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DEFINITION

 

The idea of the control volume is an extremely general concept used widely in
fluid mechanics. In Chapter 1 we derived the equations for conservation of mass
and momentum on a small cubic control volume fixed in space. In this chapter we
will provide a general definition of the control volume and review some of the
powerful mathematical tools of vector calculus used in conjunction with control
volumes. This will enable us to re-derive in Chapter 5 the equations of motion on
a general, arbitrarily moving, control volume suitable for a wide variety of
applications. 

 

Figure 4.1   Control volume schematic

 

The control volume  is a closed, simply connected region in space which may
be finite or infinitesimal in size. The size and geometry of the volume is selected
to provide a convenient imaginary vessel for systematically accounting for the
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fluxes of various flow quantities related to the conservation of mass, momentum
and energy. Part or all of the surface of the control volume may be moving and
the motion can be arbitrary as long as the control volume is not torn apart.

 is the instantaneous surface and  is an infinitesimal surface element.

 is a unit vector normal to the surface that points outward from the interior of
the control volume.

Let  be any field variable. It could be a scalar or a component of
a vector or tensor.
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CALCULUS

 

The gradient operator is

 

(4.1)

 

where the subscript  on the right refers to the index of the vector component. As
noted in Chapter 1 we will use this index notation to denote vectors and tensors
throughout the text. 

The gradient of a scalar function of space is written

 

(4.2)

 

and the gradient of a vector function of space is

 

. (4.3)
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(4.4)

where the Kronecker unit tensor is defined as

. (4.5)

Equation (4.4) is the first time we have encountered a vector calculus relation
involving two sets of repeated indices and the summation symbols have been
included for clarity. For each index  there is a sum over  and the  are also
summed. From here on we will use the Einstein convention and the summation
symbols will be dropped. Note that multiplying by the Kronecker unit tensor and
summing over both indices is equivalent to simply equating the two indices and
summing as indicated in (4.4). 

The dot (or inner) product of a vector and a tensor is

. (4.6)

The curl of a vector is defined by the skew-symmetric operation
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. (4.7)

or we can just write

. (4.8)

The quantities  are unit vectors in the three orthogonal coordinate
directions. The curl can also be expressed using index notation.

(4.9)

where the alternating unit tensor (also called the Levi-Civita tensor or the permu-
tation tensor) is defined as

(4.10)

The alternating unit tensor satisfies the following identities.

(4.11)

where  is the Kronecker unit tensor defined in (4.5). 
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4.2.1 USEFUL VECTOR IDENTITIES

Some useful vector identities involving first derivatives are as follows

(4.12)

Note that dot products involving the gradient operator are not always commuta-
tive. For example consider the difference between

(4.13)

and

. (4.14)

These two cases illustrate why the parentheses are needed and how useful the
index notation can be in avoiding the kind of visual ambiguities that can arise in
the use of vector notation.

Here are some more vector identities involving second derivatives
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(4.15)

where the Laplacian is

. (4.16)

The Laplacian is a scalar operator. The Laplacian of a scalar is a scalar

(4.17)

The Laplacian of a vector is a vector

(4.18)

Note that the index that is summed is a dummy index and any repeated symbol
will do, for example

(4.19)

has the same meaning as the right hand side of (4.18).

4.3 GAUSS’ THEOREM

Gauss’ theorem can be used to convert a volume integral involving the gradient
operator to a surface integral involving the outward unit normal. For example
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(4.20)

where  is a scalar. Here is another example

 (4.21)

where  is a vector, and another

(4.22)

where  is a tensor. A volume integral involving the curl can be converted to a
surface integral.

(4.23)
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4.4 STOKES’ THEOREM

Figure 4.2   Unclosed control volume used to define Stokes’ theorem.

Stokes’ theorem can be used to convert a surface integral involving the curl of a
vector to a line integral involving the unit tangent over the boundary of an
unclosed control volume. 

Although we defined the control volume to be closed there are instances when an
unclosed control volume such as that depicted above (looking kind of like a sock!)
can be useful.

The differential length  is an infinitesimal line segment along the bounding
curve  with unit tangent  . Stokes theorem tells us that

(4.24)
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. (4.25)

Gauss’ theorem is used repeatedly in the derivation of the equations of motion.
Stokes theorem comes up in the theory of rotational flow particularly in the devel-
opment of wing theory. 

4.5 PROBLEMS

Problem 1 - Working in Cartesian coordinates and using index notation, prove
each of the following the vector identities

 (4.26)

(4.27)

(4.28)

Problem 2 - Let ,  and  be the unit vectors in a right hand orthogonal coor-
dinate system. Show that

(4.29)

Problem 3 - Demonstrate Stokes’ theorem by integration of the curl of some
smooth vector field variable over a square boundary.

Problem 4 - Find a unit vector normal to each of the following surfaces.

i) 

ii) 

iii) 

Problem 5 - Show that the unit vector normal to the plane

(4.30)

has the components
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(4.31)

Why doesn’t  depend on ?

Problem 6 - Verify Gauss’ theorem

(4.32)

in each of the following cases,

i)  and  is a cube of side  aligned with the  axes,

ii)  where  is a unit vector in the radial direction and  is a sphere

of radius  surrounding the origin and . 

Problem 6 - Verify Stokes’ theorem

(4.33)

where  and  is the surface of a cube of side  aligned with the
 axes. The open face of the cube has an outward normal aligned with the

positive x-axis.
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