CHAPTER 13
COMPRESSIBLE THIN AIRFOIL THEORY

13.1 COMPRESSIBLE POTENTIAL FLOW

13.1.1 THE FULL POTENTIAL EQUATION

In compressible flow, both the lift and drag of a thin airfoil can be determined to
a reasonable level of accuracy from an inviscid, irrotational model of the flow.
Recall the equations developed in Chapter 6 governing steady, irrotational,

homentropic (Vs = 0) flow in the absence of body forces.

V(pU) = 0

V( .U+E)

2 P
£:<£y
Py PO)

The gradient of the isentropic relation is

=0
) (13.1)

VP = d’Vp. (132)
Recall from the development in Chapter 6 that

V(E) = (L}/l> %3 (13.3)

Using (13.3) the momentum equation becomes

\7((%])% U Z'U) iy 134)

Substitute (13.2) into the continuity equation and use (13.3). The continuity equa-
tion becomes

U-Va2+(y—1)a2V~U = 0. (13.5)

Equate the Bernoulli integral to free stream conditions.
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Note that the momentum equation is essentially equivalent to the statement that

the stagnation temperature 7', is constant throughout the flow. Using (13.6) we

can write

<a2)_h_U°U
y-1

s 5 (13.7)
The continuity equation finally becomes

(y—])(ht—UT.U)V'U—U'V<

l_l-l_/>

5 =0 (13.8)

The equations governing compressible, steady, inviscid, irrotational motion
reduce to a single equation for the velocity vector U . The irrotationality condition

V x U = 0 permits the introduction of a velocity potential.

U=V (13.9)
and (13.8) becomes

(V—1)<ht—w>vzdb—de°V<—V—g€—@) = 0. (13.10)

For complex body shapes numerical methods are normally used to solve for @.
However the equation is of relatively limited applicability. If the flow is over a
thick airfoil or a bluff body for instance then the equation only applies to the sub-
sonic Mach number regime at Mach numbers below the range where shocks begin
to appear on the body. At high subsonic and supersonic Mach numbers where
there are shocks then the homentropic assumption (13.2) breaks down. Equation
(13.8) also applies to internal flows without shocks such as fully expanded nozzle
flow.

13.1.2 THE NONLINEAR SMALL DISTURBANCE APPROXIMATION

In the case of a thin airfoil that only slightly disturbs the flow, equation (13.8) can
be simplified using small disturbance theory.

5/31/13 13.2 bjc



Compressible potential flow

Consider the flow past a thin 3-D airfoil shown below.
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The velocity field consists of a freestream flow plus a small disturbance

U=U_+u
Vo= (13.11)
W =w
where
uw/U,«1 , v/U_ «I, w/U_ «1. (13.12)

Similarly the state variables deviate only slightly from freestream values.

P=P_+P
I =T,+T (13.13)
P = Pt P
and
a = a,+a. (13.14)

This decomposition of variables is substituted into equation (13.8). Various terms
are

(13.15)

and
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(u Uy +uu, +vv, . +ww,

(13.16)
quoo + uu,, +vv_+ wW.,

y
w, Uy +uu +vv +ww )

as well as
U-*U —
(y-1) ht_T>V° U =
UZ u2 V2 W2
(y_])(hl‘_(T+uUW+?+?+7))u]€+
2 ., (13.17)
) u \% w
(y_])(ht_(7+quo+?+7+7))Vy+
U2 Lt2 VZ W2
(y—I)(ht—(—oo+quo+—2—+3+—2—))wZ
and, finally
— U-*U 2
U * V(Z57) = uUp+uu, Uy + v Uyt wiw U, +
uu U +u2u +uvv_+uww_+
X x X X (13.18)

2
vu U_+vuu_+v v_+vww_+
y & y y y

2
wu U_+wuu_+wvv_+w w
7 Z Z Z

Neglect terms in (13.17) and (13.18) that are of third order in the disturbance
velocities. Now
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U-*U — Ue*U
-s-258) 00250
v’
('}/—]) hf_ 7+MUOO I/lx+
vl (13.19)
(')/—I) hf_ 7+uUOO Vy+

2
Ug 2
(V_])(ht_(T +”Uoo))wz_(”ono+””ono"'VVono"'WWono)—
uuono—vquoo—wuZUoo
or
U-*U

(V—I)(ht—T)V-U—U . V(

U°U>=
>—) =

(13.20)

2
()/—])(hoo—quo)(ux+vy+wZ)—(uono+uuono+vvaoo+wwaoo

—uuono—vquoo—wuZUOO

Recall that (y — 1)h, = ai . Equation (13.20) can be rearranged to read

U-U = = U-U
o039 w0252
13.21
ai(ux+vy+wz)—Uiux—(y+])uuono— (v, Uy +ww U,) (1321

(y- ])(uvaOO +uw U,) - vu U y=wu U,

Divide through by ai.
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U-*U S Ue*U
(y—])(ht——T>V U-U V( . )=
5 (y+1)M
(I-M_)u, + vyt w, - Uy - (13.22)

oo
Z((}/ — 1)(uvy +uw_ )+ Vil + Wit + VY + ww. )

This equation contains both linear and quadratic terms in the velocity disturbances
and one might expect to be able to neglect the quadratic terms. But note that the

first term becomes very small near M, = I .Thus in order to maintain the small

disturbance approximation at transonic Mach numbers the uu, term must be
retained. The remaining quadratic terms are small at all Mach numbers and can
be dropped. Finally the small disturbance equation is

(y+1)M,

2
(I =M u, +v +w, —————uu, = 0. (13.23)

a4

The velocity potential is written in terms of a freestream potential and a distur-
bance potential

b =U, x+¢(x,y,2). (13.24)

The small disturbance equation in terms of the disturbance potential becomes

M
2 00
(=M )yt @yt b, = (r+1)——¢ ¢, (13.25)

Equation (13.25) is valid over the whole range of subsonic, transonic and super-
sonic Mach numbers.

13.1.3 LINEARIZED POTENTIAL FLOW

If we restrict our attention to subsonic and supersonic flow, staying away from
Mach numbers close to one, the nonlinear term on the right side of (13.25) can be
dropped and the small disturbance potential equation reduces to the linear wave
equation.

5/31/13 13.6 bjc



Compressible potential flow

2
B pxx—(dy, +9,,) = 0 (13.26)
where f = ,|M i — I . In two dimensions
s =0 13.27
¢xx—¢yy = U. (13.27)

The general solution of (13.27) can be expressed as a sum of two arbitrary
functions

¢(x,y) = F(x-By) + G(x + By). (13.28)

Note that if M i < I the 2-D linearized potential equation (13.27) is an elliptic

equation that can be rescaled to form Laplace’s equation and (13.28) expresses
the solution in terms of conjugate complex variables. In this case the subsonic
flow can be analyzed using the methods of complex analysis. Presently we will
restrict our attention to the supersonic case. The subsonic case is treated later in
the chapter.

It M i > [ then (13.27) is the 2-D wave equation and has solutions of hyperbolic

type. Supersonic flow is analyzed using the fact that the properties of the flow are
constant along the characteristic lines x + By = constant. The figure below
illustrates supersonic flow past a thin airfoil with several characteristics shown.
Notice that in the linear approximation the characteristics are all parallel to one
another and lie at the Mach angle u_, of the free stream. Information about the

flow is carried in the value of the potential assigned to a given characteristic and
in the spacing between characteristics for a given flow change. Right-leaning
characteristics carry the information about the flow on the upper surface of the
wing and left-leaning characteristics carry information about the flow on the lower
surface.
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x — Py = constant

U =Sin!(1/M,,)

x + By = constant

All properties of the flow, velocity, pressure, temperature, etc. are constant along
the characteristics. Since disturbances only propagate along downstream running
characteristics we can write the velocity potential for the upper and lower surfaces
as

¢p(x,y) = F(x-By) y>0
¢(x,y) = G(x+ By) y<0

Let y = f(x) define the coordinates of the upper surface of the wing and

(13.29)

y = g(x) define the lower surface. The full nonlinear boundary condition on the
upper surface is

daf
= L 1330
o ( )

=

y=1rf
In the spirit of the thin airfoil approximation this boundary condition can be
approximated by the linearized form

Y
U

[ee]

= %])—CC (13.31)
y=0

which we can write as
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M = Uoo(;ﬁt) (13.32)
Y oly=o X
or
UOO df
F' = —(=]). 13.
w -
On the lower surface the boundary condition is
Usrd
(x) = —2(48
G'(x) = 3 <dx>' (13.34)

In the thin airfoil approximation the airfoil itself is, in effect, collapsed to a line
along the x-axis, the velocity potential is extended to the line y = 0 and the sur-

face boundary condition is applied at y = O instead of at the physical airfoil
surface. The entire effect of the airfoil on the flow is accounted for by the vertical
velocity perturbation generated by the local slope of the wing. The linearized
boundary condition is valid on 2-D thin wings and on 3-D wings of that are of
“thin planar form”.

Recall that (13.26) is only valid for subsonic and supersonic flow and not for tran-

sonic flow where (/1 — Mi) «1.

13.1.4 THE PRESSURE COEFFICIENT

Let’s work out the linearized pressure coefficient. The pressure coefficient is

P-P,
Cp = = (1), (1335)

T2 2\P
P U )/Moo @

2 oo oo

The stagnation enthalpy is constant throughout the flow thus

l—]+ !
T 2CpToo

0

(U2~ (U7 +v7 +w?)). (13.36)

Similarly the entropy is constant and thus the pressure and temperature are related
by
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_r
P 1 2 2 2 2.0.r!
R _ 13.
P ( +2CPTOO(U°° (U v +w ))) (13.37)
and the pressure coefficient is
_r
y—1
Cp= 2 (1+ ! W~ P ew?)) Tl s
P 2 2. T~ %
YM,, P
The velocity term in (13.37) is small
Ui—(U2+v2+w2) = —(2quo+u2+v2+w2). (13.39)

Now use the binomial expansion (/ — s)n =l-ne+n(n-1 )82/ 2 to expand
the term in parentheses in (13.39). Note that the expansion has to be carried out
to second order. The pressure coefficient is approximately

2u 2 u2 v2+w

0 U U’

co co

(13.40)

Equation (13.40) is a valid approximation for small perturbations in subsonic or
supersonic flow.

For 2-D flows over planar bodies it is sufficient to retain only the first term in
(13.40) and we use the expression

u
CPE—ZU—. (13.41)

[ee]

For 3-D flows over slender approximately axisymmetric bodies we must retain
the last term and so

(13.42)
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As was discussed above, if the airfoil is a 2-D shape defined by the function
y = f(x) the boundary condition at the surface is

df v
el = 134
e T tan 0 (13.43)

co

where 6 is the angle between the airfoil surface and the horizontal. For a thin air-
foil this is accurately approximated by

df _ ¥
— =—=0. 13.44
dx U, ( .
For a thin airfoil in supersonic flow the wall pressure coefficient is
2 df
Chwail = 5 ]/2<C§> : (13.45)
(M, —1)

2,2 2 172 L :
where dU /U = —(2/(MOO -1) )d@,whlch is valid for M = I, has

been used. In the thin airfoil approximation in supersonic flow the local pressure
coefficient is determined by the local slope of the wing. The figure below shows
the wall pressure coefficient on a thin, symmetric biconvex wing.
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This airfoil will have shock waves at the leading and trailing edges and at first
sight this would seem to violate the isentropic assumption. But for small distur-
bances the shocks are weak and the entropy changes are negligible.

13.1.5 DRAG COEFFICIENT OF A THIN SYMMETRIC AIRFOIL
A thin, 2-D, symmetric airfoil is situated in a supersonic stream at Mach num-
ber M  and zero angle of attack. The y-coordinate of the upper surface of the

airfoil is given by the function

y(x) = ASin(%) (13.46)
where C 1is the airfoil chord. The airfoil thickness to chord ratio is small,
2A/C « I.Determine the drag coefficient of the airfoil.

Solution

The drag integral is

C
D = Zf (P-P_)Sin(a)dx (13.47)
0

where the factor of 2 accounts for the drag of both the upper and lower sur-
faces and a is the local angle formed by the upper surface tangent to the airfoil
and the x-axis. Since the airfoil is thin the angle is small and we can write the
drag coefficient as

I(pP—-P
D 00 X
Cp =75 = 2f — (oc)d((—j> (13 .48)
?pooUooC EpooUoo

The local tangent is determined by the local slope of the airfoil therefore

Tan(o) = dy/dx and for small angles o = dy/dx. Now the drag coeffi-
cient is

I(P-P,_
Cp = b _, (d—y)d<f> (13.49)
1 2 1 2 [ \dx C
?pooUooC 0 épooUoo

The pressure coefficient on the airfoil is given by thin airfoil theory (13.45) as
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Cp = — —<@’) (13.50)
1 2 2
§pooUoo M_ -1

and so the drag coefficient becomes

_o_ A dyan? 4A’n & 24%°

- =) a2 —=——=(135D)
b JAT—I 0<dx> (C) Ffo ( ) ( ) c JAT—I
The drag coefficient is proportional to the square of the wing thickness-to-chord
ratio.

C

13.1.6 THIN AIRFOIL WITH LIFT AND CAMBER AT A SMALL ANGLE OF ATTACK
A thin, cambered, 2-D, airfoil is situated in a supersonic stream at Mach num-
ber M, and a small angle of attack as shown below.

y

—>’\ly:_6 X
- c >

The y-coordinate of the upper surface of the airfoil is given by the function

X X x\  Ox
fle) = ag) +2ole) - (1352
and the y-coordinate of the lower surface is
(f) = —Ar<5> + Ba<f> _ (13.53)
#\c) ~ C ¢/~ ¢C '

where 2A/C « I and 6/C « I.The airfoil surface is defined by a dimension-
less thickness function

r(%) ;0 10) = (1) =0, (13.54)

a dimensionless camber function

bjc 13.13 5/31/13



Compressible potential flow

o(%) ;0 o(0) = o(l) = 0 (13.55)

and the angle of attack

Tan(a) = —g (13.56)

Determine the lift and drag coefficients of the airfoil. Let

£ = % (13.57)
Solution
The lift integral is
L= fs(Plower ‘Poo)cos(o‘zower)dx—fs(Pupper —P)Cos(a,,,,)dx  (13.58)

where « is the local angle formed by the tangent to the surface of the airfoil

and the x-axis. Since the angle is everywhere small we can use Cos(a) =1 .
The lift coefficient is

D / /
CL - ﬁ - f C‘Plowerdg _f CPu erdé: (1359
EpooUooC 0 0 "

The pressure coefficient on the upper surface is given by thin airfoil theory as

C - ;(‘Z—f) - ;@‘” B9 6) (13.60)

_+ —_—
Pypper d d d
Y T v

and on the lower surface the pressure coefficient is

c = —;(d—g) = —;<—Ad—r + B9 5) . (13.61)

P(JWl?r d d d
l N N A

Substitute into the lift integral
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_ ) —
€L = :ﬁ(fodédg fodgfé) Cx/ﬁ_}(fo df+f0 dg) (13.62)

In the thin airfoil approximation the lift is independent of the airfoil thickness.

c, = %(2) (13.63)
M2 1

The drag integral is

¢ . C ‘
D = fo (Pypper = Po)Sin(a, ., ,)dx +f0 (Pywer — Po)Sin(-ay,,,, )dx  (13.64)

Since the airfoil is thin the angle is small and we can write the drag coefficient
as

(13.65)

oo

lower
( upper d‘;: +f 2
p U

200 29}

(_O{lower)dg

D ]Pupper_POO
“p = 7 :fo 12
u,C sPLU

2 oo oo

30
The local tangent is determined by the local slope of the airfoil therefore

Tan(a) = dy/dx and for small angles a = dy./dx.

Now the drag coefficient is

D 14 dyupper / dylower
= —— = = d d 13.66
CD 1 2 CfOCPupper< dg ) ‘;: CfOCPlower< d& ) E ( )
épooUooC

The drag coefficient becomes

_ 2 d17 dr 3
[ S A

Note that most of the cross terms cancel. The drag coefficient breaks into sev-
eral terms.

o = T &0 e (@ e (@ )
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The third term in (13.68) is

ef, % - (@2 9o - (Qeten-aon -0

Finally

CD=W(()J](619 (@ pE e () wo

In the thin airfoil approximation, the drag is a sum of the drag due to thickness,
drag due to camber and drag due to lift.

13.2 SIMILARITY RULES FOR HIGH SPEED FLIGHT

The figure below shows the flow past a thin symmetric airfoil at zero angle of

attack. The fluid is assumed to be inviscid and the flow Mach number U ] / a_.,

where ai = yP_/p, 1s the speed of sound, is assumed to be much less than

one. The airfoil chord is ¢ and the maximum thickness is 7, . The subscript one is

applied in anticipation of the fact that we will shortly scale the airfoil to a new
shape with subscript two and the same chord.

- : -

Figure 13.1 Pressure variation over a thin symmetric airfoil in low speed flow.
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The surface pressure distribution is shown below the wing, expressed in terms of
the pressure coefficient.

Ps_Poo
CP] = 7—-—-—-—2—— (13.71)
épooUoo]

The pressure and flow speed throughout the flow satisfy the Bernoulli relation, in
particular, near the airfoil surface,

1 2 1 2
POO+§pooUoo] = PS] +§pooUs]' (13.72)

The pressure is high at the leading edge where the flow stagnates, then as the flow
accelerates about the body, the pressure falls rapidly at first, then more slowly
reaching a minimum at the point of maximum thickness. From there the surface
velocity decreases and the pressure increases continuously to the trailing edge. In
the absence of viscosity, the flow is irrotational.

qu] =0 (13.73)
this permits the velocity to be described by a potential function.
u, = V¢, (13.74)

when this is combined with the condition of incompressibility, V ® u ;= 0, the

result is Laplace’s equation.

2 2
<9¢]+<9¢]
2 2
Jdx; dyy

= 0. (13.75)

Let the shape of the airfoil surface in (x;, y;) be given by

y
= = 7yglx,/c] (13.76)

where 7, = 7, /c is the thickness to chord ratio of the airfoil. The boundary con-

ditions that the velocity potential must satisfy are,
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dg[x;/c]

39,
( Ve d(x;/c)

1 N T
&yl) _ *1 o°1(dx])
y, = crlg<—c—) body (13.77)

Ply, ~w =

Any number of methods of solving for the velocity potential are available includ-
ing the use of complex variables. In the following we are going to restrict the

airfoil to be thin, 7; « /. In this context we will take the velocity potential to be

a perturbation potential so that.
u; = Uoo]+u]' ;oovy = v]' (13.78)
or

9, 9,
b=

u, = U_,+— ; = —.
1 1 ’

13.79
o (13.79)

The boundary conditions on the perturbation potential in the thin airfoil approxi-
mation are,

(07(])]) U (dy]) . dg[x]/c]\
I = 0] J— — OOT]—
i)y, =0 dxg body d(x;7¢) | (13.80)

‘/’JXIeoo -

The surface pressure coefficient in the thin airfoil approximation is,
2 (99
CP] = ————( ) . (13.81)
Yy = 0

U\ dx,

Note that the boundary condition on the vertical velocity is now applied on the
line y, = 0.Ineffect the airfoil has been replaced with a line of volume sources

whose strength is proportional to the local slope of the actual airfoil. This sort of
approximation is really unnecessary in the low Mach number limit but it is essen-
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tial when the Mach number is increased and compressibility effects come in to
play. Equally, it is essential in this example where we will map a compressible
flow to the incompressible case.

13.2.1 Sussonic FLow M < 1

Now imagine a second flow at a free stream velocity, U , inanew space (x,, y,)

%2
over a new airfoil of the same shape (defined by the function g[ x/c]) but with a

new thickness ratio T, = 1, /¢ « 1. Part of what we need to do is to determine

how 7; and 7, are related to one another. The boundary conditions that the new

perturbation velocity potential must satisfy are,
d9, U dy, U dg[x,;/c]
W)y, =0 FAdx), T T2 dG )

02y o

(13.82)

In this second flow the Mach number has been increased to the point where com-
pressibility effects begin to occur: the density begins to vary significantly and the
pressure distribution begins to deviate from the incompressible case. As long as
the Mach number is not too large and shock waves do not form, the flow will be
nearly isentropic. In this instance the 2-D steady compressible flow equations are,

diy duy, 1 gp

Uy + v, + = =0
Jx, dy, poIx,
Wy Iy Jgp
Upyz— +Vym—+ —-—— = 0
Jx, dy, pIy,
(13.83)
u v
ap ap 2 2
—— +V,— + p— +p— =0
uZ&xZ vZ&yZ p&xz p&yz
P _ (ﬁ ’
P, \p

Let
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Uy = Uypttdy 7 vy =V, p=p,+p ; P =P +P (1384
where the primed quantities are assumed to be small compared to the free stream
conditions. When quadratic terms in the equations of motion are neglected the
equations (13.83) reduce to,

2
pooUoo2 ﬁu‘z N (?v'z

1 - = 0. (13.85)
YP, | dxy  dy,
Introduce the perturbation velocity potential
L) P
I/t'2 = _2 ,' V’2 = _""‘g (13.86)
Jx, y,

The equation governing the disturbance flow becomes,

2 2
Jd o, d¢
(1-M>)—2+—2 =0 (13.87)

Notice that (13.87) is valid for both sub and supersonic flow in the thin airfoil
approximation.

Since the flow is isentropic, the pressure and velocity disturbances are related to
lowest order by,

P+ p U yuy =0 (13.88)

and the surface pressure coefficient retains the same basic form as in the incom-
pressible case,

2 074’2)
C = ———| — . (13.89)
P2 Uooz(&x2 ¥y =0

Since we are at a finite Mach number, this last relation is valid only within the thin
airfoil, small disturbance approximation and therefore may be expected to be
invalid near the leading edge of the airfoil where the velocity change is of the order
of the free stream velocity. For example for the “thin” airfoil depicted in Figure
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13.1 which is actually not all that thin, the pressure coefficient is within
—0.2 < Cp < 0.2 except over a very narrow portion of the chord near the leading

edge.

Equation (13.87) can be transformed to Laplace’s equation, (13.75) using the fol-
lowing change of variables.

1 1 UooZ
2 A Uoo]
1-M,

where, at the moment, A is an arbitrary constant. The velocity potentials are

related by,
olxp y21 = 5 U, ¢;lx; ;] (13.91)
or,
Ui 1
O1lxp 1 = Al g—|2] *p =) (13.92)
2 1-M,

and the boundary conditions transform as,

(a(p]) _ AT, \dg[x;/c]]
Y _ ., d(x,/c
Y1)y =0 l1-m2, (a7 (13.93)
= = 0
Uiy, e = P20, e

The transformation between flows one and two is completed by the
correspondence,

T, = Y— (13.94)

or
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<%1> - —] AMZ <%2> (13.95)
NS T 02

Finally the transformed pressure coefficient is

CPI = ACPZ' (13.96)
These results may be stated as follows. The solution for incompressible flow over
a thin airfoil with shape g[ x 4 ¢ ] and thickness ratio, ¢ ;/ ¢ atvelocity U isiden-

tical to the subsonic compressible flow at velocity, U, and Mach number M,

over an airfoil with a similar shape but with the thickness ratio,

2
t [1-M_, t
2 02 ("]
- = —(—). 13.97
c A < c) ( .
The pressure coefficient for the compressible case is derived by adjusting the
incompressible coefficient using Cp, = Cp;/A.This result comprises several

different similarity rules that can be found in the aeronautical literature depending
on the choice of the free constant, A.

M=05 - M =075

Figure 13.2 Pressure coefficient over the airfoil in Figure 13.1 at several Mach
numbers as estimated using the Prandtl-Glauert rule (13.99)

Perhaps the one of greatest interest is the so-called Prandtl-Glauert rule that
describes the variation of pressure coefficient with Mach number for a body of a
given shape and thickness ratio. In this case we select,
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A= J1-M, (13.98)

so that the two bodies being compared in (13.97) have the same shape and thick-
ness ratio. The pressure coefficient for the compressible flow is,

Cp;

P2 T T
/\/]_MioZ

Several scaled profiles are shown in Figure 13.2. Keep in mind the lack of validity
of (13.99) near the leading edge where the pressure coefficient is scaled to inac-
curate values.

C (13.99)

13.2.2  SUPERSONIC SIMILARITY M > |
All the theory developed in the previous section can be extended to the supersonic
. . 2 . 2 .. .
case by simply replacing / — M _ with M — I . In this instance the mapping is
between the equation,
2 2
2 J ¢, J ¢,

(M- 1)—5-—5 =0 (13.100)

dx,  dy,
and the simple wave equation
2 2
¢ 99
=0 (13.101)

2 2
Jx; Jy,

A generalized form of the pressure coefficient valid for subsonic and supersonic
flow is,

C
-F—T (13.102)

Al -

) . 2
where A is taken to be a function of ‘] -M Oo‘ .

>ls
|
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Similarity rules for high speed flight

13.2.3  TRANSONIC SIMILARITY, M = ]

When the Mach number is close to one, the simple linearization used to obtain
(13.87) from (13.83) loses accuracy. In this case the equations (13.83) reduce to
the nonlinear equation

! ] 2 !
au', o”v]_(y]+I)Mool ‘ au';

2
(1-M,,) + u' = 0. (13.103)
dx;  dy, Ui 0x
In terms of the perturbation potential,
2 2 2 2
2 99, d ¢ (v, + )M ;09,9 9,
(1-M,) + - = 0. (13.104)
2 2 U, é’x]& 2
Jx; y; X
This equation is invariant under the change of variables,
2
1-M U
1 1 2
Xy =X, 0 Yy, = —y, ¢, == —|¢, (13.105)
2 A UOO]
1-M,
where
A = (13.106)
Frvil\i-m2,)\ M2,

Notice that, due to the nonlinearity of the transonic equation (13.104), the con-

stant A 1s no longer arbitrary. The pressure coefficient becomes,

02
2 CpZ

oo]

T+ ypN[(1-M2 )\ (M
) (13.107)

1-M>,)\M

and the thickness ratios are related by,
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3
2 \2/..2
2 (1)
c |1+ 2 2 |c¢’ '

In the transonic case, it is not possible to compare the same body at different Mach
numbers or bodies with different thickness ratios at the same Mach number except
by selecting gases with different y. For a given gas it is only possible to map the
pressure distribution for one airfoil to an airfoil with a different thickness ratio at
a different Mach number. A generalized form of (13.102) valid from subsonic to
sonic to supersonic Mach numbers is,

5 1/3 5
= F . (13.109)

v (xty + M2y

Prior to the advent of supercomputers capable of solving the equations of high
speed flow, similarity methods and wind tunnel correlations were the only tools
available to the aircraft designer and these methods played a key role in the early
development of transonic and supersonic flight.

13.3 THE EFFECT OF SWEEP

Return to the continuity equation (13.8) written as

U°U>:0

5 (13.110)

Vel- 12 U V(
a
Using the irrotationality condition V x U = 0, (13.110) can expressed as

(13.111)

U2\ oU v av wAow _,UVOU WVIV UWIU
A Ly R LA N 1————2<—— LA ——>=0
2 2 2) 0z

+ +
a2 ay a2 0z a2 0z
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The effect of sweep

The figure below shows a plan view of of a long slender wing with the free stream
flow approaching at a sweep angle 3 . The component of the free stream flow par-
allel to the long axis of the wing is assumed to play little role in determining the
pressure variation over the wing except at the wing tips.

Figure 13.3 Slender wing with free stream approaching at sweep angle 3

Therefore the flow field in the (x, y) plane normal to the long axis of the wing

will be nearly two-dimensional so that dW /dz and dU/dz can be assumed to
be very small. Now

2

2
(]_U_)ﬂer(]_V_)ﬂ_ZK(QﬂerWﬂ’) =0 (13.112)

a2 x a2 ay a\a dy a 9z

Assume small disturbances.

5/31/13 13.26 bjc



The effect of sweep

U=U,Cos(B)+u

V =v

W =U_Sin(B)+w (S

_ l
a = Cloo+Cl

Neglect terms that are cubic in the small disturbances. Equation (13.112) becomes

(13.114)
2 2 .
; U,Cos (PB) oU oV ZV UOOCOS(B)GU UooSln(B)aV ~ 0
R ox Ty a, TG_y+Ta_z -

The quantity V/a_, is very small and we can neglect terms in (13.114) that are

quadratic in the disturbances. Introduce the disturbance potential. Equation
(13.111) reduces to

2 2
(I—MiCosz(ﬁ))a—2+%) =0 (13.115)
ox  dy

<

For the swept wing the disturbance potential is governed by the component of the
free stream velocity normal to the leading edge of the wing U_Cos(f). If

2 2 . . .
M _Cos (f) > I then the normal flow is supersonic and we would use supersonic

theory developed above to relate the pressure coefficient to the slope of the airfoil
surface in the (x, y) plane.

It M iC0s2( ) < I then the normal flow is subsonic and we can use the mapping

(13.90) to transform (13.115) to Laplace’s equation. The methods of subsonic thin

airfoil theory can be used to determine the M = 0 disturbance potential ¢, . The
pressure coefficient of the M = 0 solution is used with the Prandtl-Glauert rule
(13.99) to determine the pressure coefficient on the swept wing.

Cp;

C -
A/] — MiCosZ(B)

(13.116)

PMOOCOS(B)
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The effect of sweep

The best discussion of this topic that I know of appears in NACA Technical Report
863 by R. T. Jones published in 1945. The rest of the discussion of this topic com-
prises images taken directly from this report. Where Jones refers to equations (4)
and (6) he is referring to Laplaces equation and the wave equation.

5/31/13

The derivation of equations (4) and (6) is actually a special
case of a more general statement, namely, that the component
of translation of a cylindrical body in the direction of its long
axis has no effect on the motion of a frictionless fluid. In
the case of 2 wing of constant scetion moving through still

fluid, the flow is determined by the normal components of

velocity of its solid boundaries and these components in turn
are completely speeified by the component of motion in
planes perpendicular to the axis 77 cos 8. When the normal
component of velocity 17 cos 8 is less than sonie, then the
wing=scction flows are determined by solutions of Laplace’s
equation, As is well known, these flows show no pressure
drag due to thickness of the airfoil. On the other hand, if
the normal component exceeds the velocity of sound, the
flow patterns are of a different type and are characterized by
plane sound waves. In this case a pressurc drag arises and
the suction force at the leading edge disappears (fig. 2 (a)).
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Fisvre 2.—EfMeet of lending-edge angle on pressure distribution.
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A physical explanation of the occurrence of smooth flow
patterns and pressure distributions at supersonic velocities
iz as follows: If 17 is greater than ¢ but 17 cos B is less, then
the angle of sideslip or sweepback is greater than the Mach
angle (see fig. 2 (b)) and the airfoil will lie behind the charae-
teristic lines along which pressure influences are transmitted
(Mach lines). Thus, elthough the fluid directly upstream
from a given section can receive no pressure signal from this
section, the flow behaves as though it did receive such signals
because of the sueccessive influence of similar sections farther
upstream along the airfoil. The streamlines will thus be
caused to curve and follow paths appropriate to a subsonic
flow, although the speed is everywhere supersonic.

Figure 3 illustrates the effect of sweepback on the change
in cross section of a stream tube passing near the upper sur-
face of a cambered airfoil. As is well known, the equations
of fluid motion show a reduction in the area of a stream tube
in the region of increased velocity above the airfoil when the
velocity of flight is subsonie but show an increase in the
cross section when the velocity of flight is supersonic. In
figure 3 the component normal to the leading edge 17 cos g
is subsonic; and henee in section view the streamlines, follow-
ing the pattern for subsonic velocities, appear to contract as
they flow over the upper surface. In plan view, however,
the resolution of velocities shows that the flow lines bend as

they pass over the wing in such a way as to increase the

stream-tube area. In case the velocity of flight is super-

sonic, the latter effect must predominate, as is required by
the equations of motion. i

The order of magnitude of the pressure-drag coefficient
and its variation with angle of sweepback are indicated by
figure 4. The calculations were made by applying the
Ackeret theory and formulas (4) and (5) to a wing of infinite
aspect ratio. A simple biconvex wing section was assumed
and the angle of attack was varied so as to maintain a con-
stant lift coefficient of 0.5. The calculations were made for
a Mach number of 1.4, with the result that at 45° the angle
of sweepback becomes equal to the Alach angle and the
factor

1
17 cos B\?
\/ ( ¢ )—1
becomes infinite. At this point the pressure drag due to

thickness becomes infinite and the drag due to angle of

attack (shown by the curve marked g=0) vanishes.
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Plarn view

<z

Section view

FiGraEk 3.—Change in area of stream tube over upper surface of sweptback wing,
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FiovRre 4.—Veariation of pressure drag with angle of sweepback for infinite aspect ratlo.
M=14; Cp=0.5
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In the case of & wing of finite aspect ratio, it seems prob-
able that in the regions of the center section and the tips
pressure drags of the same order as those indicated for these
sections by the Ackeret theory will appear. If the wing is
of sufficiently high aspect ratio, however, the fraction of the
wing area affected will be negligible and the pressure drag
will be nearly that given in figure 4. The other drags in-
volved are: (1) skin-friction drag, which may be of the
order of 0.01, and (2) induced drag, which for an aspect ratio
of 8 is also about 0.01.

WINGS OF FINITE SPAN AND THICKNESS

Schlichting (reference 10) proposes a trapezoidal plan form
with tips cut away at the Mach angle as the ideal supersonic
wing, since in this case the wake has no influence on the lifting
surface and the dragis no greater than that of a wing of infinite
span. In the plan forms proposed by Schlichting, however,
the resultant force remains at right angles to the chord; hence
the pressure drag is equal to the lift times the angle of attack.
With this type of flow there is no favorable effect of aspect
ratio.

It is interesting to note that a favorable interference may be
obtained by separating the wing into lifting elements and

stageering the elements in a rearward direction behind the
Mach lines as in figure 5. In the staggered arrangement
the upflow outside the vortices trailing from element A
will be effective at the position of B and, although the lift of
each element is at right angles to its chord, the upflow
permits the angle of attack of element B to be reduced for
the same lift and hence the lift-drag ratio will be improved.

According to Munk’s stagger theorem (reference 11) the
over-all drag of a lifting system in an incompressible flow
would not be altered by changing the relative positions of the
lifting elements along the direction of flight. In the type of
flow considered by Munk, therefore, a reduction in the drag
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FigUrE 5.—Staggered Iifting elements in supersonic flow,

Ficure 6.—Wing with tips cut away along the Mach lines.
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Plan view
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Lift distribution ---]
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(reference 10) 6= Va _E_ sin 8

(reference 10)
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Section B-8B
Firvre T.—Approximate distribution of Iift near vertex of wing with large angle of sweepback,
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Finite thickness is expected to result in a pressure drag on
those sectionis near the center of the wing and further study
is also required to establish the flow due to thickness in this
region. Some insight into the problem of flow near the cen-
ter section may be furnished by the known solutions for
supersonic flow in three dimensions (reference 13). Finite
thickness may also cause pressure drag in regions where the
flow is two-dimensional if the induced velocities are great
enough to cause shock waves. This effect may be avoided
by increasing the angle of sweepback so that the normal
component of velocity not only is subsonic but is less than
the critical speed of the airfoil sections. This principle may
also be applied to wings designed for subsonic speeds near
the speed of sound.

LaxGLeEy MEMORIAL AERONAUTICAL LiABORATORY,
NaTioNAL Apvisory COMMITTEE FOR AERONAUTICS,
LaxcrLey Fieup, Va., June 23, 1945,
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Problems

13.4 PROBLEMS

Problem 1 - A thin, 2-D, airfoil is situated in a supersonic stream at Mach
number M  and a small angle of attack as shown below.

y

e 77 X
T

¢
C

The y-coordinate of the upper surface of the airfoil is given by the function

0 = 43(1-3) -4

and the y-coordinate of the lower surface is

s = 4g{1-5) -2

where2A/C « I and 8/C « I.Determine the lift and drag coefficients of the
airfoil.
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