50024
      IF (KE.NE.C) GO TO 5
                                                                                  50025
      CALL DEL (DX,G)
                                                                                 50026
      DO 3 K = 1, NCUMP
                                                                                 50027
        KTA = KL(K)
                                                                                  50028
        KTB = KL(K+1)-1
                                                                                 50029
        MK = M + K
                                                                                 50030
        DO 4 J = KTA+KTB
                                                                                 SC031
           X(J) = X(J) * (1 + DX(J) + G(MK))
                                                                                 SOC32
           IF (X(J).LE.U.) GO TO 5
                                                                                 50033
    4
        CONTINUE
                                                                                  $0034
    3 CONTINUE
                                                                                 S0035
      GO TO 7
                                                                                  50036
С
   LINEAR PROGRAMMING ROUTINE
                                                                                  50037
    5 CALL LP(KF;
                                                                                  50038
      IF (KF.NE.U) GO TU 10006
                                                                                  50039
    7 CALL BAR(X, XBAR)
                                                                                  5004C
      CALL CLOG(X,XBAR)
                                                                                  50041
      FE2 = 1.E+20
                                                                                  50042
С
   FIRST ORDER METHOD LOOP
                                                                                  50043
      DO 899 ITER=1,ITMAX
                                                                                  50044
         CALL BERROR(ERR)
                                                                                  50045
         DC 7110 I=1.MEND
                                                                                  50046
           PIE(1) = ...
                                                                                  50047
 7110
        CONTINUE
                                                                                  50048
        DO 7111 K = 1, NCOMP
                                                                                  50049
           KTA = KL(K)
                                                                                  50050
           \mathsf{KTd} = \mathsf{KL}(\mathsf{K}+1) - 1
                                                                                  50051
           MK = M + K
                                                                                  50052
           DO 7112 J = KTA, KT3
                                                                                  50053
             AX = ALPHA(J) * X(J)
                                                                                  50054
             PIE(MK) = PIE(MK) + AX
                                                                                  50055
             DO 7113 I = 1.M
                                                                                  $0056
               PIE(I) = PIE(I) + AX + A(I_{,J})
                                                                                  50057
 7113
             CONTINUE
                                                                                  30058
 7112
           CONTINUE
                                                                                  50059
 7111
        CONTINUE
                                                                                  50060
```

	DO 7114 I = 1.4	50061
7114	PIE(I) = G(I) + PIE(I)	50062
/114		50005
		50004
	CALL MATINV(R,MENU,PIE,-1,V2,V3,V4,KE)	50065
		30066
	$DMAX = 1 \cdot E + 2C$	50061
	CALL DEL(TH+PIE)	50000
7155		50009
		50070
	FE = 0	50071
	DO /104 K=1.NCOMP	50072
	MK = M + K	50073
	K!A = KL(K)	50074
	$K^{T}D = KL(K+I) -I$	50075
	DO 7103 J = KTA, KTB	50076
	TH(J) = TH(J) + PIE(MK) - ALPHA(J)	50077
	GNORM = GNORM + TH(J) **2	50078
	(L)X + (L)HT = (L)HT	50079
	TDA = TDA + TH(J) + ALPHA(J)	30033
	IF $(X(J) \bullet LT \bullet - DMAX + TH(J)) DMAX = -X(J)/TH(J)$	50081
	FE = FE + X(J) + ALPHA(J)	50082
7103	CONTINUE	S0083
7104	CONTINUE	50084
	EPS= SQRT (GNORM/FLOAT (NTUT))	50085
	DFE = FE - FE2	50086
	FE2 = FE	50087
	IF (ITER.EQ.1) GO TO 712J	50088
	ITR = ITER - 1	50089
	IF(PF.GE.U) WRITE(NOT.799) ITR, DFE,OPTL,EPS	50090
7120	OPTL =AMIN1 (1	SC091
	IF (PF.GT.0) wRITE (NCT.8241) DMAX.OPTL.TDA.ERK	50092
	IF (EPS.LE.TOL(1)) GO TO 8259	50093
826	IF (TDA-GE-0-) 50 TO 8257	50094
nzhu	DO B265 I = 1.54	50095
6. • S. 14	$DO 6301 J = 1 \cdot N$	50096
	DX(1) = AAX1(X(1) + (PT) + TH(1) + XMIN)	50097
8301		50098
0.001	CALL BAR(DY-YEAR)	50099
		50100
		50100
	00.8266 + -1.0101	50102
		50102
	$\frac{1}{10} = \frac{1}{10} + \frac{1}{10} $	50103
8200		50104
	IF (PF • G1 • G) WRITE (NOT • G262) II • OPTE • TDA	50105
	IF (TDA+LT+0+) GO TO 828	50106
8264	OPTL = OPTL /1.4142	50107
8265	CONTINUE	50108
	CALL BAR(X+XBAR)	50109
	GO TO 8271	50110
828	DO 8281 J =1.NTOT	50111
	X(J) = DX(J)	50112
8281	CONTINUE	50113
	FE = 0.	50114
	DO 8231 J=1.N	50115
	FE = FE + ALPHA(J) * X(J)	50116
8231	CONTINUE	S0117
8288	CALL SSWTCH(5,LABEL)	50118
	IF (LABEL .NE .2) GO TO 1004	50119
899	CONTINUE	50120

C EN	D OF FIRST ORDER METHOD LOOP	50121
	GO TO 10002	50122
6000	ITER1 = ITER + 1	50123
	$PMAX = 1 \cdot E + 2 \cup$	50124
c	$PMAXI = 1 \cdot E + 21$	50125
C SEC	COND ORDER METHOD LOOP	50120
		50127
		50120
		50130
	MTB = KL(K+1) - 1	50131
	DO 6010 J = MTA.MTB	50132
	XMF(J) = EXP(DX(J) - C(J))	50133
	X(J) = XMF(J) * XBAR(K)	50134
6010	CONTINUE	50135
	IF (XBAR(K).LE.BARMIN) GO TO 10005	50136
6003	CONTINUE	50137
	IF (PMAX.LE.TOL(2).OR.(PHAX.GE.PMAX1.AND.PMAX.GE.PMAX2))	50138
1	1 GO TO 10001	50139
	CALL BERROR(ERR)	50140
6006	CALL RCALC	50141
	CALL MATINV(R,MEND,G, -1,V2,V3,V4,KE)	50142
	IF(KE-NE-C) GO TO 10003	50143
		50144
		50145
	PMAA = 0	50140
	$p_{MAY} = a_{MAY} + p_{MAY}$, $a \in \{G(1)\}$	50148
6004		50149
0004		50150
	ZM = AMINI (1 - ZPMAX + 1 -)	50151
	DO 6005 I = 1.4	50152
	PIE(I) = PIE(I) + ZM + G(I)	50153
6005	CONTINUE	50154
	DC 6011 K = $1 + NCOMP$	50155
	MK = M + K	50156
	XBAR(K) = XBAR(K) + EXP (ZH + G(HK))	50157
6-11	CONTINUE	50158
	IF (PF.GE.U) WRITE(NOT.6099) ITER.PMAX.ERR	50159
	CALL SSWTCH(5,LADEL)	50160
	IF (LABEL NE 2) GO TO 10004	50161
6002	CONTINUE	50162
C ENI	D OF SECOND ORDER METHOD LOOP	50163
10002	IERROR = 2	50164
	WRITE(NOT, 2002)	50165
20002	FORMAT (27H ITERATION LIMIT EXCEEDED)	50166
	LIER = LIMAA	50167
10002		50160
10003		50109
2:02	WRITE(NUT)2003) NE FORMAT/310 D MATDIY HAS NUTLITY, 131	50170
20005	GO TO 10000	50172
1.004		50173
	WRITE(NOT, 20004)	50174
20004	FORMAT (56H SOLVE ROUTINE TERMINATED BECAUSE SENSE SWITCH 5 IS DOWN	50175
	1)	50176
	GO TO 10000	SC177
10005	IERROR = 5	50178
	WRITE(NOT+20005) NAM(K+1)+NAM(K+2)	50179
20005	FORMAT(13H COMPARTMENT +2A6+10H TOO SMALL)	50180

LASTCP = K	50161
\overline{GO} TO 10000	50182
10006 IERROR = 6	50183
GO TO 10000	50184
10001 IERROR = 1	50185
10000 RETURN	50186
8241 FORMAT(15H LAMODA MAX=1PE12+4+13H+ OPT LAMBDA=E10+3+6H	• TDA=E12 50187
1.5.16H, MAX ROW ERROR=E12.5)	50188
8267 IF PF.GE.C) WRITE (NOT.8268) ITER	50189
B266 ORMAT(10H ITERATION, I4, 30H POSILIVE IDA, GO TO METHOD	2) 50190
GO TO 6000	S0191
8269 IF (PF.GE.C) WRITE (NOT.8273) ITER	50192
8270 FORMAT(10H ITERATION,14,42H AV THETA LESS THAN TOL(1), GO	TO METHE SO193
10 2)	50194
GO TO 6000	50195
8271 IF (PF.GE.C) WRITE (NOT.6272) ITER	50196
8272 FORMAT(10H ITERATION, 14, 36H STEP SIZE TOO SMALL, GO TO ME	THOD 2) 50197
GO TO 6000	50198
8262 FURMAT(1_X, 4HSTEP,12, 9H LAMBDA=1PE10.3.6H, TDA=E15	•5) S0199
759 FORMAT(10H ITERATION,14,24H CHANGE IN FREE ENERGY=1PE1	5-8-12H 50200
ISTEP SIZE=E15.8.1 H AV THETA=E12.5)	50201
6099 FORMAT(10H ITERATION.14.19H MAX CHANGE IN PIE=1PE15.8.15H	MAX RON SO202
1FRROR=F15_8	50203
	50205
	30204

	SUBROUTINE BAR(W,W3AR)	w0001
	COMMON/SLVE/IV(30)+TOL(20)+NR(55+2)+B(55)+KN(120)+X(121)+C(121)+	NU002
	1 KL(26) + NAM(25+2) + A(55+121) + PIE(65) + V1(65) + V2(65) + V3(65) +	WUUU3
	2 V4(65),XMF(120),X1(121),X2(121),X3(121),XBAR(25),R(65,65)	*C004
	EQUIVALENCE (IV(1),M),(IV(2),MEND),(IV(3),NCOMP),(IV(4),N,NIO)),	#0005
	1 (IV(5) • NIT) • (IV(6) • NOT) • (IV(7) • PF) • (IV(8) • I cR) • (IV(9) • I TMAX) •	WC006
	2 (IV(10), IERROR), (IV(11), LASTCP), (IV(12), KE)	WU007
	DIMENSION W(1), WBAR(1)	W0008
7	DO 701 K = $1 \cdot NCOMP$	w0009
	KTA = KL(K)	v.0C10
	KTB = KL(K+1) - 1	W0011
	WBAR(K) = 0.	+0012
	DO 702 J = KTA,KTB	w0013
	WBAR(K) = WBAR(K) + W(J)	#0014
752	CONTINUE	W0015
701	CONTINUE	*0016
	END	w0017

SUBROUTINE DERROR(BMAX) COMMON/SEVE/IV(3C),TOE(20)+NR(55,2),3(55),KN(120),X(121) 1 KE(26),NAM(25+2),A(55+121),PIE(65),V1(65),V2(65),V3(6) 2 V4(65),XMF(120),X1(121),X2(121),X3(121),XEAR(25),R(65) EQUIVALENCE (IV(1),M),(IV(2),MEND),(IV(3),NCOMP),(IV(4)) 1 (IV(5),NIT),(IV(6),NCT),(IV(7),PF),(IV(8),IIER),(IV(9)) 2 (IV(10),IERROR),(IV(11),EASTCP),(IV(12),KE)) DIMENSION G(1) EQUIVALENCE (G,V1) DO 101 I = 1,M 2T = 0.	60001)+C(121)+ 60002 5)+ 60003 +65) 60004 +N+NTOT)+ 60005 +1+MAX)+ 60006 60007 80009 60010 60010 60010
DG 102 J = 1.1	5UC12
$IF(A(I \bullet J) \bullet NL \bullet \cup \bullet) \ ZT = ZT - X(J) * A(I \bullet J)$	60013
1J2 CONTINUE	30014
G(1) = ZT + B(1)	6015
1J1 CONTINUE	800 16
$DO 11 \vee K = 1.0 \text{NCOMP}$	B0017
ZT = U.	b0018
MTA = KL(K)	60019
MTB = KL(K+1) - 1	B002C
DO(111) J = MTA, MTB	30021
ZT = ZT + X(J)	b0022
III CONTINUE	BU023
MK = M + K	50024
$G(\tilde{m}) = X GAR(K) - ZT$	80025
	6026
	60027
DU = 120 + 2 + 100 END	60028
IF (ABSIG(I))+GI+ ABS(SMAX) } EMAX = G(I)	60029
	80030
	ЬСО31
ENU	DCC32

•

SUBROUTINE DEL(W,W)	00001
COMMON/SLVE/IV(30) + TOL(2) + 4R(55+2) + 3(55) + K4(120) + X(121) + C(121) +	00002
1 KL(26)+NAM(25+2)+A(55+121)+PIL(65)+V1(65)+V2(65)+V3(65)+	D0003
2 V4(65)+XMF(12))+X1(121)+X2(121)+X2(121)+X2AR(25)+R(65+65)	00004
EUUIVALENCE (IV(1),M),(IV(2),MEND),(IV(3),NCOMP),(IV(4),N,NIO)),	00005
1 (IV(5)+NIT)+(IV(6)+NOT)+(IV(7)+PF)+(IV(8)+I(ER)+(IV(9)+I(FAX)+	00006
2 (IV(1),ILRROR),(IV(11),LASTCP),(IV(12),KE)	D0007
DIMENSION X(1),Q(1)	D0008
DO 2U J = 1 + iv	DOCGS
<i>v</i> ,∧=∨●	00010
$\partial G = 1 \cup I = 1, M$	DJC11
$IF (A(I \cdot J) \cdot NE \cdot O \cdot) RW = VR + A(I \cdot J) + U(I)$	D0012
10 CONTINUE	00013
W(J) = WW	00014
20 CONTINUE	D0015
RETURN	JÚ016
END	00017

SUBROUTINE REALC	R0001
COMMON/SLVE/IV(30).TOL(20).NR(55.2).3(55).KN(120).X(121).C(121).	R0002
$1 = K [(26) \cdot NAM(25 \cdot 2) \cdot A(55 \cdot 12)] \cdot P I F (65) \cdot V 1(65) \cdot V 2(65) \cdot V 3(65) \cdot$	£0003
2 $V_{4}(65) \cdot XMF(120) \cdot X1(121) \cdot X2(121) \cdot X3(121) \cdot XnAF(25) \cdot R(65 \cdot 65)$	RCC04
EQUIVALENCE $(IV(1) \circ M) \circ (IV(2) \circ MEND) \circ (IV(3) \circ NCOMP) \circ (IV(4) \circ N \circ NIOI) \circ$	RC005
1 (1V(5),NIT),(1V(6),NOT),(1V(7),PF),(1V(8),1TER),(1V(9),1TEAX),	R0C06
2 (IV(10), IERROR), (IV(11), LASTCP), (IV(12), KE)	RUCO7
COMPUTE R	ROCOU
$DO 1 I = 1 \cdot MEND$	R0009
DO 2 J = 1 + 1	R0010
$R(I_*J) = U_*0$	RC011
2 CONTINUE	R0012
1 CONTINUE	R0013
DO 10 K = ' NTOT	ROC14
DO 11 $1=1,M$	R0015
IF (A(1,K), EQ.0.) GO TO 11	R0016
$AIKX = A(I_{*}K) + X(K)$	R0017
$DO 12 J = 1 \cdot 1$	R0018
IF $(A(J_{0}K) \cdot NE \cdot O_{0}) R(I_{0}J) = A(J_{0}K) + AIKX + R(I_{0}J)$	R0019
12 CONTINUE	R0020
11 CONTINUE	R0021
10 CONTINUE	RUC22
DO 20 K = $1 \cdot NCOMP$	R0023
IH = K + M	R0024
MTA =KL(K)	R0025
MTS = KL(K+1) - 1	R0026
DO 21 L =MTA,MTL	R0027
DO 22 J = 1.4	R0028
IF $(A(J_{PL}), NE_{PO})$ $F(IH_{PJ}) = R(IH_{PJ}) + A(J_{PL}) + X(L)$	ROC29
22 CONTINUE	RC030
21 CONTINUE	PC031
20 CONTINUE	ROC32
DO 30 J = 2. MENU	R0033
JL = J-1	R0034
DO 31 I = 1, JL	R0035
R(I,J) = R(J,I)	R0036
31 CONTINUE	R0037
30 CONTINUE	ROC38
50 RETURN	R0039
END	R0040

	SUBROUTINE CLOG(N, WOAR)	C0C01
	COMMON/SLVE/IV(30),TCL(20),NR(55,2),B(55),KN(120),X(121),C(121),	C0002
	1 KL(26),NAM(25,2),A(55,121),PIE(65),V1(65),V2(65),V3(65),	C0003
	2 V4(65),XMF(120),X1(121),X2(121),X3(121),X0AR(25),R(65,65)	C0004
	EQUIVALENCE (IV(1)+M)+(IV(2)+MEND)+(IV(3)+NCGMP)+(IV(4)+N+NTGT)+	CCCOS
	1 (IV(5),NIT),(IV(6),NOT),(IV(7),PF),(IV(8),ITER),(IV(9),ITHAX),	C0006
	2 (IV(1Ú),IEHROR),(IV(11),LASTCP),(IV(12),KE)	C0007
	DIMENSION W(1), WOAR(1), ALPHA(1)	60003
	EQUIVALENCE (X2,ALPHA)	C0009
	DO 1 K = 1, incomp	CC010
	KLA = KL(K)	C0C11
	KLB = KL(K+1) - 1	C0012
	DO 2 J = KLA, KLU	C0013
	ALPHA(J) = C(J)	CU014
	XXX = W(J)/WBAR(K)	C0015
	$IF(XXX_GT_0_0) ALPHA(J) = C(J)+ALCG(XXX)$	C0016
2	CONTINUE	C0017
1	CONTINUE	C0018
	RETURN	CU019
	END	CUCZO

e.

```
SUBROUTINE LP (NON)
COMMON/SEVE/IV(30),TOE(20),NR(55,2),3(55),KR(12),X(121),C(121),
 KL(26),NAM(25,2),A(55,121),Plc(65),V1(65),V2(65),V3(65),
V4(65)+XMF(12)+X1(121)+X2(121)+X3(121)+XUAR(25)+R(65+65)
INTEGER PF
            XX(1),KOUT(7),CC(1),P(1)
```

1

2

C

300

303

IF (KOUT(1) NE.C) GO TO 50

 $X(J) = (F_N + X(J) + X(J)) / (F_N + 1_0)$

 $1F (J_{\bullet}GE_{\bullet}KL(K+1)) = K = K + 1$

DO 3J3 J = 1, NTUT

X1(J) = X(J)

CALL BAR(X, XBAR)

 $J = 1 \cdot N$

X(J) = XX(J)

CONTINUE

K = 1

DG 310

FR = 0.0

```
EGUIVALENCE (TOL(3)+XMIN}+(TUL(4)+XSTAPT)+(TML(5)+5AR4IN)
                                                                                L0006
    EQUIVALENCE (IV(1).M).(IV(2).MEND).(IV(3).NCCMP).(IV(4).N.NTOT).
                                                                                L0007
   1 (IV(5)+NIT)+(IV(6)+NOT)+(IV(7)+PF)+(IV(8)+ITER)+(IV(9)+ITEAX)+
                                                                                LCOOR
    2 (IV(1J), IERROR) + (IV(11) + LASTCP) + (IV(12) + KE)
                                                                                L0009
     DIMENSION
                                                                                L0010
    EQUIVALENCE(CC+XMF)+(XX+X2)+(P+V1)
                                                                                L0011
    MONE U
                                                                                L0012
    IF (XSTART.LE.O.C) XSTART = 1.E-6
                                                                                L0013
    DO 16 I = 1 + M
                                                                                L0014
       P(I) = B(I)
                                                                                L0015
    A(I \cdot NTOT + 1) = 0 \cdot 0
                                                                                LOC16
       DO 15 J = 1,NTOT
                                                                                L0C17
         A(I,NTOT+1) = A(I,NTOT+1) + A(I,J)
                                                                                LCC18
       CONTINUE
 15
                                                                                L0019
 10 CONTINUE
                                                                                L0020
    DO 1 J = 1 + NTOT
                                                                                L0021
       ((J) = C.U
                                                                                L0022
  1 CONTINUE
                                                                                LUC23
    \mathsf{CC}(\mathsf{N}+1) = -1 \cdot \mathsf{U}
                                                                                L0024
 ZERO-TH SIMPLEX IS TO DETERMINE FEASIBILITY
                                                                                L0025
    CALL SIMPLE(J,M+N+1+A+P+CC+KOUT+XX+PIE+V2+V3+V4+X3+R)
                                                                                L0026
    ZT = XX(N+1)
                                                                                L0027
    IF (PF+GE+C) WRITE (NOT+106) KCUT(2)+ZT+KOUT(1)
                                                                                L0028
106 FORMAT(12HOSIMPLEX 0,14,29H ITERATIONS, MAX MIN ELEMENT=1PE15.8,
                                                                                L0029
   1 12H, CONDITION , 13)
                                                                                L0030
          =AMIN1(ZT/2.0. XSTART)
    ZZT
                                                                                L0031
    DO 104 I = 1.M
                                                                                L0032
      P(I) = P(I) - 22T*A(I+N+1)
                                                                                L0033
104 CONTINUE
                                                                                L0034
200 \text{ DO } 201 \text{ J} = 1 \text{ NTOT}
                                                                                L0035
      X(J) = XX(J)
                                                                                L0036
      XMF(J) = 1 \cdot J
                                                                               L0037
201 CONTINUE
                                                                               LC03d
    IF (ZT.LE.U.OR.KUUT(1).NE.U) GO TO 40
                                                                               L0039
  SIMPLEX LOOP
                                                                               L0040
    FR2=1+E+20
                                                                               L0041
    DO 301 NN = 1, NOUMP
                                                                               L0042
      DO 302 J = 1, NTOT
                                                                               LC043
                  H= |C(J) + XMF(J) - 1.0
        (C(J)
                                                                                LOC44
      CONTINUE
3.2
                                                                               L0045
    FN = FLOAT(NN) - 1.0
                                                                               LU046
    CALL SIMPLE(1,M,N ,A,P,CC,KOUT,XX,PIE,V2,V3,V4,X3,R)
                                                                               LG047
```

IF (J.EU.KL(K).AND.XDAW(K).UT.C.C)FR=FK-XJAR(K)*ALUG(XDAR(K))

IF (X(J)+GT+D+C) FR = FR + X(J)*(ALOG(X(J)) + C(J))

LUUUl L0002

L0003

L0004

L0005

L0048

LU049

L0050

L0051

L0052

L0053

LCC54

L0055

L0056

_0057

L0058

L0059

L0060

	XMF(,)) ≖ u.	LC061
	IF ($xBAR(K) \cdot NE \cdot 0 \cdot) xMF(J) = x(J) / xBAR(K)$	L0062
310	CONTINUE	L0003
	IF (PF.GE.O) WRITE(NOT.305) NN.KOUT(2).FR	L0064
305	FORMAT(8H SIMPLEX,13,1H,,14,12H ITERATIONS ,8H FR ENG=1PE15.6)	L0066
	IF (FR.GE.FR2) GO TO 399	L0066
201		10060
399		10069
	X(J) = X(J) + ZZT	L0070
400	CONTINUE	L0071
	RETURN	L0072
41	TE (KOUT(1)+ST-1) GO TO 50	L0073
	WRITE (NOT+41)	L0074
41	FORMAT(72HOTHIS PROBLEM IS INFEASIBLE. THE FOLLOWING LINEAR COMDI	L0075
-	INATION OF ROWS, /IX)	L0076
	DO 14 \cup I =1 \cdot M	L0077
	IF (PIE(I) • NE • 0 •) WRITE(NOT • 141) PIE(I) • NR(I • 1) • NR(I • 2)	L0078
141	FORMAT(10X+3H+ (+F15+8+5H) # +2A6)	L0079
140	CONTINUE	L0080
	WRITE (NOT+142)	L0091
142	FORMAT(40HO LEADS TO THE FULLOWING INFEASIBLE EQUATION; /1X)	L0095
	DO 150 K =1+ivCoiriP	LCC83
	MTA = KL(K)	LC084
	MTB = KL(K+1) - 1	L0085
	DO 151 J = MTA, MTB	L0086
		L0087
	DO = 152 I = 1.00	10088
	$D = PIE(I) + A(I_{*}J) + D$	L0089
152	CONTINUE	L0090
14.2	$\frac{1}{1} \left[\left(\bigcup_{i} NE_{i} \cup_{i} \right) WRITE \left[\left(NU+j \right) \left(\frac{1}{2} \right) \bigcup_{i} NAP(i, N, j) \left(\frac{1}{2} \right) NAP(i, N, j) \right] \right]$	L0091
143	CONTINUE	10092
15.		10094
190		10095
		LOC96
	D = PIF(1) + D	L0097
160	CONTINUE	L0098
	WRITE (NOT-144) D	1.0099
144	FORMAT(1H0.15X.7H+0.0 = .F15.8)	L0100
70	MON = 1	L0101
	RETURN	L0102
5 J	IF (KOUT(1) • NE • 2) GO TO 60	L0103
	JT = KOUT(7)	L0104
	DO 51 K = 1 + NCOMP	L0105
	IF (JT.GE.KL(K)) GO TO 52	L0106
51		L0107
52	WRITE (NU1)952) KN(JT))NAM(K)1)NAM(K)2)	L0108
952	FURMAILIAH THE VARIABLE + A6+4H IN +2A6+33H IS UNBOUNDED AND MUST B	L0109
	IE REMOVED)	L0110
		LUIII
00	WELLE UNULIVELEY DO THE WAS EATLED DUE TO EVERATUE DOUBLE OFFICE	LUIIZ
960	FURMAILEUH SIMPLEX RUJIINE HAS FAILED DUE TO EXCESSIVE ROUND-OFF E	L0113
1		L0114
		LUIIS
		- FATTO

Calling Sequence for Simplex Subroutine

The simplex subroutine, SIMPLE, may be used to solve a general linear programming problem of the form: Minimize

$$\sum_{j=1}^{n} C_{j} x_{j}$$
(1)

subject to

$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i} . \qquad i=1,2,3,...,m \qquad (2)$$

The a_{ij} is stored in a two-dimensional array, A, with a_{ij} in cell A(i,j); C_j is stored in a one-dimensional array, C, with C_j in cell C(j); and b_i is stored in a onedimensional array, B, with b_i in cell B(i).

The calling sequence is

CALL SIMPLE(II, M, N, A, B, C, KO, X, P, JH, XX, Y, PE, E)

where

A, B, C Are as above; KO = A subscripted variable of dimension 7; X = A subscripted variable of dimension n or more; P, JH, XX, Y, and PE = Subscripted variables of dimension m or more; and E = A subscripted variable of dimension m² or more.

Upon exiting from the subroutine,

- $X(1), X(2), \ldots, X(n)$ Contains x_1, x_2, \ldots, x_n (the solution);
- $P(1), P(2), \ldots, P(m)$ Contains the shadow prices;
 - KO(1) Contains an 0 if the problem was feasible, 1 if the problem was infeasible, 2 if the problem had an infinite solution, and 3, 4, or 5 if the algorithm did not terminate;
 - KO(2) The number of iterations taken;
 - KO(3) The number of pivots performed since the last inversion;
 - KO(4) The number of inversions performed;
 - KO(5) The number of pivot steps performed;

KO(6) A logical variable that is "true" if and only if the problem was feasible; and

The dimension of A (line X0009) must agree (at least in the first subscript) with the dimension of A in the calling program. The other dimensions need not agree with those of the calling program.

If an initial basis is available, this basis may be communicated to the subroutine by letting

> II = 1, X(i) = {0.0 if variable i is not in basis, (non-zero) if variable i is in basis,

and the other quantities remain as above.

This subroutine differs from other linear programming routines in several respects. If the restraints (2) are linearly dependent, the problem is considered to be infeasible. This is the case because the chemical equilibrium problem cannot be solved if the restraints are dependent. In addition, this subroutine was written to be as scale-free as possible; this was accomplished by computing tolerances internally in the subroutine.

```
X0001
C
  AUTOMATIC SIMPLEX
                             REDUNDANT EQUATIONS CAUSE INFEASIJILITY
       SUBROUTINE SIMPLE(INFLAG, MX, NN, A, B, C, KOUT, KB, P, JH, X, Y, PE, E)
                                                                                 X0002
                            B(1) + C(1) + KOUT(7) + JH(1) + X(1) + P(1) + Y(1) +
       DIMENSION
                                                                                 X0003
      1 KB(1),E(1),PE(1),KO(7)
                                                                                 X0004
       EQUIVALENCE (K+KO(1))+(ITER+KO(2))+(INVC+KO(3))+
                                                                                 XOCO5
      2
        (NUMVR+K0(4))+(NUMPV+K0(5))+(FEAS+K0(6))+(UT+K0(7))
                                                                                 X0006
       EGUIVALENCE (XX.LL)
                                                                                 X0007
C THE FOLLOWING DIMENSION SHOULD BE THE SAME HERE AS IT IS IN CALLER.
                                                                                 X0008
      DIMENSION A(55+121)
                                                                                 X0009
       LOGICAL FEAS, VER, NEG, TRIG, KU, ABSC
                                                                                 X0010
C
                                                                                 X0011
                                                                                 x0012
C
                           MOVE INPUTS ... ZERO OUTPUTS
                                                                                 X0013
       DO 1341 I = 1,7
         KC(1) = C
                                                                                 X0014
 1341 CONTINUE
                                                                                 X0015
                                                                                 X0016
      M . MX
       N = NN
                                                                                 X0017
      TEXP = .5**16
NCUT = 4*M + 10
NVER = M/2 + 5
                                                                                 X0C18
                                                                                 X0019
                                                                                 X0020
      M2 = M##2
                                                                                 X0021
         (INFLAG.NE.C) GO TO 1400
      1F
                                                                                 X0022
           START PHASE ONE WITH SINGLETON BASIS
C# INEW!
                                                                                 X0023
      DO 14-2 J = 1+N
                                                                                X0024
         KB(J) = U
                                                                                X0025
         KQ = .FALSE.
                                                                                X0026
         DO 1403 I = 1.6M
                                                                                X0027
           IF (A(I+J).EQ.0.0) GO TO 1403
                                                                                X0028
                                                                                X0029
           IF (KQ.OR.A(I.J).LT.0.0) GO TO 1402
           KG = .TRUE.
                                                                                X0030
         CONTINUE
 1403
                                                                                X0031
         KB(J) = 1
                                                                                X0032
 14-2 CONTINUE
                                                                                X0033
 1400 IF (INFLAG.GT.1 ) GO TO 1320
                                                                                X0C34
      DO 1401 I =1+M
                                                                                X0035
         JH(I) = -1
                                                                                X0036
 1401 CONTINUE
                                                                                X0037
C# IVERI
           CREATE INVERSE FROM IKBI AND IJHI
                                                                                X0038
 1320 VER = .TRUE.
                                                                                XC039
 1121 INVC = C
                                                                                X0040
 1122 NUMVR = NUMVR +1
                                                                                X0041
      DO 11-1 I = 1.M2
                                                                                X0042
         E(I) = 0.0
                                                                                X0043
 11J1 CONTINUE
                                                                                X0044
      MM=1
                                                                                X0045
      DO 1113 I = 1.M
                                                                                X0046
         E(MM) = 1.0
                                                                                X0047
        PE(1) = 0.0
                                                                                X0048
        X(1) = B(1)
                                                                                X0049
        IF (JH(I) \bullet NE \bullet G) JH(I) = -1
                                                                                X0050
        MM = MM + M + 1
                                                                                X0051
1113 CONTINUE
                                                                                X0052
C
                   FORM INVERSE
                                                                                X0053
      DO 1102 JT = 1+N
                                                                                X0054
        IF (KB(JT).EQ.0) GO TO 1102
                                                                                X0055
        GC TO 600
                                                                                X0056
        CALL J'1Y
C 666
                                                                                X0057
                         CHOOSE PIVOT
C
                                                                                X0058
        TY = 0.0
1114
                                                                                X0C59
        DO 1134 I = 1.M
                                                                                X0C60
```

X0061 IF (JH(I).NE.-1) GO TO 1104 IF (ABS(Y(I)).LE.TY) GO TO 1104 X0062 XUC63 IR = I TY = ABS(Y(I))XC064 X0065 CONTINUE 1104 X0066 KB(JT) = 0TEST PIVOT XU067 С GO TO 1102 PIVOT IF (TY+LE+TPIV) X0068 C X0069 JH(IR) = JTXC070 KB(JT) = IRXUÚ71 GC TO 900 XCC72 C 900 CALL PIV X0073 1102 CONTINUE X0074 C RESET ARTIFICIALS X0075 DO $11 \cup 9$ I = 1.M X0076 IF (JH(I) • EG • -1) JH(I) = 0 X0077 1109 CONTINUE X0076 X0079 1200 VER = .FALSE. PERFORM ONE ITERATION X0080 C C* *XCK* DETERMINE FEASIBILITY X0081 X0082 FEAS= .TRUE. NEG = .FALSE. X0083 $DO \ 12 - 1 \ I = 1 + M$ X0084 IF (X(I)+LT+C+C) GO TO 1250 X0085 IF (JH(I) . EQ. C) FEAS = . FALSE. X0086 1201 CONTINUE XOOH7 C* IGETI GET APPLICABLE PRICES X0C88 IF (.NOT.FEAS) GG TO 501 X0089 PRIMAL PRICES C X0090 DO 503 I = 1.MX0091 P(I) = PE(I)XC092 503 CONTINUE X0093 ABSC = .FALSE. X0094 GO TO 599 X0095 ¢ COMPOSITE PRICES X0096 1250 FEAS = .FALSE. X0097 NEG = .TRUE. X0098 501 DO 504 J = 1, M P(J) = 0. X0099 X0100 504 CONTINUE X0101 ABSC = .TRUE. X0102 DO 505 I = 1.M X0103 11M = I X0104 IF (X(1).GE.C.0) GO TO 507 X0105 ABSC = .FALSE. X0106 DO 508 J = 1.MX0107 P(J) = P(J) + E(MM)X0108 MM = MM + MX0109 CONTINUE 508 X0110 GO TO 505 X0111 507 IF (JH(I) .NE.0) GO TO 505 X0112 IF (X(I) .NE.G.) AUSC = .FALSE. X0113 DO 510 J = 1.MXU114 $\mathsf{P}(\mathsf{J}) = \mathsf{P}(\mathsf{J}) - \mathsf{E}(\mathsf{MM})$ XU115 MM = MM + MXJ116 CONTINUE 510 X0117 5-5 CONTINUE X0118 C* MINE FIND MINIMUM REDUCED COST X0119 599 JT = U X0120

UB = U.O X0121 DO 701 J =1+N X0122 C SKIP COLUMNS IN BASIS X0123 IF (KB(J) . NE.C) GO TO 701 X0124 DT = U.U X0125 X0126 DO | 303 I = 1.MIF $(A(I \bullet J) \bullet NE \bullet 0 \bullet 0)$ DT = DT + P(I) + A(I \bullet J) X0127 X0128 303 CONTINUE IF (FEAS) DT = DT + C(J)IF (ABSC) DT = -ABS(DT)X0129 X0130 IF (DT.GE.00) 60 TO 701 X0131 66 = DTX0132 JT = J X0133 701 CONTINUE X0134 TEST FOR NO PIVOT COLUMN X0135 C IF (JT.LE.U) GO TO 203 X0136 C TEST FOR ITERATION LIMIT EXCEEDED X0137 IF (ITER.GE.NCUT) GO TO 160 X0138 ITER = ITER +1 X0139 C* JMY MULTIPLY INVERSE TIMES A(...JT) X0140 600 DC 610 I= 1.M X0141 Y(1) = 0.0 X0142 X0143 61- CONTINUE LL = v X0144 COST = C(JT)X0145 DO 605 I= 1.M X0146 AIJT = A(I + JT)X0147 IF (AIJT.EQ.0.) GO TO 602 X0148 COST = COST + AIJT + PE(1) XC149 DO 606 J = 1.M LL = LL + 1 X0150 X0151 Y(J) = Y(J) + AIJT + E(LL)X0152 606 CONTINUE X0153 GO TO 605 X0154 602 EL ≕ LL + M X0155 605 CONTINUE X0156 C COMPUTE PIVOT TOLERANCE X0157 $YMAX = J_0$ X0158 DO 620 I = 1+M X0159 YMAX = AMAX1(ADS(Y(I)),YMAX) X0160 620 CONTINUE X0161 TPIV = YMAX + TEXP X0162 С RETURN TO INVERSION ROUTINE, IF INVERTING X0163 IF (VER) GO TO 1114 X0164 C COST TOLERANCE CONTROL X0165 IF (TRIG.AND.JB.GE.-TPIV) GO TO 203 X0166 TRIG = .FALSE. X0167 IF (BB.GE.-TPIV) TRIG = .TRUE. X0168 SELECT PIVOT ROW X0169 C+ +ROW+ C AMONG EUS. WITH X=C, FIND MAXIMUM Y AMONG ARTIFICIALS, OR, IF NONE, X0170 GET MAX POSITIVE Y(1) AMONG REALS. X0171 C 1000 IR = U X0172 $AA = U \cdot J$ X0173 X0174 KG = .FALSE. DO 1050 I =1.M X0175 IF (X(I).NE.0.0.0R.Y(I).LE.TPIV) GO TO 1050 X0176 IF (JH(1)+EQ+0) GO TO 1044 X0177 IF (KQ) GO TO 1050 X0178 IF (Y(I).LE.AA) GO TO 1050 1045 X0179 GO TO 1047 X0180

	1044	IF (KQ) GO TO 1045	X0181
		KO = TRUF.	X0182
	1047		X0183
	1041		X0184
			¥0185
	1020	CONTINUE	×0194
		IF (IR-NE-0) GO 10 1099	XUI00
-	1001	AA = 1.0E+20	XU187
C		FIND MIN. PIVOT AMONG POSITIVE EQUATIONS	X0188
		DO I O I O I = I M	X0183
		IF (Y(I)+LE+TPIV+OR+X(I)+LE+0+0+OR+Y(I)+AA+LE+X(I)) GO TO 1010	X0190
		AA (= X(I)/Y(I)	X0191
		IR = I	X0192
	1010	CONTINUE	X0193
		IF (-NOT-NEG) GO TO 1099	X0194
r	51	AND REVOL AMONG MEGATIVE CONATIONS. IN WHICH Y/Y IS LESS THAN THE	¥0195
2	- F 4 1	NO PIVOL AMONG NEGATIVE EQUATIONS IN WHICH AT IS LESS THAN THE	X0195
C	MIN	IMUM X/Y IN THE POSITIVE EQUATIONS, THAT HAS THE LARGEST ABSE(T)	X0130
	1016	BB = - TPIV	X0197
		DO 1030 $I = 1.00$	X0198
		IF (X(I)+GE+0++CR+Y(I)+GE+BB+OR+Y(I)*AA+GT+X(I)) GO TO 1030	X0199
		BF = Y(1)	x0200
		IP = I	x0201
	1020		20202
_	1030		AU2U2
C	TES	ST FCR NO PIVOT ROW	X0203
	1099	IF (IR+LE+J) GO TO 207	X0204
C	# +P]	IV PIVOT ON (IR.JT)	X0205
С		LEAVE TRANSFORMED COLUMN IN Y(I)	X0206
	900	NUMPV = NUMPV + 1	X0207
		YI = -Y(IR)	X0208
		Y(IR) = -1	X0209
			x0210
r			
			¥(1)211
C		TRANSFORM INVERSE	X0211
C		DU 904 J = 1.0 M	X0211 X0212
C		DO $9-4$ J = 1.M L = LL + IR	X0211 X0212 X0213
C		DO $9-4$ J = 1,M L = LL + IR IF (E(L).NE.0.0) GO TO 905	X0211 X0212 X0213 X0214
C		DO $9-4$ J = 1,M L = LL + IR IF (E(L).NE.0.0) GO TO 905 LL = LL + M	x0211 x0212 x0213 x0214 x0215
		DO $9-4$ J = 1,M L = LL + IR IF (E(L).NE.0.0) GO TO 905 LL = LL + M GC TO 904	x0211 x0212 x0213 x0214 x0215 x0216
	9∪5	DO $9-4$ J = 1,M L = LL + IR IF (E(L).NE.0.0) GO TO 905 LL = LL + M GC TO 904 XY = E(L) / YI	x0211 x0212 x0213 x0214 x0214 x0215 x0216 x0217
	9∪ 5	DO $9-4$ J = 1,M L = LL + IR IF (E(L).NE.0.0) GO TO 905 LL = LL + M GC TO 904 XY = E(L) / YI PE(J) = PE(J) + COST # XY	x0211 x0212 x0213 x0214 x0214 x0215 x0216 x0217 x0218
	9∪5	DO 9-4 J = 1,M L = LL + IR IF (E(L) \cdot NE \cdot 0 \cdot 0) GO TO 905 LL = LL + M GC TO 904 XY = E(L) / YI PE(J) = PE(J) + COST * XY E(L) = 0.14	x0211 x0212 x0213 x0214 x0215 x0216 x0216 x0217 x0218
,	9∪ 5	DO 9-4 J = 1,M L = LL + IR IF (E(L) \cdot NE \cdot 0.0) GO TO 905 LL = LL + M GC TO 904 XY = E(L) / YI PE(J) = PE(J) + COST * XY E(L) = 0 \cdot 0 DO 904 J = 1.M	x0211 x0212 x0213 x0214 x0215 x0216 x0217 x0218 x0219
	9 ∪5	DU 9-4 J = 1,M L = LL + IR IF (E(L) \cdot NE \cdot 0.0) GO TO 905 LL = LL + M GC TO 904 XY = E(L) / YI PE(J) = PE(J) + COST * XY E(L) = 0.0 DO 906 I = 1.M	x0211 x0212 x0213 x0214 x0215 x0216 x0217 x0218 x0219 x0220
	9 ∪ 5	DU 9-4 J = 1,M L = LL + IR IF (E(L) \cdot NE \cdot 0.0) GO TO 905 LL = LL + M GC TO 904 XY = E(L) / YI PE(J) = PE(J) + COST * XY E(L) = 0.0 DO 906 I = 1.M LL = LL + 1	x0211 x0212 x0213 x0214 x0215 x0216 x0217 x0218 x0219 x0220 x0221
	905	DU 9-4 J = 1,M L = LL + IR IF (E(L) \cdot NE \cdot 0.0) GO TO 905 LL = LL + M GC TO 904 XY = E(L) / YI PE(J) = PE(J) + COST * XY E(L) = 0.0 DO 906 I = 1.M LL = LL + 1 E(LL) = E(LL) + XY * Y(I)	x0211 x0212 x0213 x0214 x0215 x0216 x0217 x0218 x0219 x0220 x0221 x0222
	9∪5 9∪6	DU 9-4 J = 1,M L = LL + IR IF (E(L) \cdot NE \cdot O \cdot O) GO TO 905 LL = LL + M GC TO 904 XY = E(L) / YI PE(J) = PE(J) + COST * XY E(L) = O \cdot U DO 906 I = 1 \cdot M LL = LL + 1 E(LL) = E(LL) + XY * Y(I) CONTINUE	x0211 x0212 x0213 x0214 x0215 x0216 x0217 x0218 x0219 x0220 x0221 x0222 x0223
	9∪5 9∪6 904	DU 9-4 J = 1,M L = LL + IR IF (E(L) \cdot NE \cdot O \cdot O) GO TO 905 LL = LL + M GC TO 904 XY = E(L) / YI PE(J) = PE(J) + COST * XY E(L) = O \cdot U DO 906 I = 1 \cdot M LL = LL + 1 E(LL) = E(LL) + XY * Y(I) CONTINUE CONTINUE	X0211 X0212 X0213 X0214 X0215 X0216 X0217 X0218 X0219 X0220 X0221 X0222 X0223 X0224
	905 906 904	$DU = 9 - 4 J = 1, M$ $L = LL + IR$ $IF (E(L) \cdot NE \cdot 0 \cdot 0) GO TO 905$ $LL = LL + M$ $GC TO 904$ $XY = E(L) / YI$ $PE(J) = PE(J) + COST + XY$ $E(L) = 0 \cdot 0$ $DO 906 I = 1 \cdot M$ $LL = LL + 1$ $E(LL) = E(LL) + XY + Y(I)$ $CONTINUE$ $TRANSFORM X$	x0211 x0212 x0213 x0214 x0215 x0216 x0217 x0218 x0219 x0220 x0221 x0222 x0223 x0223 x0224
	905 906 904	DU 9-4 J = 1+M L = LL + IR IF (E(L)+NE+C+C) GO TO 905 LL = LL + M GC TO 904 XY = E(L) / YI PE(J) = PE(J) + COST * XY E(L) = 0+U DO 906 I = 1+M LL = LL + 1 E(LL) = E(LL) + XY * Y(I) CONTINUE CONTINUE TRANSFORM X XY = X(IR) / YI	x0211 x0212 x0213 x0214 x0215 x0216 x0217 x0218 x0219 x0220 x0221 x0222 x0223 x0224 x0225 x0226
c c	905 906 904	DU = 9 - 4 J = 1 + M $L = LL + IR$ $IF (E(L) + NE + 0 + 0) GO = TO = 905$ $LL = LL + M$ $GC = TO = 904$ $XY = E(L) / YI$ $PE(J) = PE(J) + COST + XY$ $E(L) = 0 + 0$ $DO = 906 I = 1 + M$ $LL = LL + 1$ $E(LL) = E(LL) + XY + Y(I)$ $CONTINUE$ $TRANSFORM X$ $XY = X(IR) / YI$ $DO = 908 I = 1 + M$	x0211 x0212 x0213 x0214 x0215 x0216 x0217 x0218 x0219 x0220 x0221 x0222 x0223 x0222 x0223 x0224 x0225 x0226
ر ب	905 906 904	TRANSFORM TRVERSE $DU 9-4 J = 1.M$ $L = LL + IR$ $IF (E(L).NE.0.0) GO TO 905$ $LL = LL + M$ $GC TO 904$ $XY = E(L) / YI$ $PE(J) = PE(J) + COST * XY$ $E(L) = 0.U$ $DO 906 I = 1.M$ $LL = LL + 1$ $E(LL) = E(LL) + XY * Y(I)$ $CONTINUE$ $TRANSFORM X$ $XY = X(IR) / YI$ $DO 908 I = 1.M$ $XNEW = X(I) + XY * Y(I)$	x0211 x0212 x0213 x0214 x0215 x0216 x0217 x0218 x0219 x0220 x0221 x0222 x0223 x0222 x0223 x0224 x0225 x0226 x0227
c c	905 906 904	$DU = 9-4 J = 1,M$ $L = LL + 1R$ $IF (E(L) \cdot NE \cdot 0 \cdot 0) GO = 10 = 905$ $LL = LL + M$ $GC = 10 = 904$ $XY = E(L) / YI$ $PE(J) = PE(J) + COST * XY$ $E(L) = 0 \cdot 0$ $D0 = 906 I = 1,M$ $LL = LL + 1$ $E(LL) = E(LL) + XY * Y(I)$ $CONTINUE$ $TRANSFORM X$ $XY = X(IR) / YI$ $D0 = 906 I = 1, M$ $XNEW = X(I) + XY * Y(I)$	x0211 x0212 x0213 x0214 x0215 x0216 x0217 x0218 x0219 x0220 x0221 x0222 x0223 x0222 x0223 x0224 x0225 x0226 x0227 x0228
c	905 906 904	TRANSFORM INVERSE DU 9-4 J = 1.M L = LL + IR IF (E(L).NE.0.0) GO TO 905 LL = LL + M GC TO 904 XY = E(L) / YI PE(J) = PE(J) + COST * XY E(L) = 0.0 DO 906 I = 1.M LL = LL + 1 E(LL) = E(LL) + XY * Y(I) CONTINUE TRANSFORM X XY = X(IR) / YI DO 908 I = 1.M XNEW = X(I) + XY * Y(I) IF (VER.OR.XNEW.GL.D.OR.Y(I).GT.TPIV.OR.X(I).LT.0.) GO TO 907 MIL = 0.0	x0211 x0212 x0213 x0214 x0215 x0216 x0217 x0218 x0219 x0220 x0221 x0222 x0223 x0222 x0223 x0224 x0225 x0226 x0226 x0227 x0228 x0229
ر ت	905 906 904	DU 9-4 J = 1+M L = LL + IR IF (E(L) • NE • 0 • 0) GO TO 905 LL = LL + M GC TO 904 XY = E(L) / YI PE(J) = PE(J) + COST * XY E(L) = 0 • 0 DO 906 I = 1+M LL = LL + 1 E(LL) = E(LL) + XY * Y(I) CONTINUE TRANSFORM X XY = X(IR) / YI DO 908 I = 1, M XNEW = X(I) + XY * Y(I) IF (VER • OR • XNEW • GL • J • • OR • Y(I) • GT • TPIV • OR • X(I) • LT • 0 •) GO TO 907 X(I) = C • 0	x0211 x0212 x0213 x0214 x0215 x0216 x0217 x0218 x0219 x0220 x0221 x0222 x0223 x0222 x0223 x0224 x0225 x0226 x0227 x0228 x0229 x0230
ر ت	905 906 904	DU 9-4 J = 1.M L = LL + IR IF (E(L).NE.0.0) GO TO 905 LL = LL + M GC TO 904 XY = E(L) / YI PE(J) = PE(J) + COST * XY E(L) = 0.0 DO 906 I = 1.M LL = LL + 1 E(LL) = E(LL) + XY * Y(I) CONTINUE CONTINUE TRANSFORM X XY = X(IR) / YI DO 908 I = 1.M XNEW = X(I) + XY * Y(I) IF (VER.OR.XNEW.GL.D.OR.Y(I).GT.TPIV.OR.X(I).LT.0.) GO TO 907 X(I) = C.J GO TO 908	x0211 x0212 x0213 x0214 x0215 x0216 x0217 x0218 x0219 x0220 x0221 x0222 x0223 x0224 x0225 x0224 x0225 x0226 x0227 x0228 x0229 x0230 x0231
ر ت	9∪5 9∪6 904 904	DU 9-4 J = 1,M L = LL + IR IF (E(L).NE.0.0) GO TO 905 LL = LL + M GC TO 904 XY = E(L) / YI PE(J) = PE(J) + COST * XY E(L) = 0.0 DO 906 I = 1,M LL = LL + 1 E(LL) = E(LL) + XY * Y(I) CONTINUE TRANSFORM X XY = X(IR) / YI DO 908 I = 1, M XNEW = X(I) + XY * Y(I) IF (VER.OR.XNEW.GL.J.OR.Y(I).GT.TPIV.OR.X(I).LT.0.) GO TO 907 X(I) = C.J GO TO 908 X(I) = XNEW	x0211 x0212 x0213 x0214 x0215 x0216 x0217 x0218 x0219 x0220 x0221 x0222 x0223 x0224 x0225 x0224 x0225 x0226 x0227 x0228 x0229 x0230 x0231 x0232
ر ت	905 906 904 904	DU 9.4 J = 1,M L = LL + IR IF (E(L).NE.0.0) GO TO 905 LL = LL + M GC TO 934 XY = E(L) / YI PE(J) = PE(J) + COST * XY E(L) = 0.0 DO 906 I = 1.M LL = LL + 1 E(LL) = E(LL) + XY * Y(I) CONTINUE TRANSFORM X XY = X(IR) / YI DO 908 I = 1, M XNEW = X(I) + XY * Y(I) IF (VER.0R.XNEW.GL.3OR.Y(I).GT.TPIV.OR.X(I).LT.0.) GO TO 907 X(I) = C.J GO TO 938 X(I) = XNEW CONTINUE	X0211 X0212 X0213 X0214 X0215 X0216 X0217 X0218 X0219 X0220 X0221 X0222 X0223 X0224 X0225 X0224 X0225 X0226 X0227 X0228 X0229 X0230 X0231 X0232 X0233
с с	905 906 904 904	DU 9-4 J = 1,M L = LL + IR IF (E(L) • NE • 0 • 0) GO TO 905 LL = LL + M GC TO 934 XY = E(L) / YI PE(J) = PE(J) + COST * XY E(L) = 0 • 0 DO 906 I = 1 • M LL = LL + 1 E(LL) = E(LL) + XY * Y(I) CONTINUE TRANSFORM X XY = X(IR) / YI DO 908 I = 1 • M XNEW = X(I) + XY * Y(I) IF (VER • OR • XNEW • GL • J • • OR • Y(I) • GT • TPIV • OR • X(I) • LT • 0 •) GO TO 907 X(I) = C • J GO TO 908 X(I) = XNEW CONTINUE RESTORE Y(IR)	x0211 x0212 x0213 x0214 x0215 x0216 x0217 x0218 x0219 x0220 x0221 x0222 x0223 x0224 x0225 x0224 x0225 x0226 x0227 x0228 x0228 x0229 x0230 x0231 x0231 x0232 x0233 x0234
c c	905 906 904 904	DU 9-4 J = 1,M L = LL + IR IF (E(L) • NE • 0 • 0) GO TO 905 LL = LL + M GC TO 934 XY = E(L) / YI PE(J) = PE(J) + COST * XY E(L) = 0 • 0 DO 906 I = 1,M LL = LL + 1 E(LL) = E(LL) + XY * Y(I) CONTINUE CONTINUE CONTINUE TRANSFORM X XY = X(IR) / YI DO 968 I = 1, M XNEW = X(I) + XY * Y(I) IF (VER • OR • XNEW • GL • J • • OR • Y(I) • GT • TPIV • OR • X(I) • LT • 0 •) GO TO 907 X(I) = C • - GO TO 908 X(I) = XNEW CONTINUE RESTORE Y(IR) Y(IR) = -YI	x0211 x0212 x0213 x0214 x0215 x0216 x0217 x0218 x0219 x0220 x0221 x0222 x0222 x0223 x0224 x0225 x0226 x0225 x0226 x0227 x0228 x0228 x0229 x0230 x0231 x0231 x0232 x0231 x0232 x0234 x0234
c c	905 906 904 904	DU 9-4 J = 1+M L = LL + IR IF (E(L)+NE+0+0) GO TO 905 LL = LL + M GC TO 904 XY = E(L) / YI PE(J) = PE(J) + COST * XY E(L) = 0+0 DO 906 I = 1+M LL = LL + 1 E(LL) = E(LL) + XY * Y(I) CONTINUE CONTINUE TRANSFORM X XY = X(IR) / YI DO 968 I = 1+M XNEW = X(I) + XY * Y(I) IF (VER+OR+XNEW+GL+D++OR+Y(I)+GT+TPIV+OR+X(I)+LT+0+) GO TO 907 X(I) = C+	x0211 x0212 x0213 x0214 x0215 x0216 x0217 x0218 x0219 x0220 x0221 x0222 x0223 x0222 x0223 x0224 x0225 x0226 x0227 x0226 x0227 x0228 x0229 x0230 x0231 x0231 x0231 x0232 x0233 x0234 x0235
c c	905 906 904 908	D0 9-4 J = 1,M L = LL + IR IF (E(L).NE.0.0) G0 TO 905 LL = LL + M GC TO 904 XY = E(L) / YI PE(J) = PE(J) + COST * XY E(L) = 0.0 D0 906 I = 1,M LL = LL + 1 E(LL) = E(LL) + XY * Y(I) CONTINUE TRANSFORM X XY = X(IR) / YI D0 908 I = 1, M XNEW = X(I) + XY * Y(I) IF (VER.OR.XNEW.GL.D.OR.Y(I).GT.TPIV.OR.X(I).LT.0.) G0 TO 907 X(I) = C.J GO TO 908 X(I) = XNEW CONTINUE RESTORE Y(IR) Y(IR) = -YI X(IR) = -YI X(IR) = -YI X(IR) = -YI	x0211 x0212 x0213 x0214 x0215 x0216 x0217 x0218 x0219 x0220 x0221 x0222 x0223 x0222 x0223 x0224 x0225 x0226 x0227 x0228 x0226 x0227 x0228 x0229 x0230 x0231 x0231 x0235 x0234 x0235
с с	905 906 904 904	DU 904 J = 1,M L = LL + IR IF (E(L).NE.0.0) GO TO 905 LL = LL + M GC TO 904 XY = E(L) / YI PE(J) = PE(J) + COST * XY E(L) = 0.0 DO 906 I = 1,M LL = LL + 1 E(LL) = E(LL) + XY * Y(I) CONTINUE TRANSFORM X XY = X(IR) / YI DO 908 I = 1, M XNEW = X(I) + XY * Y(I) IF (VER.0R.XNEW.GL.0.0R.Y(I).GT.TPIV.OR.X(I).LT.0.) GO TO 907 X(I) = C.0 GO TO 908 X(I) = XNEW CONTINUE RESTORE Y(IR) Y(IR) = -YI X(IR) = -XY IF (VER) GO TO 1102 L = LL + 1 ERESTORE Y(IR) Y(IR) = -XY F (VER) GO TO 1102 L = LL + 1 ERESTORE Y(IR) Y(IR) = -YI X(IR) = -XY IF (VER) GO TO 1102 L = LL + 1 ERESTORE Y(IR) Y(IR) = -YI X(IR) =	x0211 x0212 x0213 x0214 x0215 x0216 x0217 x0218 x0219 x0220 x0221 x0222 x0223 x0222 x0223 x0224 x0225 x0226 x0227 x0226 x0227 x0228 x0229 x0230 x0231 x0231 x0232 x0234 x0235 x0236
с с	905 906 904 904 221	DU 9-4 J = 1,M L = LL + IR IF (E(L).NE.0.0) GO TO 905 LL = LL + M GC TO 904 XY = E(L) / YI PE(J) = PE(J) + COST * XY E(L) = 0.0 DO 906 I = 1.M LL = LL + 1 E(LL) = E(LL) + XY * Y(I) CONTINUE CONTINUE TRANSFORM X XY = X(IR) / YI DO 908 I = 1.M XNEW = X(I) + XY * Y(I) IF (VER.OR.XNEW.GL.0OR.Y(I).GT.TPIV.OR.X(I).LT.0.) GO TO 907 X(I) = C.0 GO TO 908 X(I) = XNEW CONTINUE RESTORE Y(IR) Y(IR) = -YI X(IR) = -XY IF (VER) GO TO 1102 IA = JH(IR)	x0211 x0212 x0213 x0214 x0215 x0216 x0217 x0218 x0219 x0220 x0221 x0222 x0223 x0222 x0223 x0224 x0225 x0226 x0227 x0226 x0227 x0228 x0226 x0227 x0228 x0229 x0230 x0231 x0231 x0232 x0231 x0235 x0236
с с	905 906 904 904 221	DU 9-4 J = 1,M L = LL + IR IF (E(L).NE.0.0) GO TO 905 LL = LL + M GC TO 904 XY = E(L) / YI PE(J) = PE(J) + COST * XY E(L) = 0.0 DO 906 I = 1,M LL = LL + 1 E(LL) = E(LL) + XY * Y(I) CONTINUE CONTINUE TRANSFORM X XY = X(IR) / YI DO 908 I = 1. M XNEW = X(I) + XY * Y(I) IF (VER.0R.XNEW.GL.J0R.Y(I).GT.TPIV.0R.X(I).LT.0.) GO TO 907 X(I) = C.J GO TO 908 X(I) = XNEW CONTINUE RESTORE Y(IR) Y(IR) = -YI X(IR) = -YI X(IR) = -YI X(IR) = -YI X(IR) = 0 IF (VER.0G TO 1102 IA = JH(IR) IF (IA.GT.C) KB(IA) = 0	X0211 X0212 X0213 X0214 X0215 X0216 X0217 X0218 X0220 X0221 X0222 X0223 X0222 X0223 X0224 X0225 X0226 X0227 X0226 X0227 X0228 X0226 X0227 X0228 X0229 X0230 X0231 X0231 X0232 X0231 X0232 X0233 X0234 X0235 X0237 X0238 X0239

•

	JH(IR) = JT	X0241	
	IF (NUMPV.LE.M) GO TO 1200	X0242	
C TE	ST FOR INVERSION ON THIS ITERATION	X0243	
	INVC = INVC + 1	X0244	
	IF (INVC.EG.NVER) GO TO 1320	X0245	
	GO TU 1200	X0246	
C 🗰 🛛 ĉ	ND OF ALGORITHM, SET EXIT VALUES	X0247	
C	INFINITE SCLUTION	X0248	
207	κ = 2	X0249	
	GO TO 250	X0250	
C	PROBLEM IS CYCLING	X0251	
160	K = 4	X0252	
	GO TO 250	X0253	
C	FEASIBLE OR INFEASIBLE SOLUTION	X0254	
2-3	K = 0	X0255	
250	IF (\bullet NOT \bullet FEAS) K = K + 1	X0256	
	DO 1399 J = 1+N	X0257	
	XX = 0.0	X0258	
	K dJ = K u(J)	X0259	
	$1F(KBJ_{\bullet}NL_{\bullet\cup}) XX = X(KUJ)$	X0260	
	KB(J) = LL	X0261	
1399	CONTINUE	X0262	
C	SET IKOUTI	X0263	
1392	DO 1393 I = 1,7	X0264	
	KOUT(I) = KU(I)	X0265	
1393	CONTINUE	X0266	
	RETURN	X0267	
	END	X0268	
C		MATRIX INVERSION WITH ACCUMPANYING SOLUTION OF LINEAR EQUATIONS SUBROUTINE MATINV(A,N,8,M,1NA,1N2,1P,1SING)	M0001 30002
---	-----	--	----------------
C			MCC03
		DIMENSION B(1), INA(1), INB(1), IP(1)	NOC04
		LOGICAL IP	140005
		DIMENSION A(65.65)	HUCOG
c			M0007
č		INITIALIZATION	1000B
			MOODA
			MU010
	2	IFIUF - OFALDEO	M0010
~	20		MUCII
C	510		M0012
		UU = 575 I = 1	M0013
~		AMAA F JOU Frankright For Divert Frankright	M0014
C		SEARCH FOR PIVOI ELEMENT	MOOIS
		$DO I DS J = 1 \cdot N$	MCUID
		IF (IP(J)) 60 10 105	MOCIT
		DO[1]UK = 1.N	MOOTA
		IF (IP(K) •OR• ABS(AMAX)•GE•ABS(A(J•K))) GO TO 100	M0019
		IROW = J	M0020
		ICOL = K	M0021
		$AMAX = A(J_{\bullet}K)$	MOC22
	100	CONTINUE	10023
	105	CONTINUE	M0024
		IF (AMAX.EG.0.0) GO TO 750	M0025
		$IP(ICOL) = \cdot TRUE \cdot$	M0026
C		INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL	M0027
		r (IROW-EU-ICOL) GO TO 260	M0028
		00 200 L = 1,N	M0029
		SWAP = A(IROW)L	M0030
		$A(IROW_{\bullet}L) = A(ICOL_{\bullet}L)$	M0031
		A(ICOL+L) = SWAP	M0032
	200	CONTINUE	M0033
		IF (M.FQ.C) GO TO 260	M0034
		SWAP = B(IRUN)	M0035
		F(1ROW) = F(1COL)	M0036
		B(1COL) = SWAP	M0037
	264	INA(1) = IROW	MG0 38
	200	INE(1) = IC(1)	M0032
r		DIVIDE DIVCT ROW BY RIVOT FLEMENT	M0040
C		A (1 C) + 1 C (1 A + 1 A)	M0041
		$\frac{1}{2} = \frac{1}{2} = \frac{1}$	M0042
		$\frac{1}{100} = \frac{1}{100} + \frac{1}$	M0042
		A(I(OL)L) = A(I(OL)L) / AMAX	MODAL
	350	CUNTINUE	N0044
-		$IF (M \bullet NE \bullet c) = B(ICOL) = B(ICOL) / A^{*}AX$	M0045
C		COMPLETE THE PIVOT	M0046
	380	DO 550 LL = $1.N$	N0047
		IF (LL+EU+ICOL) SU TO 550	M0048
		SNAP = A(LL,ICOL)	M0049
		$A(LL,ICUL) = U \cdot U$	00056
		00.450 L = 1.00	N0051
		$A(LL_{0}L) = A(LL_{0}L) - A(IC_{0}L_{0}L) * S_{0}AP$	M0052
	45-	CUNTINUL	M0053
		IF (M.NE.J) $B(LL) = B(LL) - B(ICOL) + SWAP$	MOC 54
	550	CONTINUE	10055
	575	CONTINUE	MCC56
	6	IF (M.LT.J) RETURN	M0057
C		INTERCHANGE CULUMNS	M0056
		$\partial C = 71 \cup I = 1 \cdot N$	MUL59

	M0060
L = N + I - I	N0061
IF (INA(L) EQ.INB(L)) GU TO 710	10001
$IRO_{W} = INA(L)$	MCUDZ
1001 = 10011	MCC63
	M0064
DO 705 K = 1.N	10065
SWAP = A(K, IROW)	MOUBS
$A(K \bullet IRCW) = A(K \bullet ICOL)$	M0066
$A(K \cdot ICOL) = SWAP$	M0067
7-5 CONTINUE	M0068
710 CONTINUE	M0069
74J RETURN	M0070
C SINGULARITY FLAG	M0071
$75 \cup 1 \text{SING} = 1 + N - 1$	NU072
GC TO 600	M0073
END	M0074

Appendix B

MATRIX NOTATION AND FURTHER PROOFS

The derivations in the preceding sections would be facilitated by the use of matrix notation rather than subscripted variables. We introduce the following symbols to correspond to the subscripted variables used in Sec. 3.

Subscripted Variable	<u>Matrix</u>	<u>Size of Matrix</u>
^a ij	Α	M×N
^b i	В	M×1
y _j	Y	N×1
ďj	D	N×1
c _j	С	N×1
"i	π	M×1
r _{it}	R	M×M
× i	x	N×1

The single-column matrices may also be thought of as vectors. We use here the convention that an operator applied to a matrix means that the operator operates on each element of the matrix. For example, log Y is the Nxl matrix consisting of

The superscript τ indicates the transposition of a matrix. We assume that the elementary results of matrix theory are known. For example, it is known that the inverse of an invertable symmetric matrix is symmetric. The square diagonal matrix whose diagonal is one of the vectors previously defined will be denoted by the previously defined vector in elongated type; that is,

D = diag (D)

and

$$\gamma = diag(\gamma)$$

Equations (3.2) and (3.7) in matrix notation are

$$AX = B \tag{B.1}$$

$$X = Y \left(\int_{-1}^{-1} A^{\tau} \pi - \int_{-1}^{-1} C - \log Y \right).$$
 (B.2)

-68-

To see the ease of matrix notation, we may substitute (B.2) into (B.1) to get

$$AYD^{-1}A^{\tau}\pi = B + AY(D^{-1}C + \log Y)$$
 (B.3)

By letting

$$\mathbf{R} = \mathbf{A} \mathbf{Y} \mathbf{D}^{-1} \mathbf{A}^{\mathbf{T}} \tag{B.4}$$

and

$$S = B + AY([)^{-1}C + \log Y)$$
, (B.5)

we see that

$$R\pi = S \tag{B.6}$$

corresponds to (3.10).

In Sec. 4, we evaluated

$$\sum_{j=1}^{N} \frac{\theta_{j}^{2} d_{j}}{y_{j}}$$
(B.7)

but we did not give the details of the computation. The algebra of this evaluation is very difficult unless matrix algebra is used. In matrix notation, (B.7) is $\theta^{\tau} D Y^{-1} \theta$, where θ = X-Y. From (B.2) we have

$$\Theta = Y \left(\int_{-1}^{-1} A^{\tau} \pi - \int_{-1}^{-1} C - \log Y \right) - Y .$$
 (B.8)

Hence,

$$\Theta^{\tau} D Y^{-1} \Theta = (\pi^{\tau} A D^{-1} - C^{\tau} D^{-1} - \log Y^{\tau}) Y D Y^{-1} \Theta - Y^{\tau} D Y^{-1} \Theta$$
$$= \pi^{\tau} A (D^{-1} Y D Y^{-1}) \Theta - (C^{\tau} D^{-1} + \log Y^{\tau}) D Y Y^{-1} \Theta - Y^{\tau} Y^{-1} D \Theta$$
$$= \pi^{\tau} A \Theta - (C^{\tau} D^{-1} + \log Y^{\tau}) D \Theta - D^{\tau} \Theta . \qquad (B.9)$$

Since AX = B, $A\Theta = AX-AY = B-AY$. Also, in the chemical equilibrium formulation,

$$D^{\tau}\Theta = \sum_{j=1}^{n} \Theta_{j} - \sum_{j=n+1}^{N} \Theta_{j} = \sum_{k=1}^{p} \left(\sum_{j \in \langle k \rangle} \Theta_{j} - \Theta_{k+m} \right) = 0$$

and

$$(C^{T})^{-1} + \log Y^{T}) [\theta]$$

$$= \sum_{j=1}^{n} (c_{j} + \log y_{j}) \theta_{j} + \sum_{j=n+1}^{N} \log y_{j}(-\theta_{j})$$

$$= \sum_{k=1}^{p} \left(\sum_{j \in \langle k \rangle} \theta_{j} (c_{j} + \log y_{j}) - \theta_{k} \log S_{k} \right)$$

$$= \sum_{k=1}^{p} \left(\sum_{j \in \langle k \rangle} \theta_{j} (c_{j} + \log y_{j} - \log S_{k}) \right)$$

$$= \sum_{k=1}^{n} \theta_{k} (c_{k} + \log \hat{y}_{k}) .$$

$$= \sum_{j=1}^{2} \theta_{j} (c_{j} + \log \hat{y}_{j})$$

$$\sum_{j=1}^{N} \frac{\theta_{j}^{2} d_{j}}{y_{j}} = \sum_{i=1}^{m} \pi_{i} \left(b_{i} - \sum_{j=1}^{n} a_{ij} y_{j} \right) - \sum_{j=1}^{n} \theta_{j} (c_{j} + \log \hat{y}_{j}) \quad (B.10)$$

in the context of the chemical equilibrium problem used in Sec. 4.

Next we wish to show that

$$\sum_{j=1}^{N} \frac{\theta_{j}^{2} d_{j}}{y_{j}} \ge 0$$

as stated in (4.14). First, we prove

Lemma 1: Let y_1, y_2, \ldots, y_r be positive numbers and let $\theta_1, \theta_2, \ldots, \theta_r$ be any real numbers. Let

$$G = \sum_{j=1}^{r} \frac{\theta_{j}^{2}}{y_{j}} - \frac{\left(\sum_{j=1}^{r} \theta_{j}\right)^{2}}{\sum_{j=1}^{r} y_{j}}$$

Then,

i) $G \ge 0$ ii) G = 0 if and only if

$$\frac{\theta_1}{y_1} = \frac{\theta_2}{y_2} = \dots = \frac{\theta_r}{y_r}$$

<u>Proof</u>: Let $\alpha_j = \theta_j / y_j$, $j=1,2,\ldots,r$. Then,

$$G = \sum_{j=1}^{r} \alpha_{j}^{2} y_{j} - \frac{\left(\sum_{j=1}^{r} \alpha_{j} y_{j}\right)^{2}}{\sum_{j=1}^{r} y_{j}}$$

$$= \left(\sum_{j=1}^{r} y_{j}\right)^{-1} \left[\left(\sum_{j=1}^{r} y_{j}\right) \left(\sum_{j=1}^{r} \alpha_{j}^{2} y_{j}\right) - \left(\sum_{j=1}^{r} \alpha_{j} y_{j}\right)^{2} \right]$$

$$= \left(\sum_{j=1}^{r} y_{j}\right)^{-1} \left[\sum_{i=1}^{r} \left(\sum_{j=1}^{r} \left(\alpha_{j}^{2} y_{i} y_{j} - \alpha_{i} \alpha_{j} y_{i} y_{j}\right)\right) \right]$$

$$= \left(\sum_{j=1}^{r} y_{j}\right)^{-1} \left[\sum_{i=1}^{r} \left(\sum_{j=1}^{i} \left(\alpha_{j}^{2} y_{i} y_{j} - 2\alpha_{i} \alpha_{j} y_{i} y_{j} + \alpha_{i}^{2} y_{i} y_{j}\right)\right) \right]$$

$$= \left(\sum_{j=1}^{r} y_{j}\right)^{-1} \left(\sum_{j$$

which is result i). The proof is completed by noting that G = 0 if and only if $\alpha_i = \alpha_j$ for all i and j; this proves ii).

Now we can prove

Theorem 1: In the chemical equilibrium problem

i)
$$\sum_{j=1}^{N} \frac{\theta_{j}^{2} d_{j}}{y_{j}} \ge 0$$

ii)
$$\sum_{j=1}^{N} \frac{\theta_{j}^{2} d_{j}}{y_{j}} = 0 \quad \text{if and only if there exist}$$

numbers $\alpha_1, \alpha_2, \ldots, \alpha_p$ such that

a)
$$\theta_j = \alpha_{[j]} y_j$$
 $j \le n$

b)
$$\theta_j = \alpha_{j-n} S_{j-n}$$
. $j > n$

<u>Proof</u>: The proof follows by noting that for i > n

$$\boldsymbol{\theta}_{\mathbf{i}} = \sum_{\mathbf{j} \in \langle \mathbf{i} - \mathbf{n} \rangle} \boldsymbol{\theta}_{\mathbf{j}} \ .$$

Then,

$$\sum_{j=1}^{N} \frac{\theta_{j}^{2} d_{j}}{y_{j}} = \sum_{j=1}^{n} \frac{\theta_{j}^{2}}{y_{j}} - \sum_{k=1}^{p} \frac{\theta_{k+n}^{2}}{s_{k}}$$
$$= \sum_{k=1}^{p} \left(\sum_{j \in \langle k \rangle} \frac{\theta_{j}^{2}}{y_{j}} - \frac{\left(\sum_{j \in \langle k \rangle} \theta_{j} \right)^{2}}{\sum_{j \in \langle k \rangle} y_{j}} \right) \ge 0$$

by lemma 1. Furthermore, by lemma 1, if the equality holds, then for each k there is a number α_k such that $\theta_j = \alpha_k y_j$ if $j \in k$. This, noting that b) follows from the fact that

$$\Theta_i = \sum_{j \in (i-n)} \Theta_j \quad \text{for } i > n,$$

completes the proof of the theorem.

Our final result is

<u>Theorem 2</u>: In the chemical equilibrium problem, with (y_1, y_2, \dots, y_n) feasible and $\theta_1, \theta_2, \dots, \theta_n$ calculated as in (4.7)

i)
$$\sum_{j=1}^{n} \theta_{j} (c_{j} + \log \hat{y}_{j}) \leq 0$$

ii)
$$\sum_{j=1}^{n} \theta_{j} (c_{j} + \log \hat{y}_{j}) = 0 \quad \text{if and only if}$$

 (y_1, y_2, \dots, y_n) is optimal. <u>Proof</u>: i) follows from Theorem 1, (B.10), and the fact that (y_1, y_2, \dots, y_n) is feasible.

To prove ii), we assume that

$$\sum_{j=1}^{n} \theta_j (c_j + \log \hat{y}_j) = 0.$$

Then,

$$\sum_{j=1}^{N} \frac{\theta_{j}^{2} d_{j}}{y_{j}} = 0 ,$$

and θ_j is as in ii) of Theorem 1. Combining b) of Theorem 1 and (4.12) we have

$$\theta_{k+n} = S_k \pi'_{m+k} = \alpha_k S_k$$

or

$$\alpha_k = \pi'_{m+k}$$
.

Next, we combine a) of Theorem 1 with (4.7) to get

$$\Theta_{j} = y_{j} \left[\sum_{i=1}^{m} \pi_{i}^{i} a_{ij} - c_{j} - \log \hat{y}_{j} + \pi_{[j]+m}^{i} \right]$$

$$= y_j \alpha_{[j]} = y_j \pi_{[j]}^{\dagger} + m$$

or

$$\sum_{i=1}^{n} \pi_i^{i} a_{ij} - c_j - \log \hat{y}_j = 0$$

This last result is the optimality condition for (y_1, y_2, \ldots, y_n) as given by (1.4), and this demonstrates the forward implication of ii). The converse follows from the fact that optimality implies that the objective function cannot be decreased.

REFERENCES

- Shapiro, N. Z., and L. S. Shapley, <u>Mass Action Laws</u> and the Gibbs Free Energy Function, The RAND Corporation, RM-3935-1-PR, September 1964.
- Dantzig, G. B., <u>Linear Programming and Extensions</u>, The RAND Corporation, R-366-PR, August 1963. Also published by Princeton University Press, Princeton, New Jersey, 1963.
- 3. Kaplan, Wilfred, <u>Advanced Calculus</u>, Addison-Wesley Press, Inc., Cambridge, Massachusetts, 1952.
- 4. Clasen, R. J., <u>The Linear-Logarithmic Programming</u> <u>Problem</u>, The RAND Corporation, RM-3707-PR, June 1963.
- 5. White, W. B., S. M. Johnson, and G. B. Dantzig, <u>Chemical Equilibrium in Complex Mixtures</u>, The RAND Corporation, P-1059, October 8, 1957. Also published in J. Chem. Phys., 28 (1958) 751-755.
- 6. International Business Machines Corporation, "IBM 7040/7044 Operating System, FORTRAN IV Language," IBM Systems Reference Library, Form C28-6329, Poughkeepsie, New York, 1963.
- 7. Dantzig, G. B., and J. C. DeHaven, "On the Reduction of Certain Multiplicative Chemical Equilibrium Systems to Mathematically Equivalent Additive Systems," J. Chem. Phys., 36 (1962) 2620-2627.
- 8. Shapiro, N. Z., <u>A Generalized Technique for Eliminating</u> <u>Species in Complex Chemical Equilibrium Calculations</u>, The RAND Corporation, RM-4205-PR, August 1964.
- 9. Dantzig, G. B., J. C. DeHaven, I. Cooper, S. M. Johnson, E. C. DeLand, H. E. Kanter, and C. F. Sams, "A Mathematical Model of the Human External Respiratory System," <u>Perspectives in Biol. & Med.</u>, <u>4</u> (1961) 324-376.
- 10. Maloney, J. V., Jr., M.D., J. C. DeHaven, E. C. DeLand, and G. B. Bradham, M.D., <u>Analysis of Chemical Con-</u> <u>stituents of Blood by Digital Computer</u>, The RAND Corporation, RM-3541-PR, April 1963.

- 11. DeHaven, J. C., and E. C. DeLand, <u>Reactions of Hemoglobin</u> and Steady States in the Human Respiratory System: An <u>Investigation Using Mathematical Models and an Elec-</u> <u>tronic Computer</u>, The RAND Corporation, RM-3212-PR, December 1962.
- 12. DeHaven, J. C., E. C. DeLand, N. S. Assali, and W. Manson, <u>Physiochemical Characteristics of Placental Transfer</u>, The RAND Corporation, P-2565, March 1962.
- 13. Warga, J., "A Convergent Procedure for Solving the Thermo-Chemical Equilibrium Problem," J. Soc. Indust. Appl. Math., 11 (1963) 594-606.