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In this chapter we will address two questions.

1) How is Gibbs equation related to the energy conservation equation? 

2) How is the entropy of a fluid affected by its motion? 

We have touched on the latter questions several times in this text but without a
rigorous analysis. In this chapter the precise form of the flow properties that rep-
resent the sources of entropy will be derived from first principles.

In this endeavor we will use the Gibbs equation on a fluid element.
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To answer these questions we first need to form a conservation equation for the
kinetic energy. This can be accomplished by manipulating the momentum and
continuity equations. Multiply the momentum equation by  (sum over i).

 

. (8.3)

 

First let’s look at the temporal and convective terms in this equation.
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. (8.4)

 

The sum of the underlined terms is zero by continuity. Thus

 

(8.5)

 

where, . Use continuity again in the form,

 

. (8.6)

 

Add the above two equations to get the temporal-convective part of the kinetic
energy equation.
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Now let’s rearrange the pressure term. 

 

(8.8)

 

and the viscous stress term.

 

. (8.9)

 

Finally, the kinetic energy equation is

 

. (8.10)
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8.3 INTERNAL ENERGY

When the kinetic energy equation (8.10) is subtracted from the energy equation
(8.2) the result is the conservation equation for internal energy.

. (8.11)

Note that both of these equations are in the general conservation form

. (8.12)

The series of steps used to generate these equations are pretty standard and illus-
trate that the equations of motion can be (and often are) manipulated to create a
conservation equation for practically any variable we wish.

The source term 

(8.13)

appears in both the kinetic and internal energy equations with opposite sign. It can
be either positive or negative depending on the whether the fluid is expanding or
being compressed. Recall the continuity equation in the form

. (8.14)

Multiply by the pressure 

. (8.15)

The term in parentheses we recognize as the work term in the Gibbs equation (the
whole term is actually the work per second per unit volume). This term represents
a reversible exchange between internal and kinetic energy due to the work of com-
pression or expansion of a fluid element. 
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8.4 VISCOUS DISSIPATION OF KINETIC ENERGY

Now let’s look at the term

. (8.16)

This needs to be worked a little further. Substitute the expression for the Newto-
nian stress tensor and decompose the velocity gradient into a symmetric and
antisymmetric part.

(8.17)

The sum over the antisymmetric part is zero. Thus

. (8.18)

We can write the first two terms as a square.

(8.19)

The scalar quantity, , is the viscous dissipation of kinetic energy and it is clear
from the fact that (8.19) is a sum of squares that it is always positive. The dissi-
pation term appears as a sink in the kinetic energy equation and as a source in the
internal energy equation. It is the irreversible conversion of kinetic energy to inter-
nal energy due to viscous friction.

We can attach two physical interpretations to Stokes’ hypothesis; the assumption
that . Recall that the mean normal stress is

. (8.20)

In terms of flow forces, Stokes’ hypothesis implies that, in a viscous fluid, the
mean normal stress is everywhere equal to the pressure.

We can give a second interpretation to Stokes’ hypothesis in terms of flow energy
by noting that
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. (8.21)

Under Stokes’ hypothesis the second term in the dissipation expression (8.19) is
zero and the only contributor to kinetic energy dissipation is the anisotropic (off
diagonal) part of the rate of strain tensor. 

8.5 ENTROPY

We are now in a position to say something about the entropy of the system. Recall
the Gibbs equation.

(8.22)

Write the internal energy equation,

(8.23)

in terms of the substantial derivative.

. (8.24)

We have already written down the continuity equation in the form required to
replace the second term on the left hand side.

(8.25)

The energy equation now becomes

. (8.26)

Comparing this form of the energy equation with the Gibbs equation, we see that
the left-hand-side corresponds to the entropy term

. (8.27)
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Let’s put this in the form of a conservation equation for the entropy. The approach
is to use the continuity equation yet again!

(8.28)

Add the two to get

. (8.29)

The heat flux term can be rearranged into a divergence term and a squared term.

(8.30)

For a linear conducting material, the heat flux is

. (8.31)

Let

. (8.32)

Finally, the conservation equation for the entropy becomes

. (8.33)

The integral form of the entropy transport equation on a general control volume is

(8.34)
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The right hand side of (8.33) is the entropy source term and is always positive.
This remarkable result provides an explicit expression (in terms of squared tem-
perature gradients and squared velocity gradients) for the irreversible changes in
entropy that occur in a compressible flow. Notice that the body force term con-
tributes nothing to the entropy.

Consider a closed adiabatic box containing a viscous, heat conducting fluid sub-
ject to the no slip condition on the walls. The fluid is stirred by a fan that is then
turned off and the flow is allowed to settle.

Figure 8.1   Fluid stirred by a fan in an adiabatic box.

The entropy of the fluid in the box behaves according to

. (8.35)

The surface integral is zero by the no-slip condition and the assumption of adia-
baticity. The volume integral of the density times the intensive entropy is the
extensive entropy.

(8.36)

Thus as the closed, adiabatic, system comes to rest, the entropy continues to
increase until all the gradients in velocity and temperature have vanished. 

(8.37)

V
A

d
dt
----- s V U js

k
T
--- T

x j
--------– n j Ad

A

+d
V

+
T

------------- Vd
V

=

S s Vd
V

=

dS
dt
------ +

T
------------- V 0>d

V

=



Problems

4/6/13 8.8 bjc

8.6 PROBLEMS

Problem 1 - Show that (8.18) can be expressed in the form (8.19).

Problem 2 - Imagine a spherically symmetric flow in the absence of shear.

Let the fluid velocity in the radial direction be . Work out the expression for
the kinetic energy dissipation in terms of  and the two viscosities . Suppose

the fluid is a monatomic gas for which . Does there exist a function  for

which the dissipation is zero? Refer to Appendix 2 for the dissipation function in
spherical polar coordinates.

Problem 3 - Suppose the fluid in the box shown in Section 7.5 is Air initially at
300K and one atmosphere. Let the tip velocity of the propeller be 50 m/sec and
the typical boundary layer thickness over the surface of the propeller be 1 milli-

meter. The surface area of the propeller is .and the volume of the box is .
Roughly estimate the rate at which the temperature of the air in the box increases
due to viscous dissipation.

Problem 4 - A simple pendulum of mass  is placed inside a
rigid adiabatic container filled with 0.1 kilograms of Helium gas initially at rest
(state 1). The gas pressure is one atmosphere and the temperature is 300°K. The

acceleration due to gravity is .

f r( )

f µ µ,

µ 0= f

1m2 1m3

m 1.0 kilogram=

g 9.8 meters/sec2=
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At  the pendulum is released from an initial displacement height
 and begins to oscillate and stir the gas. Eventually the pendulum

and gas all come to rest (state 2). 
1) Assume all the potential energy of the pendulum is converted to internal energy
of the gas. What is the change in temperature of the Helium in going from state 1
to state 2?
2) What is the change in entropy per unit mass of the Helium in going from state
1 to state 2?

h

State 1 State 2

m
g

t 0=
h 0.1 meters=
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