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In compressible flow, both the lift and drag of a thin airfoil can be determined to
a reasonable level of accuracy from an inviscid, irrotational model of the flow.
Recall the equations developed in Chapter 6 governing steady, irrotational,
homentropic ( ) flow in the absence of body forces.

 

. (13.1)

 

The gradient of the isentropic relation is

 

. (13.2)

 

Recall from the development in Chapter 6 that

 

(13.3)

 

Using (13.3) the momentum equation becomes

 

(13.4)

 

Substitute (13.2) into the continuity equation and use (13.3). The continuity equa-
tion becomes

 

. (13.5)

 

Equate the Bernoulli integral to free stream conditions.
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(13.6)

 

Note that the momentum equation is essentially equivalent to the statement that
the stagnation temperature  is constant throughout the flow. Using (13.6) we

can write

 

(13.7)

 

The continuity equation finally becomes

 

(13.8)

 

The equations governing compressible, steady, inviscid, irrotational motion
reduce to a single equation for the velocity vector . The irrotationality condition

 permits the introduction of a velocity potential.

 

(13.9)

 

and (13.8) becomes

 

. (13.10)

 

For complex body shapes numerical methods are normally used to solve for .
However the equation is of relatively limited applicability. If the flow is over a
thick airfoil or a bluff body for instance then the equation only applies to the sub-
sonic Mach number regime at Mach numbers below the range where shocks begin
to appear on the body. At high subsonic and supersonic Mach numbers where
there are shocks then the homentropic assumption (13.2) breaks down. Equation
(13.8) also applies to internal flows without shocks such as fully expanded nozzle
flow.
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In the case of a thin airfoil that only slightly disturbs the flow, equation (13.8) can
be simplified using small disturbance theory.
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Consider the flow past a thin 3-D airfoil shown below.

The velocity field consists of a freestream flow plus a small disturbance 

(13.11)

where

 . (13.12)

Similarly the state variables deviate only slightly from freestream values.

(13.13)

and

. (13.14)

This decomposition of variables is substituted into equation (13.8). Various terms
are

(13.15)

and
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(13.16)

as well as

(13.17)

and, finally

. (13.18)

Neglect terms in (13.17) and (13.18) that are of third order in the disturbance
velocities. Now
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(13.19)

or

(13.20)

Recall that . Equation (13.20) can be rearranged to read

(13.21)

Divide through by .
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(13.22)

This equation contains both linear and quadratic terms in the velocity disturbances
and one might expect to be able to neglect the quadratic terms. But note that the
first term becomes very small near . Thus in order to maintain the small

disturbance approximation at transonic Mach numbers the  term must be

retained. The remaining quadratic terms are small at all Mach numbers and can
be dropped. Finally the small disturbance equation is

. (13.23)

The velocity potential is written in terms of a freestream potential and a distur-
bance potential

. (13.24)

The small disturbance equation in terms of the disturbance potential becomes

(13.25)

Equation (13.25) is valid over the whole range of subsonic, transonic and super-
sonic Mach numbers.

13.1.3 LINEARIZED POTENTIAL FLOW

If we restrict our attention to subsonic and supersonic flow, staying away from
Mach numbers close to one, the nonlinear term on the right side of (13.25) can be
dropped and the small disturbance potential equation reduces to the linear wave
equation.
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. (13.26)

where . In two dimensions 

. (13.27)

The general solution of (13.27) can be expressed as a sum of two arbitrary
functions

. (13.28)

Note that if  the 2-D linearized potential equation (13.27) is an elliptic

equation that can be rescaled to form Laplace’s equation and (13.28) expresses
the solution in terms of conjugate complex variables. In this case the subsonic
flow can be analyzed using the methods of complex analysis. Presently we will
restrict our attention to the supersonic case. The subsonic case is treated later in
the chapter.

If  then (13.27) is the 2-D wave equation and has solutions of hyperbolic

type. Supersonic flow is analyzed using the fact that the properties of the flow are
constant along the characteristic lines . The figure below
illustrates supersonic flow past a thin airfoil with several characteristics shown.
Notice that in the linear approximation the characteristics are all parallel to one
another and lie at the Mach angle  of the free stream. Information about the

flow is carried in the value of the potential assigned to a given characteristic and
in the spacing between characteristics for a given flow change. Right-leaning
characteristics carry the information about the flow on the upper surface of the
wing and left-leaning characteristics carry information about the flow on the lower
surface.
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All properties of the flow, velocity, pressure, temperature, etc. are constant along
the characteristics. Since disturbances only propagate along downstream running
characteristics we can write the velocity potential for the upper and lower surfaces
as

. (13.29)

Let  define the coordinates of the upper surface of the wing and
 define the lower surface. The full nonlinear boundary condition on the

upper surface is

. (13.30)

In the spirit of the thin airfoil approximation this boundary condition can be
approximated by the linearized form

(13.31)

which we can write as
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(13.32)

or

. (13.33)

On the lower surface the boundary condition is

. (13.34)

In the thin airfoil approximation the airfoil itself is, in effect, collapsed to a line
along the x-axis, the velocity potential is extended to the line  and the sur-
face boundary condition is applied at  instead of at the physical airfoil
surface. The entire effect of the airfoil on the flow is accounted for by the vertical
velocity perturbation generated by the local slope of the wing. The linearized
boundary condition is valid on 2-D thin wings and on 3-D wings of that are of
“thin planar form”.

Recall that (13.26) is only valid for subsonic and supersonic flow and not for tran-

sonic flow where .

13.1.4 THE PRESSURE COEFFICIENT

Let’s work out the linearized pressure coefficient. The pressure coefficient is

. (13.35)

The stagnation enthalpy is constant throughout the flow thus

. (13.36)

Similarly the entropy is constant and thus the pressure and temperature are related
by
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(13.37)

and the pressure coefficient is

. (13.38)

The velocity term in (13.37) is small

. (13.39)

Now use the binomial expansion  to expand
the term in parentheses in (13.39). Note that the expansion has to be carried out
to second order. The pressure coefficient is approximately

. (13.40)

Equation (13.40) is a valid approximation for small perturbations in subsonic or
supersonic flow. 

For 2-D flows over planar bodies it is sufficient to retain only the first term in
(13.40) and we use the expression

. (13.41)

For 3-D flows over slender approximately axisymmetric bodies we must retain
the last term and so

. (13.42)
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As was discussed above, if the airfoil is a 2-D shape defined by the function
 the boundary condition at the surface is

(13.43)

where  is the angle between the airfoil surface and the horizontal. For a thin air-
foil this is accurately approximated by

. (13.44)

For a thin airfoil in supersonic flow the wall pressure coefficient is

. (13.45)

where , which is valid for , has

been used. In the thin airfoil approximation in supersonic flow the local pressure
coefficient is determined by the local slope of the wing. The figure below shows
the wall pressure coefficient on a thin, symmetric biconvex wing.
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This airfoil will have shock waves at the leading and trailing edges and at first
sight this would seem to violate the isentropic assumption. But for small distur-
bances the shocks are weak and the entropy changes are negligible.

13.1.5 DRAG COEFFICIENT OF A THIN SYMMETRIC AIRFOIL

A thin, 2-D, symmetric airfoil is situated in a supersonic stream at Mach num-
ber  and zero angle of attack. The y-coordinate of the upper surface of the
airfoil is given by the function 

(13.46)

where  is the airfoil chord. The airfoil thickness to chord ratio is small,
. Determine the drag coefficient of the airfoil.

Solution
The drag integral is

(13.47)

where the factor of 2 accounts for the drag of both the upper and lower sur-
faces and  is the local angle formed by the upper surface tangent to the airfoil
and the x-axis. Since the airfoil is thin the angle is small and we can write the
drag coefficient as

(13.48)

The local tangent is determined by the local slope of the airfoil therefore
 and for small angles . Now the drag coeffi-

cient is

(13.49)

The pressure coefficient on the airfoil is given by thin airfoil theory (13.45) as
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(13.50)

and so the drag coefficient becomes

(13.51)

The drag coefficient is proportional to the square of the wing thickness-to-chord
ratio.

13.1.6 THIN AIRFOIL WITH LIFT AND CAMBER AT A SMALL ANGLE OF ATTACK

A thin, cambered, 2-D, airfoil is situated in a supersonic stream at Mach num-
ber  and a small angle of attack as shown below. 

The y-coordinate of the upper surface of the airfoil is given by the function 

(13.52)

and the y-coordinate of the lower surface is

(13.53)

where  and . The airfoil surface is defined by a dimension-
less thickness function

, (13.54)

a dimensionless camber function
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(13.55)

and the angle of attack

(13.56)

Determine the lift and drag coefficients of the airfoil. Let 

(13.57)

Solution

The lift integral is

(13.58)

where  is the local angle formed by the tangent to the surface of the airfoil
and the x-axis. Since the angle is everywhere small we can use .
The lift coefficient is

(13.59)

The pressure coefficient on the upper surface is given by thin airfoil theory as

(13.60)

and on the lower surface the pressure coefficient is

. (13.61)

Substitute into the lift integral
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(13.62)

In the thin airfoil approximation the lift is independent of the airfoil thickness.

 (13.63)

The drag integral is

(13.64)

Since the airfoil is thin the angle is small and we can write the drag coefficient
as

(13.65)

The local tangent is determined by the local slope of the airfoil therefore

 and for small angles . 

Now the drag coefficient is

(13.66)

The drag coefficient becomes

(13.67)

Note that most of the cross terms cancel. The drag coefficient breaks into sev-
eral terms.

(13.68)
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The third term in (13.68) is

(13.69)

Finally

. (13.70)

In the thin airfoil approximation, the drag is a sum of the drag due to thickness,
drag due to camber and drag due to lift.

13.2 SIMILARITY RULES FOR HIGH SPEED FLIGHT

The figure below shows the flow past a thin symmetric airfoil at zero angle of
attack. The fluid is assumed to be inviscid and the flow Mach number ,

where  is the speed of sound, is assumed to be much less than

one. The airfoil chord is  and the maximum thickness is . The subscript one is

applied in anticipation of the fact that we will shortly scale the airfoil to a new
shape with subscript two and the same chord.

Figure 13.1  Pressure variation over a thin symmetric airfoil in low speed flow.
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The surface pressure distribution is shown below the wing, expressed in terms of
the pressure coefficient.

. (13.71)

The pressure and flow speed throughout the flow satisfy the Bernoulli relation, in
particular, near the airfoil surface,

. (13.72)

The pressure is high at the leading edge where the flow stagnates, then as the flow
accelerates about the body, the pressure falls rapidly at first, then more slowly
reaching a minimum at the point of maximum thickness. From there the surface
velocity decreases and the pressure increases continuously to the trailing edge. In
the absence of viscosity, the flow is irrotational.

(13.73)

this permits the velocity to be described by a potential function.

(13.74)

when this is combined with the condition of incompressibility, , the

result is Laplace’s equation.

. (13.75)

Let the shape of the airfoil surface in  be given by

(13.76)

where  is the thickness to chord ratio of the airfoil. The boundary con-

ditions that the velocity potential must satisfy are,
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. (13.77)

Any number of methods of solving for the velocity potential are available includ-
ing the use of complex variables. In the following we are going to restrict the
airfoil to be thin, . In this context we will take the velocity potential to be

a perturbation potential so that.

(13.78)

or
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The boundary conditions on the perturbation potential in the thin airfoil approxi-
mation are,
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The surface pressure coefficient in the thin airfoil approximation is,

. (13.81)

Note that the boundary condition on the vertical velocity is now applied on the
line . In effect the airfoil has been replaced with a line of volume sources

whose strength is proportional to the local slope of the actual airfoil. This sort of
approximation is really unnecessary in the low Mach number limit but it is essen-
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tial when the Mach number is increased and compressibility effects come in to
play. Equally, it is essential in this example where we will map a compressible
flow to the incompressible case.

13.2.1 SUBSONIC FLOW 

Now imagine a second flow at a free stream velocity,  in a new space 

over a new airfoil of the same shape (defined by the function ) but with a
new thickness ratio . Part of what we need to do is to determine

how  and  are related to one another. The boundary conditions that the new

perturbation velocity potential must satisfy are,

. (13.82)

In this second flow the Mach number has been increased to the point where com-
pressibility effects begin to occur: the density begins to vary significantly and the
pressure distribution begins to deviate from the incompressible case. As long as
the Mach number is not too large and shock waves do not form, the flow will be
nearly isentropic. In this instance the 2-D steady compressible flow equations are,

. (13.83)
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(13.84)

where the primed quantities are assumed to be small compared to the free stream
conditions. When quadratic terms in the equations of motion are neglected the
equations (13.83) reduce to,

. (13.85)

Introduce the perturbation velocity potential

. (13.86)

The equation governing the disturbance flow becomes,

. (13.87)

Notice that (13.87) is valid for both sub and supersonic flow in the thin airfoil
approximation.

Since the flow is isentropic, the pressure and velocity disturbances are related to
lowest order by,

(13.88)

and the surface pressure coefficient retains the same basic form as in the incom-
pressible case,

. (13.89)

Since we are at a finite Mach number, this last relation is valid only within the thin
airfoil, small disturbance approximation and therefore may be expected to be
invalid near the leading edge of the airfoil where the velocity change is of the order
of the free stream velocity. For example for the “thin” airfoil depicted in Figure
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13.1 which is actually not all that thin, the pressure coefficient is within
 except over a very narrow portion of the chord near the leading

edge.

Equation (13.87) can be transformed to Laplace’s equation, (13.75) using the fol-
lowing change of variables.

(13.90)

where, at the moment,  is an arbitrary constant. The velocity potentials are
related by,

(13.91)

or,

(13.92)

and the boundary conditions transform as,

. (13.93)

The transformation between flows one and two is completed by the
correspondence,

(13.94)

or
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. (13.95)

Finally the transformed pressure coefficient is

. (13.96)

These results may be stated as follows. The solution for incompressible flow over
a thin airfoil with shape  and thickness ratio,  at velocity  is iden-

tical to the subsonic compressible flow at velocity,  and Mach number 

over an airfoil with a similar shape but with the thickness ratio,

. (13.97)

The pressure coefficient for the compressible case is derived by adjusting the
incompressible coefficient using . This result comprises several

different similarity rules that can be found in the aeronautical literature depending
on the choice of the free constant, . 

Figure 13.2  Pressure coefficient over the airfoil in Figure 13.1 at several Mach 
numbers as estimated using the Prandtl-Glauert rule (13.99)

Perhaps the one of greatest interest is the so-called Prandtl-Glauert rule that
describes the variation of pressure coefficient with Mach number for a body of a
given shape and thickness ratio. In this case we select,
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(13.98)

so that the two bodies being compared in (13.97) have the same shape and thick-
ness ratio. The pressure coefficient for the compressible flow is,

. (13.99)

Several scaled profiles are shown in Figure 13.2. Keep in mind the lack of validity
of (13.99) near the leading edge where the pressure coefficient is scaled to inac-
curate values.

13.2.2 SUPERSONIC SIMILARITY 

All the theory developed in the previous section can be extended to the supersonic

case by simply replacing  with . In this instance the mapping is

between the equation,

(13.100)

and the simple wave equation

(13.101)

A generalized form of the pressure coefficient valid for subsonic and supersonic
flow is,

(13.102)

where  is taken to be a function of .
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13.2.3 TRANSONIC SIMILARITY, 

When the Mach number is close to one, the simple linearization used to obtain
(13.87) from (13.83) loses accuracy. In this case the equations (13.83) reduce to
the nonlinear equation

. (13.103)

In terms of the perturbation potential,

. (13.104)

This equation is invariant under the change of variables,

(13.105)

where

. (13.106)

Notice that, due to the nonlinearity of the transonic equation (13.104), the con-
stant  is no longer arbitrary. The pressure coefficient becomes,

(13.107)

and the thickness ratios are related by,
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. (13.108)

In the transonic case, it is not possible to compare the same body at different Mach
numbers or bodies with different thickness ratios at the same Mach number except
by selecting gases with different . For a given gas it is only possible to map the
pressure distribution for one airfoil to an airfoil with a different thickness ratio at
a different Mach number. A generalized form of (13.102) valid from subsonic to
sonic to supersonic Mach numbers is,

. (13.109)

Prior to the advent of supercomputers capable of solving the equations of high
speed flow, similarity methods and wind tunnel correlations were the only tools
available to the aircraft designer and these methods played a key role in the early
development of transonic and supersonic flight. 

13.3 THE EFFECT OF SWEEP

Return to the continuity equation (13.8) written as

(13.110)

Using the irrotationality condition , (13.110) can expressed as

(13.111)
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The figure below shows a plan view of of a long slender wing with the free stream
flow approaching at a sweep angle . The component of the free stream flow par-
allel to the long axis of the wing is assumed to play little role in determining the
pressure variation over the wing except at the wing tips. 

Figure 13.3   Slender wing with free stream approaching at sweep angle 

Therefore the flow field in the  plane normal to the long axis of the wing
will be nearly two-dimensional so that  and  can be assumed to
be very small. Now

(13.112)

Assume small disturbances.
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(13.113)

Neglect terms that are cubic in the small disturbances. Equation (13.112) becomes

(13.114)

The quantity  is very small and we can neglect terms in (13.114) that are

quadratic in the disturbances. Introduce the disturbance potential. Equation
(13.111) reduces to

(13.115)

For the swept wing the disturbance potential is governed by the component of the
free stream velocity normal to the leading edge of the wing . If

 then the normal flow is supersonic and we would use supersonic

theory developed above to relate the pressure coefficient to the slope of the airfoil
surface in the  plane.

If  then the normal flow is subsonic and we can use the mapping

(13.90) to transform (13.115) to Laplace’s equation. The methods of subsonic thin
airfoil theory can be used to determine the  disturbance potential . The

pressure coefficient of the  solution is used with the Prandtl-Glauert rule
(13.99)  to determine the pressure coefficient on the swept wing.

(13.116)
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The best discussion of this topic that I know of appears in NACA Technical Report
863 by R. T. Jones published in 1945. The rest of the discussion of this topic com-
prises images taken directly from this report. Where Jones refers to equations (4)
and (6) he is referring to Laplaces equation and the wave equation.
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13.4 PROBLEMS

Problem 1 - A thin, 2-D, airfoil is situated in a supersonic stream at Mach
number  and a small angle of attack as shown below. 

The y-coordinate of the upper surface of the airfoil is given by the function 

and the y-coordinate of the lower surface is

where  and . Determine the lift and drag coefficients of the
airfoil.
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