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10.1 Incompressible flow





10.2 Potentials





10.4 Point source solution of Laplace's equation

Φ r,t( ) = −
Q t( )
4πρr

Ur =
∂Φ
∂r

=
Q t( )
4πρr2

Radial velocity

Integrate over any closed surface surrounding the source

Ur0

π

∫0

2π

∫ r2Sin θ( )dθdφ =
Q t( )
ρ

Potential at due to a source atx xs



Potential generated by a distribution of sources – vortex sticks

Scalar potential

∇2Φ = Q x ,t( )

∇2A = −Ω x ,t( )

Vector potential



Example - Scalar potential generated by a line distribution of sources

Source distribution

Integrate

Potential

 Units of S  = Area/Sec



Semi-infinite line of sources - Let a→ −∞



Let b→∞

Infinite line of sources  



2-D potential for a point source Q

2-D radial velocity

Integrate over any closed 
contour surrounding the 
source

The fundamental source solution can be used to construct the Poisson 
solution for a distribution of sources in two dimensions

Units of Q t( )  = Mass/Length-Sec



Example – A vortex monopole - A finite length distribution of vortex 
monopoles will be used to generate what we will call a vortex stick. Lifting 
line theory will be developed using a superposition of vortex sticks. 

Vorticity point source

Vector potential

Velocity field



Example - Scalar potential generated by a line distribution 
of vortices – the Vortex Stick, a finite length distribution of 
vortex monopoles

A = 0,0,Az( )

Vector source distribution

Vector potential has only one 
non-zero component



The velocity has two nonzero components



2-D vector potential for a point vortex Γ

The fundamental point vortex solution can be used to construct the Poisson solution for 
a distribution of vortices in two dimensions

Let a = -b and take the limit b→∞

Infinite line of vortices  

aka the stream function



Example - Uniform Flow past a sphere



Disturbance velocity from a 3-D body decays like 1 / r3



10.6 Elementary 2-D potential flows

2-D potential flows satisfy the Cauchy Riemann conditions

Complex potential



Both components of the complex potential satisfy Laplace's equation

Complex velocity



W =U∞z +
Q
2π

Ln z − a( ) − Q
2π

Ln z + a( )

















In steady flow the force is perpendicular to the velocity vector approaching the body

Force by a uniform flow on a 3-D rigid body in an inviscid fluid



Force on a 2-D rigid body



Force on a 2-D body in potential flow is



10.9 Virtual mass

Virtual mass = 1/2 of the displaced mass





Fx = 2π Rsphere( )3 ρ U∞
df
dt
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Force on an accelerated sphere vs 
a sphere in an accelerated fluid 

Fluid is inviscid

Accelerate the sphere

Virtual mass = 1/2 of the displaced mass

Accelerate the fluid

Acceleration

U∞
df t( )
dt

f t( )   is dimensionless

Virtual mass effect Buoyancy effect



Low Reynolds number flow

Take the curl of the incompressible momentum equation

∇× ∂U
∂t

+U ⋅∇U + 1
ρ
∇P −ν∇2U

⎛
⎝⎜

⎞
⎠⎟
= 0

The result is the transport equation for the vorticity

∂Ω
∂t

+U ⋅∇Ω−Ω⋅∇U = ν∇2Ω

If the flow is steady and the velocity is very small the equation reduces to

∇2Ω = 0
Recall the Poisson equation for the vector potential

∇2A = −Ω
Low Reynolds number flow is governed by the biharmonic equation

∇2 ∇2A( ) = 0
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Viscous flow past a sphere at low 
Reynolds number

R



∇2 ∇2A( ) = ∂2
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The Stokes stream function

The flow is axisymmetric and best posed in spherical polar coordinates 

Velocities

Boundary conditions

No-slip condition

Uniform flow at infinity
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Assume

Solution

Viscous stress

Pressure



FzPressure = − P R,θ( )Cos θ( )( )R2Sin θ( )
0
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Drag components

Buoyancy 
force

Pressure 
drag

Viscous 
drag



DStokes = 6πµRU∞
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Non buoyant pressure plus viscous drag



Dissipation of kinetic energy by viscous friction
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Axisymmetric flow in spherical polar coordinates

Low Reynolds number flow over a sphere
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Integrate the kinetic energy 
dissipation over the flow volume 
out to infinity





10.7 Force on a rigid body translating in an inviscid fluid

Space-fixed 
reference frame

Body-fixed 
reference frame



Transform the Bernoulli constant



Transformation of the time derivative of the potential

The force on the body in the body fixed frame is determined by



10.7.3 Relation between the force acting on the body and the potential



 UB = XB t( ), YB t( ), ZB t( )( )

 
U = uLet

Use the vector identity

These two terms cancel







Finally the force on a body in potential flow in the body-fixed frame is

In steady flow the force is perpendicular to the velocity vector approaching the body



10.9 Virtual mass

Force on the 
sphere in the 
body-fixed frame



What is the force on the body in the space-fixed frame?

Force on the 
sphere in the 
space-fixed frame

Virtual mass = 1/2 of the displaced mass




