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F _4 ®ndl-U_(t)xT(t)k (11.1)

p(oneunitofspan) ~ dt A,
' ! )
N

5 )
!@ !\@

o \»
(\ @ NN

b i

Figure 11.1 Starting vortex formation about a corner in an impulsively started
incompressible fluid.
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Recall the solution for a point vortex

5) Point vortex

Here we solve the Poisson equation for the stream function with a point source of
circulation at the origin.

V¥ =-T§(x) (10.93)

where I is the strength of the source. The Greens function solution is

¥(x)= %JFS(ES)MOE - X,

-1 T oer -r
Jia =" [ T6(r,) Ln(|r 1, Jird0 =~ Ln(r) (10.94

This is the same solution we derived earlier through a limiting process of allowing a
finite vortex line become infinite. The potentials for a point vortex are
il r r

W=——L bd=—0 ¥Y=——0I L 10.95
27 n(z) 27 27 n(r) ( )

N\ The velocity field is
\ | directed in the counter-
| > X clockwise direction -

‘ circulation is positive.

N |
-3 N\ \\\ SNS—— S ]

For any contour C surrounding the origin

_ _. = T
.A[QdA='A[VdeA=iSUcdc=j: S —rd0=T (10.96)



FSTANFORD

AERONAUTICS &
ASTRONAUTICS

j.U-?:dC+j.U-6dC= $ V@ecdC=0 (11.2)

a C+C,

(11.3)

Vortex *

FWing =-T
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U,=—"* (11.5)
2nr
rWiﬂ _F ortex
in (0,0,t)= g — Y . (11.6)

2nU_t 27Ut
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A

Fig 11.3 Effect of starting vortex downwash on lift and drag of an airfoil.

U.. (0,0, U,(0,0,
ai=ArcTan( il t))'—“ il t)<0 :

= 11.7
- U (11.7)

U,=(U..U,(0,0,)) (11.8)

U, =(U2+0,(0.0.07)" . (11.9)



|7AS;[£‘5\1;9§[2 The downwash from the starting vortex reduces the effective angle of attack

ASTRONAUTICS —and rotates the normal force vector producing drag

L=F,Cos(a,)=F, U. (11.10)

(U2+0,(0,0,40)°)"

U,;(0,0,z)

D, =-F,Sin(a,)=-F, : (11.11)
' H(v2+U,(0,0,07)"
Fy=-pU,Ty,. - (11.12)
L=F,Cos(o;)=—pU_Ty,, (11.13)
D, =pU,(0,0,t)Ty,, - (11.14)
rZ
D, = : 11.15
=P (11.15)
L
C. = =a)(a+a,) (11.16)
EPUiC

1 T,
Solve for the circulation —-pU 'y, =a,—pUC| o+ —22%— | . 11.17
p o Wing Oszoo ( 2n_U°2°tJ ( )
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Onset of circulation

Onset of lift

Growth and decay of drag

Time constant

According to classical theory

( 4AnU_t )
_2rWing (t) aoc
uc 4nU.t a0 =C, (1)
L aC J
( 4nU_t )
_ a,C
C.(1)= ArU_t A
+1
L aC J
(
4nU _t )
Cy (2)= a,C = |a,&’
[47:th ]
+1
\\ aC )
a,C
T _ 0

Starting Airfoil — 47rU

o0

a, =21

(11.18)

(11.19)

(11.20)
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_2rWing (t ) _ C L t/ TStarting Airfoil CD,. _ t/ TStarting Airfoil (1 1 21)
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Figure 11.4 Onset of circulation and lift, growth and decay of induced drag on an
impulsively started airfoil.
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Y
< 1 1
G=27+— S
4

X
2

-1

The Joukowsky transformation maps a circle of unit radius centered at the origin to the
upper and lower surface of a horizontal line joining -2 and +2. For example

. 1
z=re” =1+i0 c=z+t—-=1+1=2
Z
i0 . 1
z=re’ =—1+1i0 c=z+—-=-1-1==2
Z
. 2
Z:rezez(l_l_g)em/Z:O+i(1+8) Q=Z+l=i(1+8)— l =i£(1+1i) _1]ii23
E

z=re’ =(1+€)e™ =0-i(l+¢) g:z+l:—i(1+8)+—=—i[w]i—i28
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The Joukowsky transformation maps a circle of greater than unit radius
with the origin offset from (0.0) to the upper and lower surface of a wing
with its trailing edge at +2.

\ 1.0

3.2. Transformation of circle to airfoil.
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1) Translate the origin and select the trailing edge - this determines the radius of the circle.

. 5 ,\1/2
2, = 4 + 25, where 2y = X5, + Ly,. R = ((xZC — th) + ()’2c — th) )

2) Map the circle to an oval with the trailing edge at (1,0).

_ _ € Choose the real and Ze =27, —
3= 2%, _A imaginary parts of 3t 2t
2y epsilon so that
y
A
Directio

" of Zero Lift x_y,
Xt, Yt
+ } » X
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3) Map the oval to an airfoil with the trailing edge at (2,0).

1
Z:Z3+_

Overall mapping

o P E, + 1, N
1 T 2 (z1+z2c)—A ((Z'FZ )_ £ +IE, ]
1 2¢c —A

3.5. NACA 101 (Joukowski).
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3.6. Joukowski airfoil tested in NACA variable density wind tunnel.



FSTANFORD

' istributions
D oNAUTes s Some examples with pressure dis
ASTRONAUTICS

X¢ =- 0.0707

X =- 0.07
yc= 0.084 ye= 0.02
x¢= 1.03
Yt == 0.02

e

3.10. Minimum velocity airfoil.
71 3.9. Laminar flow airfoil.

Xc =-0.094
yc= 0.034
Xy= 1.03

y= 0.022

A=0

3.11. Reflex airfouil.
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AA200A Homework 6 2014 -2015
Due Tuesday May 19, 2015

Read: Chapter 11
Recommended Reading: Chapter 3 in Wing Theory by R. T. Jones

Problem 1 — Reproduce the results in section 11.2 for the flow around a Joukowsky
airfoil. Using that airfoil or, if wish a Joukowsky airfoil based on your own choice of
parameters, determine the lift coefficient for a range of angles of attack.

Select several angles of attack for more detailed study in the following two problems.

Problem 2 — Determine the thickness function and camber function for the Joukowsky
wing you generated in problem 1. Use these functions to produce the thin airfoil
approximation to this wing. Determine the thin airfoil pressure coefficient about the wing
and compare to the pressure coefficient from Joukowsky theory. Determine the lift and
moment coefficients of the wing based on thin airfoil theory.

Problem 3 — Now that you have defined a wing geometry with its pressure distribution
determine the boundary layer characteristics on the wing.

1) Assume a laminar boundary layer and use Thwaites’ method to determine the
boundary layer characteristics on the upper and lower surfaces up to separation.

2) Assume a turbulent boundary layer and use Head’s method to determine the boundary
layer characteristics on the upper and lower surfaces up to separation. Determine the drag
coefficient of the wing. Plot L/D versus angle of attack. You may wish to use a Thwaites
calculation for laminar flow very near the wing leading edge to provide initial conditions
for a Head’s calculation over the rest of the wing.
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ASTRONAUTICS

—ic K
W(zl) =U_ze " + E(—] + —Ln(zl)

(I)(xl,yl)=Uw(xICos(a)+ylSin(a))+£( ad J—%ArcTan(yI/xl) (11.31)

‘P=Uw(y1C0s(a)—xlSin(a))+ X ( 2)’1 2j+21;‘r Ln((x12+)’12)1/2)

R= | . 11.32 Ly
27RU (11.32)  Note correction!

oo

The flow is shown below for y=1, R=1and a=7/18. ) — )
Circulation in the clockwise

direction has been taken to
be positive. This is commonly
done in aerodynamics (eg.
RT Jones)

< plane

Figure 11.6 Flow at angle of attack o past a circular cylinder with lift.



rﬂ%‘ﬁﬁ%? Non-dimensionalize the potentials and circulation
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()2 )

()= (ﬂ)cos(a)+ (L)Si”(“) (RCsB) o 133
r
w(x,,y)=yCos(c)— x,Sin( )—RSi:(G‘)+y[ﬂ(%)
"“ur *"ur Y Ur (11.34)
r=sr (11.35)
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In cylindrical coordinates

¢= %Cos(a)Cos(Bl )+ %Sin(oz)Sin(G1 )+ BCOS(BI )-8,

h

(11.36)

V= %Cos(oz)Sin(G1 )— %Sin(a)Cos (6,)- fSin(G1 )+ yLn(%)

Complex velocity

wlz) e _ 2l (11.37)
dz, R Z Z
Velocity components
1 1. : R
U = —Cos(oc)Cos(G1 )+—Sin(a)Sin(6,)—— Cos(6,)
- K K " (11.38)

U, = —%Cos(a)Sin(91)+ %Sin(a)Cos(Gl)— %Sin(el) _Y

1
h h
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Tangential velocity at the cylinder surface

= L (=Cos(ax)Sin(6,)+ Sin(ct)Cos(8,)- Sin(6,)-7) . (11.39)

U, =%

Stagnation points occur where the tangential velocity is zero

Sin(ct)Cos(6,,) = Cos(ax)Sin(8,, )+ Sin(6,,)+7 . (11.40)

Stagnation point angles

(]

Sin(6,,) = - L

11.41
2" 2(1+Cos(e (114D

) J2(1+ Cos()) -7
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Step 1 — Translate the circle in the z, plane to a circle in the z, plane with its origin
shifted from (0,0) . The mapping is

z,=z,+2z,, where z,,=x, +iy, . (11.42)

Specify the coordinates of the center of the circle in the z, plane (x,,,y,.). In addition

specify the coordinates of the trailing edge (x,,,,,) in the z, plane. Now the radius of
the circle in the z, plane is determined.

1.5 1.5

Y Y2

z, plane

center

center

-0.5

-0.5

determine C,

C,=myR

Note that y and R

(11.43)




Step 2 — Map the circle in z, to an oval in the z, plane passing through the point
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(x;,¥;)=(1,0). The mapping is

E
ZZ_A

2, =2,— (11.44)

where € is complex and A is real. We require that the coordinates of the trailing edge
2, = X,, +1iy,, satisfy

E, +IE; .
2y = 2y — = ’A'=1+z(0) . (11.45)
2~

Solve (11.45) for (¢, ,¢,) using x,, =1 and y, =0.

€ = (xzns‘ - 1)(x27k‘ - A) - y;”’

(11.46)
€= Yo (2x2n-' —1- A)
Y3
z, plane > z, plane

€, +Ig
z _S T

3 2 Zz _ A 05

X, X3
15 05 1p ¢&— 15 ~15 05 JoW~_ 15
T.E. T E
center o
-15 -15

Figure 11.8 Mapping from z, to z,.
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Z=Z3+i (11.47)
23

The overall transformation from the circle to airfoil coordinates is

E +IE, 1
z2=| (542, ) - 7———— |+ - . (11.48)
(ZI+ZZC)_A (Z +Z ) 8r+l£i
1 2C Zl + ch —'A
15
Y3
10 2, plane
1
— — y
0.5 2=5t zs N z plane
3 — T TT—  x
-15 0¥~ 15 \z\ i (e 3
center T.E o

Figure 11.9 Mapping from z, to z.
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Note that A does
not affect y

Example — Joukowsky airfoil.
Choose the following values.

a=n/9 x,=-007 y,=002 x, =103 y, =-002 A=02 (11.49)

The coordinates of the center of the circle (x,,,y,, )and the trailing edge (x,,,y,,) in the
z, plane determine the radius of the circle in the z; plane.

R= ((xzc — %) + (Yo — Vi, )2)”2 =((0.07-1.03)" +(0.02+ 0.02)2)”2 =1.10073 (11.50)

The location of the trailing edge in the z, plane is determined using (11.42).

z,, =2, —% =1.10-0.04:

0, = ArcTan(—O'O4
1 1.10

TE

(11.51)

) =-0.03635

Now apply the Kutta condition. The dimensionless circulation (11.35) is chosen to insure
that the rear stagnation point on the circle in the z, plane depicted in Figure 11.6 is

located at the point (11.51) designated as the trailing edge. In other words, when we
choose the parameters (11.49) the radius of the circle in the z, plane, the angle of the

trailing edge and the value of ¥ in (11.41) that gives the angle calculated in (11.51) as
the root are all determined. The circulation is determined to be

y =Sin(a)Cos(8,,, ) - Cos(cx)Sin(8,,, ) Sin(6,,, )=0412282 .  (11.52)



FSTAN FORD  The angle of the forward stagnation point in the z, plane is determined from (11.41). The
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Sin(ct)
2(1 + Cos (

6,, = ArcSin[—% + 2) J2(1+ Cos()) - 72 ) =(-2.7562,-0.03635) (11.53)

The position of the nose stagnation point in the z;, plane is
Zipose = —1.01998 —0.41381i (11.54)
and the position in the z, plane is

Zonose = —1.08998 —0.39381: . (11.55)

g, =(x,, =1)(x,, —A)-y3,=(1.03-1)(1.03-0.2) - (0.02)" =0.0245

(11.56)
&=y, (2x, —1-A)=-002(2(1.03)-1-0.2-0.02)=-0.0172
The airfoil coordinates are
E +ig,
iy =| RCos(6)+iRSin(6 Ve — St
Ty [ 05(6) + iRSin(9) + xoc + s RCos(0)+iRSin(0)+xZC+iy26—A}+
1
E, i€,
R iRSi Ve — r
[ Cos(0) + iRSin(6) + ¥, + Iy, RCos(9)+iRSin(9)+xZC+iyZC—A)

(11.57)
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dW _dW dz, dz, dz,

= : (11.58)
dz dz, dz, dz, dz
9 _
dz,
dz, _ 1 1 _ (Zz —A)z _ (11.59)
dZ3 (dz ) [ £ } (22 — A)2 + &
dr. 1+ 5
2 (z2 - A
dz, _ 1 _ z
dz dz | 7 -1
dz,
2
—A 2
U =U. (2 2) R (11.60)
l (ZZ_A) + & Z3_1
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d —io R
wa) et =il (11.61)
dz, R Z 2

Zero velocities occur at:
i) The stagnation points in z,
11) ZZZA’ 3 =00, =00

iii) z, =0, z=oo.

Infinite velocities occur at z; =0 and:

1) z;=1, z=2z,+1/z;,=2. The infinity multiplies the zero at the stagnation point to
produce a finite velocity at the trailing edge.

i1) z; =1, z=-2. This point lies inside the airfoil.

1i1) The point
2 1/2
(z,—A) +e=0 = z,=A+(-¢)
s (11.62)
z;=A*2(-¢)
The singularity (11.62) transforms to
1
o =A+2(—e) ————— , A-2(-€) P ——— 11.63
Z‘S'm,gulamy ( ) A + 2(_8)1/2 ( ) A _ 2(_8)1/2 ( )



rﬂ%ﬁﬁ?&% Pressure distribution
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ZLSingularity — 1.81465 —1.30801i , 0.906875 + 2.46541i (11.64)
P-P
i U2
) puU.,
-C,
Rapid

deceleration 4

Rapid acceleration
Pressure recovery . . .
/ Trailing edge singularity
/ not perfectly cancelled

Airfoil nose — —___
\ ) x

3 = 1 + 3

Forward stagnation point -2 " o
Positive pressure beneath the airfoil

Figure 11.10 pressure distributions on the example Joukowsky airfoil at x =7 /9.



FSTANFORD

AERONAUTICS &
ASTRONAUTICS

25¢

20¢

15¢

10¢

C, at various angles of attack

02
0.1

25¢

20¢

15¢

10¢

o =10°
T 3
o =20°

3T

30,
25+ _ o
o =30
204
15¢
10F
5k
2 .
-3 T T 2 3

25

20

15

10

\ 25
1 2
o
o =-10°"
10
5
. [—
o -3 = -1
a=0
25,
20}
o
o =-20°
! 10}
5k
3 S
30,
25}
o =-40°
20}
15¢
10}
50
3 ==
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Effect of the parameter A on wing shape and C,

o =10°
C, =0.85

(&» B

A=0.0

A=10

(A) >

3 NP = 3 > = T 3
K B V‘]* l ﬁf
-2 2
w/ £ - =
3
2

3 W T 3 ‘Zr‘.‘ =4 3 T .
-1 -1
_2 2
4 3 5
s A=04 [\ A=160 T A=-0.8
2 1 2
1 \ V\
. > . . ~__
3 -r—'ﬁ ﬁ\\\a 3 lz/ , ’ _f/ ) _1\1_32 3
) - o _ oy




FSTANFORD 11.3 Thin airfoil theory
Thin airfoil theory allows us to design airfoils with nearly arbitrary
characteristics. It works pretty well even on airfoils that are not all that thin.
y

- U._Sin(ct) \\
U_Cos(a
(@) Chord line y=g(x)

Figure 11.11 Two-dimensional airfoil at angle of attack o .

P, 1 P 1 P. 1
= ~U2 =L (U,) = —(Un) (11.66)
p 2 p 2 p 2
P _ P
Conditions at the o p (11.67)

trailing edge
Up=Uy . (11.68)
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Define a disturbance potential

®=U_xCos(a)+U_ySin(a)+ ¢(x,y) (11.69)

and disturbance velocities

U=U_Cos(a)+u(x,y)

11.70
V= UwSin(a)+v(x,y) ( )
u:a—¢ v=a—¢ . (11.71)
ox dy

The disturbance potential satisfies Laplace's equation

V2¢ =0 (11.72)
and goes to zero at infinity

a—¢—>~0 8_¢_)0 at oo (11.73)

ox dy
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Nonlinear boundary conditions at the airfoil surface

(s () =2

ay| _

d
=U°°(—f—Tan(a)) on 0<x<C
_ dx
y=£(x)
dg
=-U_|—=-Tan(a)| on 0<x<C
_ dx
y=g(x)
+

Linearized boundary conditions applied at y=0

vx+=a—¢
(’0) ay

v(x,O") = a—¢

=Uw(i—aj on 0<x<C
=0* dx

y_

dg

=_Uw[——a] on 0<x<C .

0y |,_q \dx
+

(11.74)

(11.75)

(11.76)

(11.77)
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Define the thickness function

Nihickness (x) = %(f(x) - g(x)) (11.78)

Define the camber function

Mear (¥)= 5 (/ (1) + 8(5)). (11.79)

Linearized problem formulation

V=0

. 90 . d¢
Im—=llm—=0
r—oo ax r—oo ay

a_¢ =U dnﬂzickness +U dnCamber ~U o (1 1°80)
WM, dx - -

a_¢ =-U dnThickness +U dnCamber U o

o). T dx -
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U C
- ( >=I X

\ Y = “Thiciness (r)

U_Sin()
U_Cos()

Figure 11.12 The three basic problems of thin airfoil theory.

¢ = ¢Thickness + ¢Camber + ¢a (1 18 1)
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The thickness problem

Let the thickness disturbance field be represented by a distribution of mass sources along
the x -axis in the range 0 <x <C.

Figure 11.13 Distribution of sources generating thickness.

_ q(§)dé i0
AW piciness = . Ln(re ) (11.82)
rP=(x-&+y* . (11.83)
.. = %?Ln((x &Y +y?) dE (11.84)
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Contribution to the velocity potential from the thickness

B 1 ¢ec ’ ,\!/2
Onicines = 5], (&) Ln{(x =€) +?) " dg (11:85)
Contribution to the velocity from the thickness
U (x y) — a(I)Thickness — 1 .Cq(g) X = dé
Thickness ’ ax 27[ Jo (x _ 6)2 + yz
30 | ec y . (11.86)
-~ ‘ , — Thickness — d
vThzcknes.s ('x y) ay 27[ Jo q(é) (x _§ 2 + y2 5
Surface condition
V(x,0+) — U°° dnl;;i;kness
p (11.87)
v(x’o—) — _(J‘><> nThickness

dx
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We need to determine the source distribution that generates the correct
surface condition. Let y =€

1 ec

vThickness ('x’g) = E 0 q(g)

dE . (11.88)

The entire contribution to this integral comes from the neighborhood of 5 =X

This allows the source distribution to be pulled out of the integral.

_a)e_ e
Vs (£,)= 0 | oerae (11.89)

The integral can be evaluated.

Ioc(x—éjz e L)C/E(x—;)z +1d(§) ) I:;(izlﬂ)dl:

E

ArcTan(f)—ArcTan(x_C) . (11.90)
E £

lim(ArcTan(f) - ArcTan(x —C )] =7
-0 £ &
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The distribution of source strength is now known in terms of the slope of
the thickness distribution of the airfoll.

vThickness (x’oi) = i@ = iU°° dnTZ;kness * (1 191)

g(x)=2U._ d"fsck"m (11.92)
X

The thickness potential is

_U. CdnThickness(é) L
Drtickness = . _[0 dé Ln((x—é) +y ) dé . (11.93)

Note that the total source strength is zero.

c C an...
J‘O q('x)dx = J‘O Uoo %‘ix = Uoo (nThickness (C) - T’Thickness (O)) = 0 (1 194)
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The camber problem

Let the camber disturbance field be represented by a distribution of vortices along the x -
axis in the range 0 <x<C.

y (x:y) Vortex strength/length
7(x)
a
0 C
Ue LN aala'a'aYa'a'
(A AL L L WE WAL A A x
—> |<7d§
N A g

Figure 11.14 Distribution of vortices generating camber.

aw,, , = MiLn(rem) (11.95)

27

rr=(x—&) +y* . (11.96)

g, . = —@ArcTan[Lé)dg . (11.97)
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Contribution to the velocity potential from the camber

1 ecC
¢Camber = _E 0 Y(é)ArCTan(

y
x_éjdg (11.98)

Contribution to the velocity from the camber

0D 1 (c y
: — amber _ d
uCamber ('x y) ax 27[ _[0 y(é) (x 5 2 + y 5

o 1 ¢ X -
Ve ()= o = [T () d

(11.99)

Horizontal velocity component near the surface. Use the same procedure to pull the vortex
source distribution out of the integral as was used for thickness.

+ . 1 ¢c X
ucmer(x,O‘):ylg(r)liE 7(8) : dé:i"( ). (11.100)
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Source strength is the circulation per unit length (the velocity jump) along the camber line.

¥ (%) = tegper (3:0) = Ugmper (%,07) - (11.101)

The surface condition for camber is.

+\ _ 71 1 ¢ X _5 — dnCamber
vCamber(x’O )_}LI?;[—E 0 Y(g)(x_€)2 +y2 ng_UooT . (11102)

Take the limit.

1 ¢c 1
T oo 7(5)

an
dE =y _ canber (11.103)
(x-¢) dx

) _
Vcamber ('x’o )_

The pressure on the camber line is

1 o1
Poo + EpUi = PCamber ('x’O_)+ Ep((Uoo + uCamber )2 + (vCamber )2) =
(11.104)

PCamber ('x’Oi) + %ono + onouCamber (x’Oi)
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The lift due to camber is determined by the circulation due to camber

L= [ (Pranser (2.07) = ey, (2.0%) ). (11.105)

L= J-OC(pUm M+ pU @)dx =pU, J.Ocy(x)dx |

2 (11.106)
L=pU.T'
There is a moment about the leading edge due to camber
N - +
M = | (Prmper (£:07) = Py, (%,07)) xlx (11.107)
C
M=pU._ | y(x)xds . (11.108)

But we still do not know V(X)
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jcﬂdéj:—ZnUwM 0<x<C 7(C)=0 . (11.109)
Ox—g dx

1) Introduce

xX= E(1+ Cos(B))
2 (11.110)

&= (1+Cos(c) |

This change of variables is illustrated below.

Figure 11.15 The change of variables (11.110).
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2) Express 7., (x) as a Fourier series in 6.

Mzign@s(ne) (11.111)
n=0

dx

The coefficients are determined from the orthogonality of the expansion functions.

Bn=3j”(M)c0s(n9)d9 for n>1, Bo=lj”(M)d9 (11.112)
7o dx T Yo dx

3) Solve the integral (11.109) in the form

1 J‘O 7(s)
27U, 7= Cos(g)— Cos (6

)dg=iBnC05(n9) : (11.113)

y(6)=-2U.) B,Sin(n)+2 V.5, ( K
n=1

5in(8)\ 2U_B +C0s(6)] . (11.114)
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The constant K is determined by the Kutta condition y(6=0)=0. The result is
K =-2U_B, which cancels the singularity at 6 =0 1in (11.114). Thus

Sin(6)

Note that in general there is a singularity in the circulation at the leading edge where
O=m.

7(6)= —2Uw[30( 1_C"S(9)J+i3nsm(n9)J . (11.115)

The lift coefficient due to camber only depends on the first two coefficients in the series.

C,= L1 j"y(e)sm(e)de:—n(zBo+Bl) (11.116)
| U Jo
EprC o
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Cu= 0 :ZIIJ [77(6)(1+ Cos(6))Sin(6)d6 =
, PUL . (11117

The moment coefficient due to camber can be thought of as a pure moment or couple
about the leading edge plus a moment due to lift acting at the 1/4 chord point.

C
cM=TL—%(Bl+BZ). (11.118)

2
2(B,+8,) c

e —f

1
1
) I
1
1
1

¢
4

Figure 11.16 Forces and moments on a thin cambered airfoil at zero angle of attack.
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Finally we look at the incompressible potential flow past a flat plate at a small angle of
attack illustrated below. The source is modeled as a distribution of vortices as in the

camber problem.

y (":-") Vortex strength/length

7(x)

7
0 c
[aYaYaYaYa'aYa'a'aYe Ve NN

U « AL L L L VL AL
- U_Sin(a) _" F_ dé ;
U_Cos(a) »>le »
9 I~ x-§& K

Figure 11.17 Distribution of vortices generating lift on a flat plate at angle-of-attack o .

In this case the surface condition is especially simple since dn.,,,., / dx =—0.
Veanser (%,0%) = =U_t (11.119)

C(—égdéz 2nU_ o0 0<x<C 7(C)=0. (11.120)
0 x—

1 ¢n
BO=—;J’Oad9=—a, B,.B,,B,,...,B,=0 (11.121)
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Potential flow for a flat plate at an angle of attack in low speed flow.

y(6)=2Uwa(1;§zo(S9()9)). (11.122)
C, =2nc
T (11.123)
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approximating the camber function

Mewser " B Cos(n6) (11.111)
dx n=0
n=16 n=100
dnCamber —dnCamb er
d -0.10 dx ~0.10
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NACA airfoil numbering system

| . :

Rodius through end of chord x-y, $in@ ),y *y, cosé
(meon line skope of 0.5 % v . v
chord) X XYy sin@ y ).~y cos@

NACA airfoil geometrical construction



FSTANFORD

AERONAUTICS &
ASTRONAUTICS

NACA Four-Digit Series:

The first family of airfoils designed using this approach became known as the NACA Four-Digit
Series. The first digit specifies the maximum camber (m) in percentage of the chord (airfoil length),
the second indicates the position of the maximum camber (p) in tenths of chord, and the last two
numbers provide the maximum thickness (t) of the airfoil in percentage of chord. For example, the
NACA 2415 airfoil has a maximum thickness of 15% with a camber of 2% located 40% back from
the airfoil leading edge (or 0.4c). Utilizing these m, p, and t values, we can compute the coordinates
for an entire airfoil using the following relationships:

1. Pick values of x from 0 to the maximum chord c.

2. Compute the mean camber line coordinates by plugging the values of m and p into the
following equations for each of the x coordinates.

m

Y. = (pr x) fromx=0tox=p

'O

Y. = TS [1 2p)+ 2px - x° from x=p to x=¢
where

x = coordinates along the length of the airfoil, from 0 to ¢ (which stands for chord, or length)
y = coordinates above and below the line extending along the length of the airfoil, these are
either y; for thickness coordinates or y. for camber coordinates

t = maximum airfoil thickness in tenths of chord (i.e. a 15% thick airfoil would be 0.15)

m = maximum camber in tenths of the chord
p =position of the maximum camber along the chord in tenths of chord
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3. Calculate the thickness distribution above (+) and below (-) the mean line by plugging the
value of t into the following equation for each of the x coordinates.

sy, = 0%[0.296&&—0.126@(— 0.3516x7 + 0.2843x° - 0.1015x" |

4. Determine the final coordinates for the airfoil upper surface (xu, yu) and lower surface (x., y.)
using the following relationships.

Xy=X-Y¥; sin@
Yu=Yc +Y; cosb
X =X+Y; sind

Y. =Y. Y cosd

where 0 = arctan( dy°]
dx

anz O e
q412 ( I
6412 / \
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NACA Five-Digit Series:

The NACA Five-Digit Series uses the same thickness forms as the Four-Digit Series but the mean
camber line is defined differently and the naming convention is a bit more complex. The first digit,
when multiplied by 3/2, yields the design lift coefficient (c|) in tenths. The next two digits, when
divided by 2, give the position of the maximum camber (p) in tenths of chord. The final two digits
again indicate the maximum thickness (t) in percentage of chord. For example, the NACA 23012
has a maximum thickness of 12%, a design lift coefficient of 0.3, and a maximum camber located
15% back from the leading edge. The steps needed to calculate the coordinates of such an airfoil
are:

and soon .....
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Family
4-Digit

5-Digit

16-Series

6-Series

7-Series

8-Series

1.

2.

Advantages
Good stall characteristics

Small center of pressure movement

across large speed range

3.

1

1

2

Roughness has little effect

. Higher maximum lift coefficient

. Low pitching moment

. Roughness has little effect
. Avoids low pressure peaks

. Low drag at high speed
1.

High maximum lift coefficient

. Very low drag over a small range of

operating conditions

3.

1.

Optimized for high speed

Very low drag over a small range of

operating conditions

2.

Low pitching moment

Unknown

Disadvantages
1. Low maximum lift coefficient

2. Relatively high drag

3. High pitching moment

1. Poor stall behavior

2. Relatively high drag

1. Relatively low lift

1. High drag outside of the
optimum range of operating
conditions

2. High pitching moment

3. Poor stall behavior

4. Very susceptible to roughness
1. Reduced maximum lift

coefficient

2. High drag outside of the
optimum range of operating
conditions

3. Poor stall behavior

4. Very susceptible to roughness
Unknown

Applications

1. General aviation
2. Horizontal tails

Symmetrical:

3. Supersonic jets
4. Helicopter blades
5. Shrouds

6. Missile/rocket fins

1. General aviation

2. Piston-powered bombers,
transports

3. Commuters

4. Business jets

1. Aircraft propellers
2. Ship propellers

. Piston-powered fighters
. Business jets

. Jet trainers

. Supersonic jets

A ON =

Seldom used

Very seldom used
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.020
K Transition depends on plate roughness,
\ 0.005 ¢ free stream turbulence, etc.
.018 \ [
016 (op /'
014 0001  Laminar solution
' c 0.664 Turbulent measurements
012 \\ 0.0005 "R, - 023?2
Cp .010 N
.008 o001l
006 ~ 000005
\\ l
.004 —
10¢ 10° 10° 107 10° 10°

.002 Rex

0

10° 108 107

Figure 8.11 Friction coefficient for incompressible flow on a flat plate.
Rn

3.14. Variation of minimum drag coefficient with Reynolds number, NACA
65-418 airfoil.

40
36 1.2+
32
28
i
24y -10+
20 mm 1.0
111115 8
-8+
it .
4
1.0 1.0 1.0 1.0 1.0 1.0 1.0 0 ° -6
u
0 —
AP -4
Q -2
0 \
210
28 —O- O
24 4 e - ©
20
16y 6
12mm e
H g
1/ 4
1.0 1.0 1.0 1.0 1.0 1.0 7o’ 8
I
i 10%

3.15a. Boundary layer profiles measured in flight. 3.15b. Pressure distribution, G-387 airfoil.
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Roughness effects

016
T RI T T T T 11 1
) o 15.3x10°  Smooth Condition i
012 A am - a 149 | | ) | | | | n
' e .o S 01210 248 Synthetic enamel camouflage with
e N _.—3—' S ~ 346 all specks cut off with blade
Comin U o $  [v 446 T: ]
Sar t:J Q | Afgr I I
.008 O .008 — s 1
Series Smooth —& | © 1 i —
o 00 o | | W | R
o c 004 | it R T S
.004 I~ -digi = | |
041=2 o ¢ (4-dligit E | 1 |
s s 2 | L 1| I
v 230 {5-digit) -8 -4 o 4 8 12 16 20
05 4 s 12 16 20 24 28 Section Lift Coefficient, C1
Airfoil Thickness, Percent of Chord L o )
3.17. Drag characteristics of NACA 65(421)-420 airfoil for two surface condi-
3.16. Variation of profile drag with thickness and surface condition. tions.
Roughness consisted of a strip of 0.01 inch Roughness consisted of a coat of camouflage paint.

Carborundum grains near the airfoil leading edge.
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Efforts at Drag control

N

NACA 66(215)-216, «=0.6

2.0
Upper Surface o
1.6 C/O‘—U__Q—u-
Wl 2 NN
. L, Lower Surface N 3.18. NACA 27-2012 airfoil: Cl = 1.78, Cd =.0061, L/D = 292, R =
(v) 2.3+ 10¢,
7 X\
.8
Theory
o Experiment
4
A record setter
00 2 4 6 8 1.0

x/c

3.12. Comparison of theoretical and experimental pressure distributions for
NACA laminar flow airfoil.



An experimental flow with zero skin friction
throughout its region of pressure rise
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By B. S. STRATFORD
National Gas Turbine Establishment, Farnborough

(Received 17 July 1958)

A flow has been produced having effectively zero skin friction throughout its
region of pressure rise, which extended for a distance of 3ft. No fundamental
difficulty was encountered in establishing the flow and it had, moreover, a good
margin of stability. The dynamic head in the zero skin friction boundary layer
was found to be linear at the wall (i.e. u oc y}), as predicted theoretically in the
previous paper (Stratford 1959).

The flow appears to achieve any specified pressure rise in the shortest possible
distance and with probably the least possible dissipation of energy for a given
initial boundary layer. Thus an aerofoil which could utilize it immediately after
transition from laminar flow would be expected to have a very low drag. A design
pressure distribution (besides having the usual safety margin against stall)
should have a slightly more gradual start to the pressure rise than in the present
experiment, as small errors close to the discontinuity can cause difficulty.

JFM Vol 5

Honeycomb Boundary
Settling layer
length obstruction Test wall

1:0/ C,= 0»
(x = 0-98x))
i = - | 1
Transition
Entry and contraction - T‘e‘s ! ,l’c':g‘h ——— o lengths g /oo C,=0122 —p
(of square section) ¢ Y ) and fan g f |
g 08 v C, = 0200
L )
Scale ———xs T2 / ' !
0 1ft 2ft & J l i
. . R d|¢
Ficure 1. Plan-section sketch of the wind tunnel. o 06 C,=0399 __
1/
Test wall E : C,= 0489 —
=LA
[} .

—_— 7 —
Uy e
— ,;97’{?;—[ 682
- 4 ?/o/ ]
e T T T T T T T
. 7—/~7~7~7-7-7‘—,7L7_r_/,_"""_,)‘7/_, / /V/
o Static point ‘ ; ) =5
3 Main t : The ‘opposite wall’ was placed along L
Main mvers;;lu: (.mn the centre line, and made flexible /
0 5in. 10  and of variable divergence; the top 2:0 30 40 5.0
and bottom walls were diverged
sufficiently to retain the central —_— -
flow 2-dimensional. Distance from the wall (in.)

Fiaure 2. Design of the test section.

Ficure 8. The dynamic head profiles. The full line profiles represent total pressure minus
static pressure at the wall. Where the static pressure varies across the boundary layer the

true dynamic head is represented by the broken lines. The C,, values refer to the wall.
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Effort to maintain

=

o

3~
Design Conditions:
-2 R=2x10°
CL: 1.8
a =11.2°
CP t/c max — 18%
1
1.0
] | | | | I
0 x/c
+1

3.19a. Laminar rooftop airfoil, geometry and pressure distribution.

CL

incipient separation

—_——

R=10°¢

o Clean Model

O Transition Strip (.008" balls)
at Upper Surface Peak

a Transition Strip (.011" balls)
at Leading Edge

1 1 Il |

4 8 12 16

3.19b. Laminar rooftop airfoil, lift curves showing the effect of transition strips.
(From R. H. Liebeck, “Wind Tunnel Tests of Two Airfoils Designed for High Lift

without Separation in Incompressible Flow,” Rep. MDC-]J5667/01, McDonnell
Douglas Aircraft Co., Aug. 1972. With permission of the author.)
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AA200A Homework 7-2013--2014 7
Due Thursday May 29 T
T

Read: Chapters-12-and 13 7
T

Problem 1 — Take the 2-D wing you studied in Homework 6 and use it as the cross-section of an elliptical
planform 3-D wing with aspect ratio- 10. Determine the lift, skin friction drag, induced drag and moment
coefficients of the wing for several angles of attack. Ignore possible cross-flow effects. 7

Problem 2 — Estimate the effect on the pressure distribution, lift and drag if the wing in problem 1 is flown
at-a Mach number of 0.5.

LAST YEAR’S SECOND EXAM 7

Problem 3 — The figures below depict an - innovative -system - for - drawing - propulsion - from - the - wind
developed by ‘Anton Flettner in the 1920’s.- A motor below decks is used to turn a spinning cylinder. In the
presence of the wind a force acts on the cylinder. The force can be used to supplement the thrust of the
ship’s propellers. -With -proper design the system can be more efficient than one where all the power is
applied to the ship’s propellers. Both Jacob Ackeret (a swiss aerodynamicist) and Ludwig Prandtl helped
Flettner with his-design. 7

—

1) The original concept shown in the left figure used two cylinders each 15 meters high -and 3 meters-in
diameter- driven by 40 kilowatt motors turning the cylinders at-0.25 revolutions per-second. Estimate the
force - produced - by - each - rotor - in - a- 20 meter - per  second - wind. - The - density - of - air - at - sea - level - is

1225kg [ m? .«

2) What is the role of viscosity in this concept? To help you think about this problem suppose a cylinder is
set into rotation-at -a constant frequency ‘in-a-viscous ‘incompressible -fluid initially -at rest. After a short
period a slowly changing velocity field near the cylinder is established. Sketch the velocity profile.

Problem 4 — A solar powered light aircraft with a rectangular wing is designed for flight at low speed at an
altitude of 5,000 meters (air density 0.74kg / m*). The drag coefficient is 7
C; S
C D = C Dp + —L —2 T
me, b

where the coefficient of profile drag is C,,, =0.01 and the Oswald efficiency is €, = 0.8 . The wing

span is 15 meters-and the wing chord is- 1 meter. The aircraft mass-including the pilot is- 180 kg. Determine
the flight speed U_, that minimizes the drag. 7

Problem 5 — The lift coefficient on a thin 2D wing spanning a wind tunnel is measured to be 0.55 at a free
stream-Mach number of 0.4. The wing is rotated to a sweep -angle -of 60 degrees and the Mach number of
the flow is increased to-1.5. Estimate the lift coefficient of the swept wing. 7



