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An elegant and powerful technique for the analysis of chemical equilibrium exists but

remains relatively unknown in the thermophysics community. The technique, known as
the method of element potentials, provides a superior means for solving complicated prob-
lems, including those involving multiple phases. This paper describes the basic method,
its origins and connection to probability theory, and various algorithms for its effective
implementation in computer calculations. A sample of computer codes available are de-
scribed. The simplicity and utility of the concept of element potentials makes a strong
case that it may well be the preferred method of advanced instruction on chemical equi-
librium. The method appears extremely flexible and robust. The various programs that
have been developed and tested by many users in difficult problems in sooting combus-
tion, optical materials fabrication, and other multi—phase chemical problems demonstrate
its versatility and utility.

Nomenclature
A jacobian
G total Gibbs functional
g molal Gibbs functional
£ Lagrangian
m phase index
n atomic population number per species
Af moles
P thermodynamic pressure
K universal gas constant
S entropy
T thermodynamic temperature
t time
V volume

a atomic population constraint
6 variation or infinitesimal difference
A change in quantity
A Lagrange multiplier
X mole fraction

Subscripts

i,j,k,m index counters

* Aerospace Engineer, AIAA Senior Member
i" Graduate Student

This paper is declared a work of the U.S. Government and is
not subject to copyright protection in the United States.

Introduction

Solving the problem of chemical equilibrium poses a
difficult challenge for numerical computation. Formu-
lation of the basic problem manifests itself in several
ways. Traditionally, and what is taught in textbooks,
one utilizes the concept of equilibrium constants. This
makes it necessary to identify the set of reactions that
occur and determine the associated equilibrium con-
stants. A set of non-linear algebraic equations for the
mol numbers of each species then requires a solution.
This poses a very difficult task for anything but small
systems. Other methods exist that require the min-
imization of the thermodynamic Gibbs functional by
adjusting the mols of each species. This adjustment
takes into account particular atomic constraints. Typ-
ically, many variables appear and one must take great
care to insure non-negative calculated mols for each
species. In the presence of important but rare species
in the system, the difficulty of the task becomes evi-
dent.

In search of a better way to solve combustion-
equilibrium problems, the thermodynamics commu-
nity developed and occasionally re-invented a "lost
method", the so-called method of element potentials.
One of the early appearances of this technique was re-
ported by Powell and Sarner1 in 1959. The so-called
RAND method for equilibrium calculation as described
by Clasen2 in 1965 develops a general algorithmic ap-
proach essential for effective implementation of the
method. In 1967 White3 discussed the computational

1
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advantages of the method, while Bigelow4 in 1970
extended the aspects of the method pertaining to non-
linear programming. Also in 1970, Van Zeggeren and
Story5 presented some of the history and details of the
method's development. In the 1980's the basic method
apparently was re-discovered by Reynolds6 of Stanford
University and implemented for the numerical calcu-
lation of oxidation and vapor deposition processes by
McAffee, et. al.7'8 Reynolds further developed the
"dual problem" and authored a very robust numerical
implementation into a computer program called STAN-
JAN.6 More recently, Myers9 wrote the only textbook
available, to the authors' knowledge, that described
this method in detail suitable for course instruction.
Myers also reported his classroom experiences and stu-
dent response to the method of element potentials in
his thermodynamics course at the University of Wis-
consin.10

With this paper, we intend to (re-)acquaint the
thermophysics community with the method of element
potentials and to keep its utility, elegance, and power
at the forefront of teaching and research in combustion
and related thermophysical problems. Specifically,
the author describes the basic method and algorithm
for numerical implementation, some examples demon-
strating the method, and a list of available computer
programs suitable for classroom use. To serve an ed-
ucational purpose, the paper will develop the theory
and method from an elementary outline of Lagrange
multipliers, followed by the use of this technique in
element potentials.

The Equilibrium Constant Approach
The determination of chemical composition of a mix-

ture of reactive species constitutes an important aspect
of the theory of chemical reactions. Typically, condi-
tions for equilibrium are desired at a given temper-
ature and pressure. From the basic laws of thermo-
dynamics a variational principle applies either to the
mixture entropy or the potential function called the
Gibbs function. At equilibrium conditions, the mix-
ture entropy must be maximized while the correspond-
ing Gibbs function must be minimized. Combining the
first and second laws of thermodynamics with the defi-
nition for the Gibbs function, G(T, P) = U+PV-TS,
the conditions for a minimum require that

6G - V6P + S6T < 0. (1)

Consider a simple reactive mixture having a general
chemical equation of the form

+ ^2 £2 T^ 1/3Ca + 1/464 (2)

where vk and Ck represent the stoichiometric coef-
ficients and chemical constituents respectively. At
equilibrium, the mixture Gibbs function must be a

minimum. Therefore, any small variation in G is rep-
resented as

SG = + /k&A/i + AsAAfs + £4AA/4 (3)

where A/& are the moles of species k and fik represent
the molal Gibbs functions which are constant for a
given T, P. Balancing the chemical equation provides
dependence relations among the moles:

V*) VQ VA
dM2 = -*AA/i AA/"3 = —2-AA/i SAf4 = —^AA/iv\ v\ v\

(4)
Since G must decrease, this implies that

(Ai^i + /*2^2 — M3^3 — ̂ 4^4) AA/i < 0. (5)

For arbitrary variations in A/i, the principle for min-
imum Gibbs function implies that the term in paren-
theses must vanish:

(6)

producing the equation of reaction equilibrium. For a
perfect gas mixture the electrochemical potential for
each species is given by

(7)

where X represents the mol fraction of species i. For
convenience, the change in the Gibbs function for the
complete unit reaction is

(8)

products reactants

Using (7) and (6) for the simple reactive mixture and
cancelling terms gives

AG r- (9)

From the definition of the partial molal Gibbs function,
an arbitrary reference pressure PQ may be used such
that

g(T,P)=gQ(T)+Kr]n£-. (10)
^o

By substitution into 9 and rearranging, we get

AGr,0f AGr o(T) 1 'X"* AT4" /P \
6XP 1 ———KT~~ f = X^X"* ~P I( i*-1 ) .<*! <*2 . V^O/

(11)
Both sides of this expressions must now be functions
of temperature only. Therefore, one defines the equi-
librium constant for the reaction as

KP(T) = (12)
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For a given temperature and pressure, Kp is indeed
a constant. An interesting though unexplored inter-
pretation arises when we write Kp using the left-hand
side of (11):

KP(T) = exp UT /' (13)

This is the function tabulated in thermo-chemical
books. The functional form of the expression suggests
that Kp can be interpreted as a probability density
functional for the energy e = AGr;0. In this case, the
normalization condition

would apply, suggesting the PDF

Kp(e\T) = UT -™ (15)

Without further elaboration, we will find inspiration in
this expression when developing the numerical solution
to the alternative method of element potentials below.

Solving a chemical equilibrium problem using the
equilibrium constant method requires that we evaluate
Kp using the right-hand side of Eqn (13). Tabulated
values for the molal enthalpy and entropy exist, if tab-
ulated values of g are not available. So, for a given
temperature, Kp is known. If the objective is to calcu-
late the mole fractions of constituents, given the rela-
tive atomic abundance, then the additional equations
provide enough information to obtain a unique solu-
tion. For the simple reactive mixture with m atomic
elements composing all species present, we would have

X3 ^4 P_

^o
the normalization constraint

4

(16)

(17)

and m additional constraints representing the given
abundance of atomic elements:

i=i
(18)

where jV = £].A/i equals the total number of con-
stituent moles. Let £ represent the degree of reaction
proceeding from reactants to products at equilibrium
(*). The stoichiometric dependence conditions are
then

JV* = N° - £>! (19)
jV* = A/;° - f z/2 (20)

Z Z T> ^ \ v/

^3*=^3°+^3 (21)

AT; = jv4° + (z/4 (22)

Adding the total and simplifying gives the total num-
ber of moles in the mixture as

Af = T Nf + + "3 - "2 - (23)

To solve a given problem, Eqn. (23) can be combined
with (18) to eliminate Af. The atomic constraints
(18) then may be solved for A^(£) if possible. Finally,
Eqn. (16) is solved for £, by iteration if necessary. Ex-
amples using this procedure are given below.

The Method of Lagrange Multipliers
Lagrange multipliers are used in the theoretical so-

lution of problems of the form

F(x) ==> min

subject to the constraints

Ck(x)=ak , A; = l,. . .

(24)

(25)

In general, F and Ck may be nonlinear functions of
the solution vector x = (o;i,X2, ...,xn). The variation
of Fis

where Hi =

For F to be a minimum with respect to arbitrary varia-
tions, SF must equal zero for arbitrary Sxi that satisfy
the constraints

= Aiik
ftC1

Pi = 0 where Aifc = —± (27)

If there are n variables and the system is subject to m
constraints, only n — m of the variables may be varied
freely. To examine the conditions under which 6F is
zero for arbitrary variations of the free x^ the changes
in the restricted Xi must be represented in terms of
the changes in the free ones and then substituted for
the changes in the restricted variables in (26). This
substitution is equivalent to subtracting a linear com-
bination of the equations (27) from (26) such that the
restricted dxi drop out of the result. This yields

k=l k=l
(28)

where the coefficients A^ must be chosen to eliminate
the restricted 6xi. To eliminate the restricted 5x^ the
coefficient of each must be zero. So for these x«,

(29)
fc=i

The remaining Xi can be varied freely, but there must
be no variation that changes F to first order. So this
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requires that the coefficient of these Sxi also to vanish
in (28). Hence, (29) must hold for all i.

Equation (29) represents a set of n simultaneous
equations for the solution vector x. The constraints
(25) provide ra additional equations for the A^ La-
grange multipliers.

If F and d are quadratic functions of the x^ then
(29) will be a linear equation system. In the element
potential theory, F is the system Gibbs function, and
the resulting equations are therefore non-linear.

The method of element potentials relates the mol
fractions of each chemical species to quantities called
element potentials. One element potential exists for
each independent atom in the system and these poten-
tials together with the total number of mols in each
phase are the only variables requiring adjustment to
obtain the solution. For large problems this number
is much smaller than the number of species and hence
far fewer variables need be adjusted. Many other ad-
vantages quickly become evident when one begins to
use the method, although the method remains largely
unknown and not widely taught.

The present analysis assumes that the gas phase is a
mixture of ideal gases and that condensed phases are
ideal solutions. These are good approximations for
many practical problems of interest but the concept
of element potentials is not limited to these models;
it may also be very helpful in dealing with non-ideal
systems.

Basic Theory of Element Potentials
Thermochemical equilibrium is characterized by the

distribution of n species in a common phase at a given
temperature T and pressure P that minimizes the
Gibbs function:

(30)

Let g = h - Ts and g = g/UT. On making the Gibbs
function non-dimensional, we have

G
KT (31)

For an ideal gas, the enthalpy depends only on tem-
perature. Also, the entropy can be decomposed into

From the ideal gas equation of state, one can establish
the fact that Pi/P = X*. Thus,

The objective function for t her mo chemical equilibrium
is thus

G(AT|T,P) =* min. (34)

The minimization problem is subject to the ra -f 1
constraints

(35)
i—l

where n^i equals the number of k atoms in a molecule
of i species and o^ equals the population in moles of
k atoms in the system. The variable ra equals the
number of distinct elements (atom types) present in
the system. For each phase,

\ =1 j = l , . . . ,p (36)

or

EM,/=^ (37)

For simplicity, let us assume for the moment that only
one phase is present. For compact notation, define the
following algebraic column vectors:

b =

9i +

X =

a. =

_ #n + In A'n _

ai

NT =

(38)

(39)

The minimization problem then can be stated in com-
pact notation as

G(X) = ATbT-X =* mm

subject to the normalization condition

1T-X = 1

and the ra atomic constraints

(40)

(41)

(42)

/o2\ Forming the Lagrangian gives

-XT'(AfNT-X -a) (43)

(33) Taking derivatives of the Lagrangian with respect to
each of its arguments give

—— =ax "
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dC

<9A0

d\
Note the identity

= bT-X - Ao (1T-X - 1) - \T.NT-X(45)

= (lT-X-l)Af (46)

r-a (47)

db_
dX X = 1 (48)

So that, on simplifying (47),

dC
dX = (6+( l -A 0 ) l - -Ar .A)^ (49)

For non-trivial solutions the Lagrangian derivatives
must vanish, implying that,

(b + (1 - A0)l - N-\)M = 0 (50)

bT*X - A0(1T-AT - 1) - \T-NT-X = 0 (51)

(lT.X-i)N = 0 (52)

NNT>X-a. = 0 (53)

Eqn.(50) provides the solution vector X in terms of
the Lagrange multipliers AO , A&:

(54)

By definition, bj — QJ + In Xj, so that

In ̂  = (Ao - 1) - Qj + £ Afc nfcj (55)
fe=i

or, solving for Xj, in vector form,

X(\) = e*"-1

where
/ AZj = exp -gj + 2^,
V k=i

(56)

(57)

Putting this result back into the normalization con-
straint given by Eqn. (52) gives

(58)1T-Z

By substitution, Eqn. (51) reduces to a normalization
condition on the Z*. The remaining equations (53)
complete a non-linear system of ra + 1 equations in
ra + 1 unknowns:

1T-Z = 1

NNT-Z-a = 0

(59)

(60)

One more unknown, jV, can be eliminated by dividing
the ra-th constraint equation into the m — 1 equations
remaining. Then we have reduced the problem to solv-
ing ra equations for the ra unknown A&:

(61)

= 0,

for k = 1,... , m — 1.

Solution by Iteration
Solving the reduced equations by iteration requires

a good initial guess. Newton-Raphson iteration con-
verges rapidly if the initial guess is "good enough".
In the next section, we will discuss a new approach
for obtaining an initial guess that highlights the con-
nection between the method of element potentials
for the chemical equilibrium problem and a gener-
alized entropy method used in modern optimization
approaches. Obtaining a "good enough" approxima-
tion for the chemical equilibrium problem has relied
on a linearization of the Gibbs equation with sub-
sequent application of the simplex method to obtain
initial estimates of the Xi. This is the approach used
by Prof. Reynold's STANJAN program and as recom-
mended by Clasen.2 Other complicated methods have
been proposed with varying degrees of success (see
van Zeggeren & Storey5 and Smith & Missen18). In
the following section, we present a simple and robust
approach based on a least-squares solution for the La-
grange multipliers A&.

Entropy Optimization Method
Principles of optimization have reached a level of

maturity sufficient to provide general guidelines for
dealing with problems of constrainted optimization.
A powerful and quite general principle developed in
the last fifty years grew from the work done by Shan-
non at the conception of information theory. The
principle of maximum entropy as championed by E.
T. Jaynes11 stands as a notable hallmark in the the-
ory. Its generalization and subsequent development
finds widespread application as the principle of mini-
mum cross-entropy or Kullback-Liebler entropy (also
known by other names). The basic idea utilizes an
abstract distance measure between two distributions
defined as

" - (62)

where Pi,qi represent two discrete probability distri-
butions and D effectively measures the relative "dis-
tance" from q to p. Other measures exists but so
far this one has proven the most general and useful.
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Kapur and Kesavan12 provide a very readable and de-
tailed introduction. When the qi represent the uniform
distribution q{ = l/n where n equals some finite num-
ber, the principle of minimum cross-entropy reduces
to Jayne's principle of maximum entropy. The idea
finds widespread use beyond probability theory and
in fact will prove useful in the analysis of the chemical
equilibrium problem and is easy enough to understand
that a working familiarity should be accessible to most
students, even undergraduates. The basic and most
general optimization problem is this: Given three of
the following mathematical entities

• a set of moment constraints C;

• a measure of entropy or cross-entropy M;

• the a priori probability distribution <?; and

• the a posteriori probability distribution p;

Determine the fourth such that D(p,q) is minimized.
In the direct optimization method, a set of constraints,
a measure of entropy or cross-entropy, and q are given.
The objective function D is minimized so as to obtain
the probability distribution p. For the inverse opti-
mization problem, the distribution p is given together
with two of the remaining statements and the objective
is to find the fourth. Chemical equilibrium belongs to
the class of problems dealing with direct optimization.

Consider the Gibbs function per mol given by

G(AT|T,P)
(63)

3=1

Define the distribution qj = exp{—^-} and substitute.
The objective functional for chemical equilibrium be-
comes

G(X\T,P) A Xi
——Jf—— = 2_, X3ln — (64)

Now, given the normalization and atomic constraints,
the chemical equilibrium problem is mathematically
identical direct optimization. The distribution qj can
easily be normalized without affecting the general so-
lution procedure. Since the QJ are known at given
(T, P), this adds only a constant to (64) and does not
affect the final solution. Reasoning that the chemi-
cal equilibrium problem seeks the minimum measure
(5, manifested as a distance functional between X and
the qi computed a priori, one might presume that nor-
malized qi would make a good candidate as an initial
guess for an iterative solution of the problem. Unfor-
tunately, the normalized q^ are not suitable for this.
The key to a robust and easy to implement method is
to realize that the problem as set in the last section
gives a way to use the ideas generated by the opti-
mization problem. Directly from (50), it is possible
to replace the unknown bj with a known distribution

and then obtain an estimate for the Lagrange multi-
pliers \k (we know already that AQ = 1 on account of
the normalization condition for the Zj). Assuming we
have a known distribution, we may write, using (50),
the matrix equation

= N-\ (65)

Since ra < n, the matrix N is not invertible in general.
We can generate an approximate estimate for the \k
by using the least-squares solution to (65):

A = (66)

Once an approximate estimate for the A^ is obtained,
iterative methods will converge to a quick solution if
the initial calculation is "good enough". The key then
is finding a reasonable distribution Bj that will give
good estimates for the unknown A^.

As already mentioned, a potential candidate is the
qi defined above. If unnormalized, this will give the
zero vector for B and A, not a good choice. When
normalized, the distribution tends to assign a lion's
share of the mol fraction to the single qj that has the
largest QJ in magnitude. This tends to give poor initial
estimates for the least-squares \k and the iterative so-
lution does not converge. Following the insight gained
from noting that the exponential distribution tends
to hold a central place in optimization theory (and
physics in general, actually), several other distribu-
tions were considered before reaching some tentative
conclusions and recommendations. Thus, inspired by
the interpretation of the equilibrium constant Kp given
by Eqn. (15), consider the initial PDF given by

--} (67)

where g — ^ ]T^ QJ . When plotted against the mag-
nitude \gj\, this PDF follows a nice exponentially
decreasing trend with increasing ordinate. Another
possibility might be

(68)

where the A/IJ equals the (tabulated) enthalpy change
for a given species from reference (formation) condi-
tions to the required temperature. This is the same
quantity used to obtain the molal Gibbs function
(chemical potential): g — h°f + Aft - Ts. Again, this
has a smooth exponential trend with increasing ordi-
nate. Finally, one might simply consider the uniform
distribution Bj = 1/n in deference to the optimization
principle that stipulates maximum uncertainty when
nothing is known about the Bj other than the "natu-
ral" constraint that their sum equals one. After testing
all these possibilities, we found that:
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• Using the initial guess QJ = exp{-^-} (normalized
or not) gave poor least-squares estimates for the
Afc and iterative methods did not converge.

• Using any of the other three possibilities gave
good estimates and Newton-Raphson iteration of
Eqns. (61) converged quickly to a (presumably)
unique solution.

Due to its simplicity and effectiveness, the uniform dis-
tribution emerged as the recommended PDF for the
least-squares solution (66) to initialize the A^. Sub-
sequently, iterative techniques can be used to solve
(61). For the examples considered, we encountered
no difficulties in obtaining a converged solution even
with a large number of species. Use of the uniform
distribution in this sense has not been noted before.
Typically, the uniform distribution has been used as
an initial guess for the mol fractions coupled with ini-
tial guesses for other parameters and then attempts to
solve the equations by iterations. Van Zeggeren and
Storey5 note this use (pp. 55-56) with more compli-
cated approaches requiring careful attention to con-
vergence criteria and singularities, especially when a
constituent species is present in very small amounts.
Many unsuccessful methods failed because the calcula-
tions resulted in negative mol fractions. The method of
element potentials does not suffer from this deficiency,
as Eqn. (57) clearly indicates.

Sample Calculations
We will give in this section only a few examples

of the many that we actually calculated. The com-
mercial software package MATHEMATICA13 was used
because of familiarity and availability. Any other soft-
ware package with the capability to solve systems of
equations can easily be used (e.g., MATHCAD, MATLAB,
EES, etc.). The first example analyzes the dissociation
of water vapor at high temperature. Both methods
handle this simple chemical reaction easily. The sec-
ond example analyzes the reaction of hydrogen with
carbon dioxide producing carbon monoxide and wa-
ter vapor. For complete analysis this case actually
requires up to eight chemical species plus the possible
presence of carbon in the solid phase and water in the
liquid phase. A third example more clearly demon-
strates the power of the method of element potentials
by analyzing the combustion of octane. The final ex-
ample accounts for constituents in multiple phases.

Example 1: Dissociation of Water Vapor
. As a first example for comparison consider the dis-
sociation of water at T = 3000 K and P = 1 atm.
With the Kp method, the reaction equation is

H2O ^ H'2 (69)

by 1,2,3 respectively. For this simple case the mol
fractions can be uniquely expressed in terms of ( the
degree of reaction towards equilibrium. Then the ex-
pression for Kp given by Eqn. (16) can be solved for
C by numerical iteration. For this case, the MATH-
EMATICA function NSolve was used, which requires
no initial guess to obtain numerical estimates of poly-
nomial equations. It it also possible to solve four
equation for the four unknowns X\,X<z,X^(> or even
three equations for the three unknown mol fractions di-
rectly. In each case the result obtained was the same:
Xl = 0.793819,^2 = 0.137454,^3 = 0.068727. The
default accuracy on the MATHEMATICA functions was
used.

The element potential method does not require a
reaction equation, simply: What are the mol frac-
tions of the desired species at the given T, P and given
the mols of atomic elements present in the system?
Proceeding as recommended above, we first obtain a
least-squares estimate for the Lagrange multipliers AI
(for H) and A2 (for 0) from the uniform distribution
for the same three species as before. The least-squares
estimates for this case (with 2 mols of H and 1 mol of
O) are AI = -11.5378 and A2 = -15.9791. Next, these
are used as initial values for the numerical solution of
Eqns. (61). A converged solution gives AI = —11.4147
and A2 = -16.4865 using the MATHEMATICA func-
tion FindRoot which utilizes the Newton-Raphson
iteration technique. The final result is almost iden-
tical to that given by Reynold's STANJAN program for
the element potentials. The computed mol fractions,
Xl = 0.794132,^2 = 0.137245,^3 = 0.0686225 differ
insignificantly from those given by the Kp method.

Example 2: Hydrogen and Carbon Dioxide
Consider now the reaction between hydrogen gas

and carbon dioxide at T = 3000 K and P = 1 atm.
With the Kp method, the reaction equation is

H2O CO2 (70)

and assume 1 mol of water vapor initially. Let the
mol fractions for species H2O, HI, and O2 be indexed

and assume 1 mol of H^O with one mole of CO initially.
For this simple case the mol fractions of the constituent
species cannot be uniquely expressed in terms of £ be-
cause the stoichiometric coefficients add up to one and
the resulting matrix from the constraints is singular.
To solve, we use the mol fraction for one species, say
#4, as a base then solve for the remaining mol fraction
in terms of that base. The expression for Kp given
by Eqn. (16) can then be solved for X± by numerical
iteration if necessary. In this case, the resulting ex-
pression is quadratic in X± and one must decide which
sign appropriate. The MATHEMATICA function NSolve
was also used and it gave both possible solutions to
<%4, including one that was negative. So we pick the
positive one and compute the remaining three. This
shows some of the ambiguity and possible problems
that arise with the equilibrium constant method. The
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Figure 1 Mol fractions of constituent species for
CC>2 plus H2 reaction at 3000K and 1 atm as cal-
culated with the equilibrium constant method.

correct solution gave equal amounts of C02 and H2
(0.1356) completed by equal amounts of CO and H20
(0.3643). These are shown in Figure 1 as mol fractions
plotted against the absolute value of the molal Gibbs
energy. Such a tidy result is obviously suspect. The
method of element potentials indicates why.

Again, the element potential method does not re-
quire a reaction equation, simply: What are the mol
fractions of the desired species at the given T, P and
given the mols of atomic elements present in the sys-
tem? Proceeding as recommended above, we first
obtain a least-squares estimate for the Lagrange mul-
tipliers AI (for C), A2 (for H), and A3 (for 0) from the
uniform distribution with all possible species, includ-
ing 02, HO, 0, and H. The least-squares estimates
for this case (with 2 mols of H and 0 and 1 mol
of C) are obtained. Next, these are used as initial
values for the numerical solution of Eqns. (61). A con-
verged solution gives AI = -17.1566, A2 = -11.4327,
and A3 — -17.4506 using MATHEMATICAL FindRoot
function. The final result indicates that the species
neglected by analyzing only those in the chemical reac-
tion (70) are present in significant amounts, as shown
in Figure 2. The advantage of the element potential
method is that one could solve the problem using the
same four species as with the Kp method then test for
the presence of other species. Since the resulting el-
ement potentials (the A*) do not change significantly,
the test gives fairly accurate estimates for the pres-
ence of species not initially included. The power of
the method of element potentials is already evident
in this case because it is just as easy to include all
possible species without considering any chemical re-
actions. Using STANJAN, we verified that no liquid
water or solid carbon were present at these conditions.

Figure 2 Mol fractions for 8 species for the com-
plete CO2 plus H2 reaction at 3000K and 1 atm as
calculated with the method of element potentials.

Example 3: Combustion of Octane Fuel

Probably the advantages of the method of element
potentials becomes clear when dealing with complex
systems composed of many components. The combus-
tion of hydrocarbon fuels for example contains many
more degrees of freedom than the simple reaction equa-
tions typically contained in textbooks for equilibrium
analysis. With the equilibrium constant method, the
task becomes daunting (but still possible). Consider
the combustion of octane and theoretical air result-
ing in products at 3000 K and 100 atm and suppose
only 10 component species are considered: 02, N2,
C02, CO, H2O, H2, HO, NO, N02, CH4. Tabulated
values for the required Gibbs functions are found in
Myers' book9 pp. 760-770. Given the atomic popu-
lation in mols of C, H, 0, and N as 8, 18, 25, and
94.35 respectively for the mix, the method of ele-
ment potentials easily converges to a solution. With a
least-squares estimate for the four element potentials
required, the complete solution accurately predicts the
mol fractions of the ten species. With the current
method, the element potentials for C, H, 0, and N con-
verge to {-17.3755,-10.7052,-15.1329,-12.06} re-
spectively. These compare quite well to the more
complicated techniques used in other programs. The
resulting mol fractions are represented by the graph
shown in Figure 1, inspired by the probabilistic in-
terpretation of the problem. The mol fractions are
plotted against the absolute value of the molal Gibbs
energy, thus representing a discrete distrubtion over
its range. This figure provides an interesting visual
representation of the data, suitable for easy viewing
and definitely useful in the classroom experience.

To test for the presence of solid carbon in the mix,
one simply calculates the total Gibbs function with
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.2 0.6
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0 . 3
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0

N0

H2

C02

Table 1 Non—Dimensional Gibbs Function for Se-
lected Species for Example with Two Phases.

Figure 3 Mol fractions for 10 species produced by
the combustion of octane at 3000K and 100 atm
calculated with the method of element potentials.

and without carbon. If the Gibbs function is less with
a solid carbon phase present, then this should be the
equilibrium state and the results modified; otherwise
the equilibrium state contains no solid carbon. My-
ers9 (pp. 911-915) describes this example more fully
for products at 1 atm. However, the method used
by Myers solves for the full set of equations resulting
from taking derivatives of the Lagrangian, Eqns. (47-
50) so that initial guesses for the mol fractions of the
species are also required and a larger number of equa-
tions solved. Here we take further advantage of the
power intrinsic in the method of element potentials by
reducing the number of equations solved to the min-
imum and using a simple least-squares technique for
the initial estimates. To the authors' knowledge of the
literature, this technique has escaped previous efforts
in the field.

Example with Multiple Phases
Consider the system consisting of CO, C02, 02, and

C(s) (solid carbon) at 3000 K and 1 atm, where these
species have the Gibbs functions given in Table 1. Sup-
pose the system contains 2 mols of C atoms and 1
mol of 0 atoms. Some solid carbon must be present
and its mol fraction in the solid phase should equal
1. From this knowledge, one could immediately cal-
culate the element potential for carbon and then that
of oxygen by guessing the dominant gas species to be
CO. Instead, let us use the modified methods recom-
mended here by simply including the solid carbon as a
separate species. The least-squares estimates for the
element potentials are then AI = -11.3891 for carbon
and A2 = —18.3604 for oxygen. Using the fact that
the mol fraction of carbon in its phase equals one, the
numerical solution of the remaining equations easily
converges to give AI = —3.586 and A2 = —30.0147.

No.

1

2

3

4

Species

CO

C02

02

C(s)

g = g(T,P)/KT

-33.578

-49.830

-30.273

- 3.586

These in turn yield 0.999999 as the mol fraction for
CO, which is indeed the dominant gas species under
these conditions. The mol fractions for C02 and 02
are 1.06672xlO~6 and 1.21901 xlO~13 respectively.

Suppose at this point that we want an estimate for
the concentration of a species that has not been in-
cluded in the system, for example atomic oxygen. This
is easily accomplished using element potentials. At
3000 K and 1 atm, go = -12.951, so using the calcu-
lated element potential A2 for oxygen,

x0 = exp (12.951 - 30.0147) = 3.88 x 10~8

This estimate is very accurate since the inclusion of
oxygen in the system with such a minute mol fraction
will not significantly influence the element potentials.

When less carbon is present in the system, the
method of element potentials still applies for this case.
What happens now is that a trace amount of solid
carbon is predicted and the element potentials con-
verge to values not significantly different than those
obtained by assuming no solid carbon phase, as in the
case when we have only 1 mol of carbon with 2 mols
of oxygen. Here the method predicts 0.462895 mols
of CO2, 0.35807 mols of CO, and 0.179035 mols of
02- Difficulty occurs only when one assumes a sin-
gle gaseous phase when there is an over-abundance of
carbon: the method will not converge. This is in fact
a desirable trait because it warns us that we have not
used all of the information available or that we have
not posed the problem properly. STANJAN also gives a
warning if a single phase is specified when more might
actually be present. The success of our current method
indicates that the methodology introduced here can be
generalized to account for multiple phases without sig-
nificant difficulty.
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Available Software
Here we briefly describe available software that im-

plements the method of element potentials in various
ways and with different objectives. For educational
use, Reynold's STANJAN program is highly recom-
mended. The version used for comparison with this
work dates from 1989. The newest version can be ob-
tained from Prof. Reynolds at Stanford University at
a reasonable cost (not known at this time and prob-
ably subject to change without notice). The other
programs are intended for industrial use and are prob-
ably much more sophisticated than what a classroom
requires. Many other programs exist, probably more
than what are known to the authors. Using the simple
techniques described in this work, an instructor also
has the option of letting student write their own pro-
grams using available computer resources. Once the
basic theory and method for implementing a solution
is understood, the time required to solve a particular
problem is minimal.

STANJAN
The program STANJAN (due to its roots at Stanford

and its connection with the JANNAF thermochemical
data tables), is an interactive program designed for use
with either desk-top or mainframe computers. The ba-
sic data are taken from the JANNAF tables, and data for
a selection of species accompany the program. A com-
panion program, JANFILE, can be used to prepare data
for other species from the JANNAF table data. Both are
very robust, user-friendly interactive programs.

With STANJAN, users select the species to be in-
cluded in each phase of the system, set the atomic
populations and state parameters. Then STANJAN
solves for the equilibrium state using the method of
element potentials. The results include the composi-
tion of each phase (mols and mol fractions) and the
thermodynamic properties of the system, including (if
desired) the speed of sound. STANJAN can also exe-
cute thermodynamic cycle analysis because the user
may specify the state parameters in a variety of ways,
including (T,P), (P,5), and (H,P) or (V,S). The
equilibrium composition can be calculated or a frozen
composition specified. Users can also apply STANJAN
to compute adiabatic flame temperature for reactions
at constant pressure or volume.

RAND SOLVER
A full description of the RAND method can be found

in the memorandum by Clasen.2 The basic algo-
rithm is very similar to that of STANJAN: apply the
simplex method to obtain initial estimates then use
Newton-Raphson to converge the solution. The pro-
gram requires the user to input the Gibbs free energy
functions for each species at the specified temperature
and pressure of interest and it permits only isothermal
computations.

NASA-LEWIS CODE
The NASA-Lewis code also known as the "Gordon-

McBride" program14 was developed at the NASA
Lewis (now Glenn) Research Center, Cleaveland, OH.
The program is specifically intended for use in the pro-
pellant and aerospace industries. Thermodynamic and
propulsion characterizations can be made for multi-
component reacting mixtures. Only ideal gas phases
are modeled and phases other than gases are re-
stricted to pure compounds. Thermodynamic and
transport properties are available at high tempera-
tures. Both adiabatic and isothermal reactions can be
specified. For additional details on the development of
the NASA-Lewis code, Gordon15 (1970) and Zeleznik
& Gordon16 (1960) and the references therein provide
well-documented critiques of the various techniques
chosen for implementation. The interested reader is
referred also to Straub's book17 on some of the limita-
tions and modifications for improvement of the Lewis
code that are beyond the scope of this work.

Closing Remarks
We have presented pedagogical descriptions of two

method for obtaining chemical equilibrium compo-
sitions, the equilibrium constant method and the
method of element potentials. Both methods are based
on the same fundamental principle for the condition
of equilibrium, minimum free energy but they differ
in the development of that principle. Computer im-
plementation of these methods requires attention to
mathematical and numerical details such as iteration
techniques, convergence controls, and singularities in
order to obtain a unique solution. Although the two
formulations reduce to the same number of iterative
equations in general, the equilibrium constant method
suffers from disadvantages not found in the method
of element potentials. We have presented an interest-
ing implementation of the latter method with insight
gained from generalized optimization techniques and
probability theory. The algorithmic development of
the method reduces the chemical equilibrium problem
to a reduced set of equations with Lagrangian multi-
pliers. We then employ a least-squares approximation
to initialize a more accurate, convergent solution by
iteration. The methodology is easy to implement us-
ing existing commercial software for solving systems of
equations and appears to be accurate and robust. For
practical and aesthetic reasons, the method of element
potentials is recommended as suitable and advanta-
geous for classroom use and beyond.
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