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According to the fundamental theorem of calculus if  is a smooth function and
the integral of  is

 

(6.1)

 

then the derivative of  is

 

. (6.2)

 

Similarly if
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then

 

(6.4)

 

Suppose the function  depends on two variables and the integral is a definite
integral.

 

(6.5)

 

where  and  are constant. The derivative with respect to  is
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(6.6)

 

The order of the operations of integration and differentiation can be exchanged
and so it is permissible to bring the derivative under the integral sign. 

We are interested in applications to compressible flow and so from here on we
will interpret the variable  as time. Now suppose that both the kernel of the inte-
gral and the limits of integration depend on time.

 

(6.7)

 

This situation is shown schematically below with movement of the boundaries
indicated.

 

Figure 6.1   Integration with a moving boundary. The function  
is shown at one instant in time.

 

Using the chain rule the substantial derivative of (6.7) is

 

(6.8)

 

Now make use of the results in (6.2), (6.4) and (6.6). Equation (6.8) becomes,
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. (6.9)

 

The various terms in (6.9) can be interpreted as follows. The first term is the time
rate of change of  due to the integrated time rate of change of  within the
domain . The second and third terms are the contributions to the time rate
of change of  due to the movement of the boundaries enclosing more or less  at
a given instant in time. The relation (6.9) is called 

 

Leibniz’ rule for the differenti-
ation of integrals after Gottfried Wilhelm Leibniz (1646-1716) who, along with
Isaac Newton, is credited with independently inventing differential and integral
calculus.

6.1.2 EXTENSION TO THREE DIMENSIONS

Let  be some field variable defined as a function of space and time

and  be a time-dependent control volume that encloses some finite region in
space at each instant of time. The time dependent surface of the control volume
is . 

Figure 6.2   Control volume definition.
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Leibniz’ rule extended to three dimensions describes the time rate of change of
the amount of  contained inside .

. (6.10)

Note that when (6.9) is generalized to three dimensions the boundary term in (6.9)
becomes a surface integral. Equation (6.10) can be expressed in words as follows.

(6.11)

The Leibniz relationship (6.10) is fundamental to the development of the transport
theory of continuous media. The velocity vector  is that of the control volume

surface itself. If the medium is a moving fluid the surface velocity  is specified

independently of the fluid velocity . Consider a fluid with velocity vector 
which is a function of space and time.
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Figure 6.3   Control volume defined in a flow field subject to sur-
face stresses, body forces and heat conduction.

Now let the velocity of each surface element of the control volume be the same
as the velocity of the flow, . In effect, we assume that the surface is
attached to the fluid and therefore the control volume always contains the same
set of fluid elements. This is called a Lagrangian control volume. In this case
Leibnitz’ rule becomes

. (6.12)

Use the Gauss theorem to convert the surface integral to a volume integral. The
result is the Reynolds transport theorem.

. (6.13)

6.2 CONSERVATION OF MASS
Let  where  is the density of the fluid. The Reynolds transport theorem
gives

. (6.14)

The left-hand-side is the rate of change of the total mass inside the control volume.
If there are no sources of mass within the control volume, the left-hand-side must
be zero. Since the choice of control volume is arbitrary, the kernel of the right-
hand-side must therefore be zero at every point in the flow. 

Thus the continuity equation in the absence of mass sources is

. (6.15)
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This equation, expressed in coordinate independent vector notation, is the same
one that we derived in Chapter 1 using an infinitesimal, cubic, Eulerian control
volume. 

Expand (6.15)

. (6.16)

In terms of the substantial derivative the continuity equation is

(6.17)

If the medium is incompressible then  and .

6.3 CONSERVATION OF MOMENTUM

In this case the generic variable in Leibniz’ rule is the vector momentum per unit
volume, . Momentum is convected about by the motion of the fluid itself
and spatial variations of pressure and viscous stresses act as sources of momen-
tum. Restricting ourselves to the motion of a continuous, viscous fluid (liquid or
gas), the stress in a fluid is composed of two parts; a locally isotropic part propor-
tional to the scalar pressure field and a non-isotropic part due to viscous friction.
The stress tensor is

(6.18)

where  is the thermodynamic pressure,  is the Kronecker unit tensor defined

in Chapter 3,

(6.19)
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and  is the viscous stress tensor. The net force acting on the control volume is

the integral of the stress tensor, , over the surface plus the integral of any body

force vectors per unit mass,  (gravitational acceleration, electromagnetic accel-
eration, etc.), over the volume. 

The isotropy of the pressure implies that it acts normal to any surface element in
the fluid regardless of how it is oriented. The viscous part of the stress can take
on many different forms. In Aeronautics and Astronautics we deal almost exclu-
sively with Newtonian fluids discussed in Chapter 1 such as air or water where
the viscous stress is linearly proportional to the rate-of-strain tensor of the flow. 

The general form of the stress-rate-of-strain constitutive relation in Cartesian
coordinates for a compressible Newtonian fluid is

(6.20)

where,

 . (6.21)

Recall that . The stress components in cylindrical and spherical polar
coordinates are given in Appendix 2.

Interestingly, there are actually two viscosity coefficients that are required to
account for all possible stress fields that depend linearly on the rate-of-strain ten-
sor. The so-called shear viscosity  arises from momentum exchange due to
molecular motion. A simple model of  is described in Appendix I. The bulk vis-
cosity  is a little more mysterious. It contributes only to the viscous normal

force and seems to arise from the exchange of momentum that can occur between
colliding molecules and the internal degrees of freedom of the molecular system.
Some typical values of the bulk viscosity are shown in Figure 6.4.

ij

ij

G

ij 2µSij
2
3
---µ µv– ijSkk–=

Sij
1
2
---

Ui
x j

---------
U j
xi

----------+=

Skk U�•=

µ

µ

µv



Conservation of momentum

4/15/13 6.8 bjc

Figure 6.4   Physical properties of some common fluids at one atmo-
sphere and 298.15°K.

For monatomic gases that lack such internal degrees of freedom, . For

some polyatomic gases such as CO2 the bulk viscosity is much larger than the
shear viscosity.

Recall the discussion of elementary flow patterns from Chapter 4. Any fluid flow
can be decomposed into a rotational part and a straining part. According to the
Newtonian model (6.20) only the straining part contributes to the viscous stress.

Although  is called the shear viscosity it is clear from the diagonal terms in
(6.20) that there are viscous normal force components proportional to . However
they make no net contribution to the mean normal stress defined as

. (6.22)

This is not to say that viscous normal stresses are unimportant. They play a key
role in many compressible flow phenomena we will study later especially shock
waves.
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A common assumption called Stokes’ hypothesis is to assume that the “bulk vis-
cosity”  is equal to zero. Then only the so-called shear viscosity  appears in

the constitutive relation for the stress. While this assumption is strictly valid only
for monatomic gases, it is applied very widely and works quite well, mainly
because  tends to be relatively small in most situations outside of shock
waves and high Mach number flow.

The rate of change of the total momentum inside the control volume is,

. (6.23)

Use the Reynolds transport theorem to replace the left-hand-side of (6.23) and the
Gauss theorem to convert the surface integral to a volume integral.

. (6.24)

Since the equality must hold over an arbitrary control volume, the kernel must be
zero at every point in the flow and we have the differential equation for conserva-
tion of momentum.

. (6.25)

This is the same momentum equation we derived in Chapter 1 except for the inclu-
sion of the body force term.

6.4 CONSERVATION OF ENERGY

The energy per unit mass of a moving fluid element is  where  is the
internal energy per unit mass of the medium and

  (6.26)

is the kinetic energy per unit mass. In this case we use  in the
Leibniz rule. 
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The stress tensor acting over the surface does work on the control volume as
do the body force vectors. In addition, there may be conductive heat flux, ,
through the surface. There could also be sources of heat within the flow due
to chemical reactions, radiative heating, etc. For a general fluid the internal
energy per unit mass is a function of temperature and pressure . 
The rate of change of the energy inside the control volume in Figure 6.3 is

. (6.27)

The Reynolds transport theorem and Gauss’ theorem lead to

. (6.28)

Since the equality holds over an arbitrary volume, the kernel must be zero and we
have the differential equation for conservation of energy.

. (6.29)

The sum of enthalpy and kinetic energy

(6.30)

is called the stagnation or total enthalpy and plays a key role in the transport of
energy in compressible flow systems. Take care to keep in mind that the flow
energy is purely the sum of internal and kinetic energy, . Some typical gas
transport properties at 300K and one atmosphere are shown in Figure 6.4.

According to Fick’s law, the heat flux vector in a linear heat conducting medium
is:

  (6.31)

where  is the thermal conductivity. 

The rightmost column in Figure 6.4 is the Prandtl number
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(6.32)

The Prandtl number can be thought of as comparing the rate at which momentum
is transported by viscous diffusion to the rate at which temperature diffuses
through conductivity. For most gases the Prandtl number is around . This num-
ber is close to one due to the fact that heat and momentum transport are
accomplished by the same basic mechanism of molecular collision with lots of
space between molecules. Liquids are often characterized by large values of the
Prandtl number and the underlying mechanisms of heat and momentum transport
in a condensed fluid are much more complex.

6.5 SUMMARY - DIFFERENTIAL FORM OF THE EQUATIONS OF 
MOTION

The coordinate-independent form of the equations of motion is

. (6.33)

Using index notation the same equations in Cartesian coordinates are
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. (6.34)

The equations of motion in cylindrical and spherical polar coordinates are given
in Appendix 2.

6.6 INTEGRAL FORM OF THE EQUATIONS OF MOTION

In deriving the differential form of the conservation equations (6.33) we used a
general Lagrangian control volume where the surface velocity is equal to the local
fluid velocity and the surface always encloses the same set of fluid elements. In
Chapter 1 we derived the same equations on a rectangular Eulerian control vol-
ume. It is important to recognize that these partial differential equations are valid
at every point and at every instant in the flow of a compressible continuum and
are completely independent of the particular control volume approach (Eulerian
or Lagrangian) used to derive them. 

With the equations of motion in hand we will now reverse the process and work
out the integral form of these equations on control volumes that are adapted to
solving useful problems. In this endeavor, it is useful to consider other kinds of
control volumes where the control surface may be stationary or where part of the
control surface is stationary and part is moving but not necessarily attached to the
fluid. Recall the general form of the Leibniz rule.

. (6.35)
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6.6.1 INTEGRAL EQUATIONS ON AN EULERIAN CONTROL VOLUME

The simplest case to consider is the Eulerian control volume used in Chapter 1
where . This is a stationary volume fixed in space through which the
fluid moves. In this case the Leibniz rule reduces to

. (6.36)

Note that, since the Eulerian volume is fixed in space and not time dependent, the
lower case form of the derivative  is used in (6.36). See for comparison (6.6)
and (6.9).

Let  in Equation (6.36)

(6.37)

Use (6.15) to replace  in (6.37).

(6.38)

Now use the Gauss theorem to convert the volume integral on the right-hand-side
of (6.38) to a surface integral. The integral form of the mass conservation equation
valid on a finite Eulerian control volume of arbitrary shape is

(6.39)

The integral equations for conservation of momentum and energy are derived in
a similar way using (6.25), (6.29), and (6.36). The result is
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(6.40)

6.6.2 MIXED EULERIAN-LAGRANGIAN CONTROL VOLUMES

More general control volumes where part of the surface may be at rest and other
parts may be attached to the fluid are of great interest especially in the analysis of
propulsion systems. Now use the general form of the Liebniz rule with .

(6.41)

Use (6.15) to replace  in (6.41) and use the Gauss theorem to convert the
volume integral to a surface integral. The result is the integral form of mass con-
servation on an arbitrary moving control volume.

(6.42)

The integral equations for conservation of momentum and energy on a general,
moving, finite control volume are derived in a similar way using (6.25), (6.29),
and (6.35). Finally, the most general integrated form of the conservation equations
is

d
dt
----- V U n Ad�•

A
+d

V
0=

 
d
dt
----- U V UU PI –+( ) n Ad G Vd

V
–�•

A
+d

V
0=

 

d
dt
----- e k+( ) V U e P--- k+ + U Q+�•– n Ad G U�•( ) Vd

V
–�•

A
+d

V
0=

F =

D
Dt
------ Vd

V t( )
t

------ Vd
V t( )

 U A n Ad�•

A t( )

+=

t

D
Dt
------ Vd

V t( )

U n Ad�•

A t( )

 U A n Ad�•

A t( )

+–=



Applications of control volume analysis

bjc 6.15 4/15/13

(6.43)

Remember,  is the velocity of the control volume surface and can be selected
at the convenience of the user.

6.7 APPLICATIONS OF CONTROL VOLUME ANALYSIS

6.7.1 EXAMPLE 1 - SOLID BODY AT REST IN A STEADY FLOW.

This is a simply connected Eulerian control volume where the segment  sur-

rounding (and attached to) the body is connected by a cut to the surrounding
boundary . All fluxes on the cut  cancel and therefore make no contribution

to the integrated conservation laws. There is no mass injection through the surface
of the body thus
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. (6.44)

Momentum fluxes integrated on  are directly related to the lift and drag forces

exerted on the body. The integrated momentum equation gives

(6.45)

. (6.46)

where the integrals are the drag and lift by the flow on the body. The integral
momentum balance in the streamwise direction is

. (6.47)

and in the vertical direction

. (6.48)
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6.7.2 EXAMPLE 2 - CHANNEL FLOW WITH HEAT ADDITION

Heat addition to the compressible flow shown above occurs through heat transfer
through the channel wall, . There is no net mass addition to the control volume.

. (6.49)

The flow is steady with no body forces. In this case, the energy balance is,

. (6.50)

The contribution of the viscous stresses to the energy balance is zero along the
wall because of the no-slip condition,  and, as long as the streamwise

velocity gradients are not large, the term  is very small on the upstream
and downstream faces, , . In this approximation, The energy balance

becomes,

. (6.51)
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The effects of heat transfer through the wall and conduction through the upstream
and downstream faces,  and  are accounted for by the change in the flux of

stagnation enthalpy. Heat transfer through the upstream and downstream faces is
usually small and so most of the conductive heat transfer into the flow is through
the wall.

. (6.52)

The energy balance for this case reduces to,

. (6.53)

When the vector multiplication is carried out (6.53) becomes

. (6.54)

The heat added to the flow is directly and simply related to the change of the inte-
grated flow rate of stagnation enthalpy along the channel.
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6.7.3 EXAMPLE 3 - STATIONARY FLOW ABOUT A ROTATING FAN.

This is the prototype example for propellers, compressors and turbines. In contrast
to a steady flow, a stationary flow is one where time periodic motions such as the
rotation of the fan illustrated above do occur, but the properties of the flow aver-
aged over one fan rotation period or one blade passage period are constant. This
will be the case if the fan rotation speed is held constant.

Here we make use of a mixed Eulerian-Lagrangian control volume. The
Lagrangian part is attached to and moves with the fan blade surfaces and fan axle.
Remember the fluid is viscous and subject to a no slip condition at the solid sur-
face. The Eulerian surface elements are the upstream and downstream faces of the
control volume as well as the cylindrical surrounding surface aligned with the axis
of the fan. We will assume that the fan is adiabatic,  and there is no mass
injection through the fan surface. The integrated mass fluxes are zero.

(6.55)

Momentum fluxes integrated on  are equal to the surface forces exerted by the

flow on the fan. 

(6.56)
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or

(6.57)

where the vector force by the flow on the fan is

(6.58)

Note that the flow and fan velocity on  are the same due to the no-slip condition

. (6.59)

For stationary flow, the integrated energy fluxes on  are equal to the work/sec

done by the flow on the fan. 

. (6.60)

(6.61)

If the flow is adiabatic, and viscous normal stresses are neglected on  and 

the energy equation becomes,

(6.62)
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6.7.4 EXAMPLE 4 - COMBINED HEAT TRANSFER AND WORK

In a general situation where there is heat transfer and work done

the energy equation has the concise form,

. (6.63)

The effects of heat addition and work done are both accounted for by changes in
the stagnation enthalpy of the flow. In general, changes due to thermal exchange
are irreversible whereas changes due to the work done can be very nearly revers-
ible except for entropy changes due to viscous friction.

6.8 STAGNATION ENTHALPY, TEMPERATURE AND PRESSURE

6.8.1 STAGNATION ENTHALPY OF A FLUID ELEMENT

It is instructive to develop an equation for the stagnation enthalpy change of a fluid
element in a general unsteady flow. Using the energy equation

(6.64)

along with the continuity equation 
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(6.65)

and the identity

(6.66)

one can show that

. (6.67)

Equation (6.67) shows that changes in the stagnation enthalpy of a fluid element
may be due to heat conduction as well as the work done by body forces and work
by viscous forces. In addition, nonsteady changes in the pressure can also change

. 

In most aerodynamic problems body forces are negligible. Exceptions can occur
at low speeds where density changes due to thermal gradients lead to gravity
driven flows.  

The work done by viscous forces is usually small (the work is zero at a wall where
) and energy transport by heat conduction, , is often small. In this case

the stagnation enthalpy of a fluid element is preserved if the flow is steady,
.

The last term in (6.67) can be quite large in many nonsteady processes. For exam-
ple, large temperature changes can occur in unsteady vortex formation in the wake
of a bluff body in high speed flow due to this term. 

If the flow is steady, inviscid and non-heat-conducting then (6.67) reduces to

 . (6.68)

where the gravitational potential is related to the gravitational force by .
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6.8.2 BLOWDOWN FROM A PRESSURE VESSEL REVISITED

In Chapter 2 we looked at the blowdown of gas from an adiabatic pressure vessel
through a small nozzle. The situation is shown below.

Figure 6.5   A adiabatic pressure vessel exhausting to the surroundings.

The stagnation enthalpy of the flow inside the pressure vessel is governed by
(6.67). If we drop the body force term and assume the divergence term involving
heat transfer and viscous work are small then (6.67) simplifies to

. (6.69)

If we further assume that the vessel is very large and the hole is very small then
the contribution of the flow velocity to the stagnation enthalpy can be neglected
since most of the gas is almost at rest. Under these conditions the temperature and
pressure can be regarded as approximately uniform over the interior of the vessel.
With these assumptions (6.69) simplifies to 

(6.70)

Equation (6.70) is the Gibbs equation for an isentropic process. If the gas is calor-
ically perfect the final temperature is given by

. (6.71)
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This is the result we were led to in Chapter 2 when we assumed the process in the
vessel was isentropic. The difference is that by beginning with (6.67) the assump-
tions needed to reach (6.71) are clarified. This example nicely illustrates the role
of the unsteady pressure term in (6.67).

6.8.3 STAGNATION ENTHALPY AND TEMPERATURE IN STEADY FLOW

The figure below shows the path of a fluid element in steady flow stagnating at the
leading edge of an airfoil.

Figure 6.6   Schematic of a stagnation process in steady flow

The dashed lines outline a small streamtube surrounding the stagnation stream-
line. Let’s interpret this problem in two ways, first as an extension of section 5.7
example 2 and then in the context of equation (6.67).

The result in example 2 applies to the flow in the streamtube.

(6.72)

If we assume the airfoil is adiabatic and that there is no net heat loss or gain
through the stream tube then 

(6.73)

Since the mass flow at any point in the stream tube is the same then one can con-
clude that the enthalpy per unit mass is also the same at any point along the stream
tube (at least in an average sense across the tube which we can make arbitrarily
narrow). 
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According to (6.67) the stagnation enthalpy of the fluid element can also change
due to viscous work which we neglected in example 3. However as the element
decelerates on its approach to the airfoil leading edge where viscous forces might
be expected to play a role, the velocity becomes small and goes to zero at the stag-
nation point so one can argue that the viscous work terms are also small. An
exception where this assumption needs to be re-examined is at very low Reynolds
number where the viscous region can extend a considerable distance from the
airfoil.

By either argument we can conclude that to a good approximation in a steady flow

(6.74)

With viscous work neglected, the stagnation enthalpy is conserved along an adi-
abatic path. When a fluid element is brought to rest adiabatically the enthalpy at
the rest state is the stagnation enthalpy at the initial state.

The stagnation temperature is defined by the enthalpy relation.

(6.75)

The stagnation temperature is the temperature reached by an element of gas
brought to rest adiabatically. For a calorically perfect ideal gas with constant spe-
cific heat in the range of temperatures between  and  (6.75) can be written

. (6.76)

In Figure 6.6 we would expect  to the extent that the heat capacity is

constant. Divide through by  and introduce the speed of sound .

Equation (6.76) becomes,

(6.77)
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where  is the Mach number of the fluid element. 

6.8.4 FRAMES OF REFERENCE

In Chapter 1 we discussed how the momentum and kinetic energy of a fluid ele-
ment change when the frame of reference is transformed from fixed to moving
coordinates. Clearly since the stagnation temperature (6.76) depends on the
kinetic energy then it too depends on the frame of reference. The stagnation tem-
peratures in fixed and moving coordinates are

(6.78)

The transformation of the kinetic energy is

(6.79)

where  are the velocity components of the moving origin of coordinates.
The thermodynamic variables density, temperature and pressure do not change
and so the transformation of the stagnation temperature is

(6.80)

6.8.5 STAGNATION PRESSURE

The stagnation pressure is defined using the Gibbs equation for an ideal gas.

(6.81)

Note that while  and  depend on temperature, the gas constant  is

independent of temperature as long as there are no chemical reactions that might
change the molecular weight of the gas. Integrate (6.81) along an isentropic path

 from state 1 to state 2. 
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(6.82)

which becomes

(6.83)

If an element of flowing gas at pressure  and temperature  is brought to rest
adiabatically and isentropically to a temperature  the stagnation pressure  is

defined by

(6.84)

If the heat capacities are constant (6.84) reduces to the isentropic relation

. (6.85)

If the stagnation path in Figure 6.6 is isentropic as well as adiabatic and the gas
is calorically perfect then one would expect

. (6.86)

The stagnation state is just that, a thermodynamic state, and changes in the stag-
nation state of a material are described by the Gibbs equation.

(6.87)

where for an ideal gas . Note that there is no distinction between the

entropy and stagnation entropy.  They are one and the same and the identity
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(6.88)

is occasionally useful.

Let’s return to Figure 6.6 for a moment and ask what pressure and temperature
would one measure at the stagnation point of the airfoil in a real experiment. In
practice it is impossible to make the airfoil truly adiabatic and so some heat loss
would be expected through conduction. In addition, as the gas approaches the air-
foil, gradients in temperature arise that tend to conduct heat away from the
stagnation point. In addition, gradients in temperature and velocity near the stag-
nation point tend to produce an increase in entropy. As a result, the measured
temperature and pressure both tend to be lower than predicted. The difference may
vary by anywhere from a fraction of a percent to several percent depending on the
Reynolds number and Mach number of the flow.

6.8.6 TRANSFORMING THE STAGNATION PRESSURE BETWEEN FIXED AND MOVING FRAMES

The stagnation pressure and stagnation temperature in the fixed and moving
frames are

(6.89)

Divide out the static pressure and temperature in (6.89).

(6.90)

Substitute (6.80) into (6.90). The transformation of stagnation pressure is
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. (6.91)

6.9 SYMMETRIES OF THE INCOMPRESSIBLE NAVIER-STOKES 
EQUATIONS

The Navier-Stokes equations governing incompressible flow are,

(6.92)

where  is the kinematic pressure  and  is the kinematic vis-
cosity . We transform (6.92) according to the following
infinitesimal group.

(6.93)

Applying this infinitesimal transformation to the incompressible Navier Stokes
equations leads to the following set of operators.

1) Invariance under translation in time

(6.94)

2) An arbitrary  function of time added to the pressure, .

(6.95)
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3) Rotation about the z-axis

(6.96)

4) Rotation about the x-axis

(6.97)

5) Rotation about the y-axis

(6.98)

6) Nonuniform translation in the x-direction,  is an arbitrary, twice differen-
tiable function of time.  Simple translation in x corresponds to .

(6.99)

7) Nonuniform translation in the y-direction,  is an arbitrary, twice differen-
tiable function.

(6.100)

8) Nonuniform translation in the z-direction,  is an arbitrary, twice differen-
tiable function.

(6.101)

9) The one-parameter dilation group of the equation

(6.102)

The finite form of the dilation group corresponding to the infinitesimal operator
  is, 
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(6.103)

Note that the stretching in all three coordinate directions is the same. If the kine-
matic viscosity in (6.92) is set to zero, the full equations reduce to the

incompressible Euler equations which are invariant under  to  and a two-
parameter dilation group in space and time. This is,

(6.104)

with group parameters and . The group (6.104) is the main symmetry group
governing elementary turbulent shear flows.

Occasionally exact solutions of the full Navier-Stokes equations are discovered
and when they are, it is virtually always the case that the problem is invariant
under one or more of the above groups. Some of the most interesting solutions are
those invariant under the dilation group, (6.103) and in later chapters we will
describe two famous examples. First, we consider the implications of the invari-
ance under the non-uniform translation groups, (6.99), (6.100) and (6.101).

6.9.1 ACCELERATING FRAMES OF REFERENCE IN INCOMPRESSIBLE, UNIFORM DENSITY
FLOW

The finite form of the infinite dimensional groups corresponding to nonuniform

translation in three space directions ,  and  can be written concisely as,
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(6.105)

The arbitrary functions translating the coordinates imply that the Navier-Stokes
equations are invariant for all moving observers as long as the observer moves
irrotationally. An observer translating and accelerating arbitrarily in three dimen-
sions will sense the same equations of motion as an observer at rest. This
invariance implies a great degree of flexibility in the choice of the observer used
to view a flow. For example, one may wish to move with a particular fluid element.
Or, if some convecting vortical feature happens to be of interest, then one is free
to select a frame of reference attached to that feature. This has been used in Figure
6.7 to view the wake of a circular cylinder in a frame where the eddying motions
in the wake become apparent. Flow fields are commonly studied this way however
there is a danger in attaching too much dynamical significance to the flow patterns
seen by any specific observer since the choice of the frame of reference is itself
arbitrary and the flow patterns seen by different observers may differ dramatically
as they do in Figure 6.7.
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Figure 6.7  Velocity vector field in the wake of a circular cylinder as viewed by two 
observers; (a) frame of reference moving downstream at , (b) frame 

of reference fixed with respect to the cylinder. The dashed contour roughly cor-
responds to the instantaneous boundary of turbulence.

(a)

(b)

0.755U
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The term added to the pressure in (6.105) represents a spatially uniform effective
body force induced by the acceleration of the observer. This force is purely hydro-
static in nature in that it is exactly balanced everywhere by the rate of change of
the velocity field (the derivative of the translation term in the transformation of
the velocity) and has no dynamical significance; it produces no differential
changes in the flow field. It does suggest that when we examine the compressible
equations of motion, they will probably not admit this symmetry. Similarly, the
transformation (6.105) would not be admitted by incompressible problems
involving variable density and/or a free boundary. 

6.10 PROBLEMS

Problem 1 - Work out the time derivative of the following integral.

(6.106)

Obtain  in two ways: (1) by directly integrating, then differentiating the
result and (2) by applying Leibniz’ rule (6.9) then carrying out the integration.

Problem 2 - In Chapter 2 Problem 2 we worked out a hypothetical incompressible
steady flow with the velocity components

. (6.107)

This 2-D flow clearly satisfies the continuity equation (conservation of mass),
could it possibly satisfy conservation of momentum for an inviscid fluid? To find
out work out the substantial derivatives of the velocity components and equate the
results to the partial derivatives of the pressure that appear in the momentum equa-
tion. The differential of the pressure is

. (6.108)

Show by the cross derivative test whether a pressure field exists that could enable
(6.107) to satisfy momentum conservation. If such a pressure field exists work it
out.
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Problem 3 - Consider steady flow in one dimension where 
and all velocity gradients are zero except 

(6.109)

Work out the components of the Newtonian viscous stress tensor . Note the

role of the bulk viscosity.

Problem 4 - A cold gas thruster on a spacecraft uses Helium (atomic weight 4) at
a chamber temperature of 300K and a chamber pressure of one atmosphere. The
gas exhausts adiabatically through a large area ratio nozzle to the vacuum of
space. Estimate the maximum speed of the exhaust gas.

Problem 5 - Work out equation (6.67).

Problem 6 - Steady flow through the empty test section of a wind tunnel with
parallel walls and a rectangular cross-section is shown below. Use a control vol-
ume balance to relate the integrated velocity and pressure profiles at stations
1 and 2 to an integral of the wall shear stress.

State any assumptions used.

Problem 7 - Use a control volume balance to show that the drag of a circular cyl-
inder at low Mach number can be related to an integral of the velocity and stress
profile in the wake downstream of the cylinder. Be sure to use the continuity equa-
tion to help account for the x-momentum convected out of the control volume
through the upper and lower surfaces. State any assumptions used.
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A11
U
x

-------=

ij
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Problem 8 - Use a control volume balance to evaluate the lift of a three dimen-
sional wing in an infinite steady stream. Assume the Mach number is low
enough so that there are no shock waves formed. 

1) Select an appropriate control volume.

2) Write down the integral form of the mass conservation equation.

3) Write down the integral form of the momentum conservation equation.

4) Evaluate the various terms on the control volume boundary so as to express
the lift of the wing in terms of an integral over the downstream wake.

5) Why did I stipulate that there are no shock waves? Briefly state any other
assumptions that went in to your solution.

Problem 9 - Suppose a model 3-D wing is contained in a finite sized wind tunnel
test section with horizontal and vertical walls as shown below. 

What would a test engineer have to measure to determine lift and drag in the
absence of sensors on the model or a mechanical balance for directly measuring
forces? Consider a control volume that coincides with the wind tunnel walls.

LiftU0

Lift

Drag

U0
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 Problem 10 - Transform each of the following equations using the following four
parameter dilation group.

(6.110)
i) The incompressible Navier-Stokes equations

(6.111)

ii) The Stokes equations for slow flow

(6.112)

iii) The Euler equations for inviscid flow

(6.113)

How do the group parameters  have to be related to one another in
order for the given equations to be invariant?
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