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3.1 I

 

NTRODUCTION

 

The motion of a compressible fluid is directly affected by its thermodynamic state
which is itself a consequence of the motion. For this reason, the powerful princi-
ples of thermodynamics embodied in the first and second law are a central part of
the theory of compressible flow. Thermodynamics derives its power from the fact
that the change in the state of a fluid is independent of the actual physical process
by which the change is achieved. This enables the first and second laws to be com-
bined to produce the famous Gibbs equation which is stated exclusively in terms
of perfect differentials of the type that we studied in Chapter1. The importance of
this point cannot be overstated and the reduction of problems to integrable perfect
differential form will be a recurring theme throughout the course.

 

3.2 T

 

HERMODYNAMICS

 

Thermodynamics is the science that deals with the laws that govern the relation-
ship between temperature and energy, the conversion of energy from one form to
another especially heat, the direction of heat flow, and the degree to which the
energy of a system is available to do useful work.

 

Temperature and the zeroth law

 

In his classic textbook 

 

“The Theory of Heat”

 

 (SpringerVerlag 1967) Richard
Becker begins with the following description of temperature. 

“The concept of temperature is basic in thermodynamics. It originates from our
sensations, warm and cold. The most salient physical property of temperature is
its tendency to equalize. Two bodies in contact (thermal contact!) will eventually
have the same temperature, independent of their physical properties and the spe-
cial kind of contact. Just this property is used to bring a substance to a given
temperature, namely, by surrounding it with a heat bath. Then, by definition, sub-
stance and heat bath have the same temperature. To measure the temperature one
can employ any physical property which changes continuously and reproducibly
with temperature such as volume, pressure, electrical resistivity, and many others.
The temperature scale is fixed by convention.”
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In this description, Becker postulates an incomplete law of equilibrium whereby
two systems placed in thermal contact will spontaneously change until the tem-
perature of each system is the same. This is sometimes called the zeroth law of
thermodynamics. James Clerk Maxwell (1831-1879), the famous British physi-
cist, who published his own text entitled 

 

“Theory of Heat”

 

 in 1870, expressed the
zeroth law as follows: When each of two systems is equal in temperature to a third,
the first two systems are equal in temperature to each other. 

A key concept implicit in the zeroth law is that the temperature characterizes the
state of the system at any moment in time and is independent of the path used to
bring the system to that state. Such a property of the system is called a 

 

variable
of state

 

.

 

The first law

 

 

During the latter part of the nineteenth century heat was finally recognized to be
a form of energy. The first law of thermodynamics is essentially a statement of
this equivalence. The first law is based on the observation that the internal energy

 of an isolated system is conserved. An isolated system is one with no interaction
with its surroundings. The internal energy is comprised of the total kinetic, rota-
tional and vibrational energy of the atoms and molecules contained in the system.
Chemical bond and nuclear binding energies must also be included if the system
is undergoing a chemical or nuclear reaction. 

The value of the internal energy can only be changed if the system ceases to be
isolated. In this case  can change by the transfer of mass to or from the system,
by the transfer of heat, and by work done on or by the system. For an adiabatic,
( ), constant mass, system, .

By convention,  is positive if heat is added to the system and negative if heat
is removed. The work,  is taken to be positive if work is done 

 

by

 

 the system

 

on

 

 the surroundings and negative if work is done 

 

on

 

 the system 

 

by

 

 the
surroundings.

Because energy cannot be created or destroyed the amount of heat transferred into
a system must equal the increase in internal energy of the system plus the work
done by the system. For a nonadiabatic system of constant mass, 

 

(3.1)
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Q
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This statement, which is equivalent to a law of conservation of energy, is known
as the first law of thermodynamics.

In equation (3.1) it is extremely important to distinguish between a small change
in internal energy which is a state variable and therefore is expressed as a perfect
differential , and small amounts of heat added or work done that do not charac-
terize the system per se but rather a particular interaction of the system with its
surroundings. To avoid confusion, the latter small changes are denoted by a . 

The internal energy of a system is determined by its temperature and volume. Any
change in the internal energy of the system is equal to the difference between its
initial and final values regardless of the path followed by the system between the
two states. 

Consider the piston cylinder combination shown below. 

 

Figure 3.1   Exchange of heat and work for a system enclosed in 
a cylinder with a movable piston. 

 

The cylinder contains some 

 

homogeneous

 

 material with a fixed chemical compo-
sition. An infinitesimal amount of heat,  is added to the system causing an
infinitesimal change in internal energy and an infinitesimal amount of work 
to be done. The differential work done by the system on the surroundings is the
conventional mechanical work done by a force acting over a distance and can be
expressed in terms of the state variables pressure and volume. Thus

 

(3.2)

 

where  is the cross sectional area of the piston and  is the force by the material
inside the cylinder on the piston. The first law of thermodynamics now takes the
form.

d

Q

PdV
dE

Q
W

W Fdx F A( )d Ax( ) PdV= = =

A F
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(3.3)

 

We will be dealing with open flows where the system is an infinitesimal fluid ele-
ment. In this context it is convenient to work in terms of intensive variables by
dividing through by the mass contained in the cylinder. The first law is then,

 

(3.4)

 

where  is the heat exchanged per unit mass,   is the internal energy per unit
mass and  is the volume per unit mass. As noted above, the  symbol
is used to denote that the differential 1-form on the right-hand-side of (3.4) is not
a perfect differential and in this form the first law is not particularly useful.

The first law (3.4) is only useful if we can determine an equation of state for the
substance contained in the cylinder. The equation of state is a functional relation-
ship between the internal energy per unit mass, specific volume and pressure,

. For a general substance an accurate equation of state is not a particularly
easy relationship to come by and so most applications tend to focus on approxi-
mations based on some sort of idealization. One of the simplest and most
important cases is the equation of state for an ideal gas which is an excellent
approximation for real gases over a wide range of conditions. We will study ideal
gases shortly but first let’s see how the existence of an equation of state gives us
a complete theory for the equilibrium states of the material contained in the cyl-
inder shown in Figure 3.1. 

 

The second law

 

Assuming an equation of state can be defined, the first law becomes,

 

(3.5)

 

According to Pfaff’s theorem, discussed in Chapter 1, the differential form on the
right-hand-side of (3.5) must have an integrating factor which we write as

. Multiplying the first law by the integrating factor turns it into a perfect
differential.

 

(3.6)

 

In effect, once one accepts the first law (3.5) and the existence of an equation of
state, , 

 

then the existence of two new variables of state is implied

 

. By
Pfaff’s theorem there exists an integrating factor which we take to be the inverse

Q dE PdV+=

q de Pdv+=

q e
v 1 =

P e v,( )

q de P e v,( )dv+=

1 T e v,( )

q
T e v,( )
----------------- de

T e v,( )
----------------- P e v,( )

T e v,( )
-----------------dv+ ds e v,( )= =

P e v,( )
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of the temperature postulated in the zeroth law, and there is an associated integral
called the entropy (per unit mass), . In essence, the second law implies the
existence of stable states of equilibrium of a thermodynamic system. 

The final result is the famous Gibbs equation, usually written

 

. (3.7)

 

This fundamental equation is the starting point for virtually all applications of
thermodynamics. Gibbs equation describes states that are in local thermodynamic
equilibrium i.e., states that can be reached through a sequence of reversible steps. 

Since (3.6) is a perfect differential, the partial derivatives of the entropy are

 

. (3.8)

 

The cross derivatives of the entropy are equal and so one can state that for 

 

any

 

homogeneous material

 

(3.9)

 

Note that the integrating factor (the inverse of the temperature) is not uniquely
defined. In particular, there can be an arbitrary, constant scale factor since a con-
stant times  is still a perfect differential. This enables a temperature scale to be
defined so that the integrating factor can be identified with the measured temper-
ature of the system. 

 

3.3 T

 

HE

 

 C

 

ARNOT

 

 C

 

YCLE

 

Using the Second Law one can show that heat and work, though each is a form of
energy, are not equivalent. All work can be converted to heat but not all heat can
be converted to work. The Carnot cycle involving heat interaction at constant tem-
perature is the most efficient thermodynamic cycle and can be used to illustrate
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this point. Consider the piston cylinder combination containing a fixed mass of a
working fluid shown below and the sequence of piston strokes representing the
four basic states in the Carnot cycle. 

Figure 3.2   The Carnot Cycle heat engine

In the ideal Carnot cycle the adiabatic compression and expansion strokes are car-
ried out isentropically. 

Figure 3.3   P-V diagram of the Carnot Cycle
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Figure 3.4   T-S diagram of the Carnot cycle

A concrete example in the P-V plane and T-S plane is shown in Figure 3.3 and
Figure 3.4 above. The working fluid is nitrogen cycling between the temperatures
of 300 and 500 Kelvin with the compression stroke moving between one and six
atmospheres. The entropy per unit mass of the compression leg comes from tab-
ulated data for nitrogen computed from Equation (3.120) below. The entropy per
unit mass of the expansion leg is specified to be .

The thermodynamic efficiency of the cycle is

(3.10)

According to the first law of thermodynamics

. (3.11)

Over the cycle the change in internal energy (which is a state variable) is zero and
the work done is

(3.12)

T

s J
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1Q
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------------------------------------------------------------------------------------------------------ W
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-------= =

Q dE W+=
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where  is negative, and so the efficiency is

. (3.13)

The change in entropy per unit mass over the cycle is also zero and so from the
Second Law

. (3.14)

Since the temperature is constant during the heat interaction we can use this result
to write

(3.15)

Thus the efficiency of the Carnot cycle is

(3.16)

For the example shown . At most only 40% of the heat added to the
system can be converted to work. The maximum work that can be generated by a
heat engine working between two finite temperatures is limited by the temperature
ratio of the system and is always less than the heat put into the system.

3.3.1 THE ABSOLUTE SCALE OF TEMPERATURE

For any Carnot cycle, regardless of the working fluid

. (3.17)

Equation (3.17) enables an absolute scale of temperature to be defined that only
depends on the general properties of a Carnot cycle and is independent of the
properties of any particular substance. 

As noted earlier the temperature, which is the integrating factor in the Gibbs equa-
tion (3.7), is only defined up to an arbitrary constant of proportionality. Similarly,
any scale factor would divide out of (3.17) and so it has to be chosen by conven-

Q1

1
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-------+=
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q

T
------° 0= =
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-------

Q2
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-------–=

C 1
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------ 1<–=

C 0.4=
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tion. The convention once used to define the Kelvin scale was to require that there
be 100 degrees between the melting point of ice and the boiling point of water.
Relatively recently there was an international agreement to define the ice point as
exactly  above absolute zero and allow the boiling point to be no longer
fixed. As a result the boiling point of water is very nearly, but not exactly,

. 

Absolute temperature is generally measured in degrees Rankine or degrees Kelvin
and the scale factor between the two is

. (3.18)

The usual Farenheit and Centigrade scales are related to the absolute scales by

. (3.19)

3.4 ENTHALPY

It is often useful to rearrange Gibbs’ equation so as to exchange dependent and
independent variables. This can be accomplished using the so-called Legendre
transformation. In this approach, a new variable of state is defined called the
enthalpy per unit mass,

(3.20)

In terms of this new variable of state, the Gibbs equation becomes,

(3.21)

Using this simple change of variables, the pressure has been converted from a
dependent variable to an independent variable.

(3.22)

Note that  is still the integrating factor. With enthalpy and pressure as the
independent variables the partial derivatives of the entropy are
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(3.23)

and for any homogeneous material we can write

(3.24)

It is relatively easy to re-express Gibbs’ equation with any two variables selected
to be independent by defining additional variables of state, the free energy

 and the free enthalpy  (also called the Gibbs free
energy). The Gibbs free energy is very useful in the analysis of systems of reacting
gases.

Using the Gibbs equation and an equation of state, any variable of state can be
determined as a function of any two others. For example,

(3.25)

and so forth.

3.4.1 GIBBS EQUATION ON A FLUID ELEMENT

One of the interesting and highly useful consequences of (3.25) is that any differ-
entiation operator acting on the entropy takes on the form of Gibbs equation. Let

(3.26)

Take the derivative of (3.26) with respect to time.

(3.27)

Use (3.23) to replace  and , in equation (3.27).

(3.28)

This is essentially identical to Gibbs equation with the replacements
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(3.29)

Obviously, we could do this with any spatial derivative as well. For example

(3.30)

The three equations in (3.30) can be combined to form the gradient vector.

(3.31)

which is valid in steady or unsteady flow. 

All these results come from the functional form (3.26) in which the entropy
depends on space and time implicitly through the functions  and

. The entropy does not depend explicitly on .

Take the substantial derivative, , of the entropy. The result is

(3.32)

The result (3.32) shows how Gibbs equation enables a direct connection to be
made between the thermodynamic state of a particular fluid element and the
velocity field. One simply replaces the differentials in the Gibbs equation with the
substantial derivative.

(3.33)
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Gibbs equation is the key to understanding the thermodynamic behavior of com-
pressible fluid flow. Its usefulness arises from the fact that the equation is
expressed in terms of perfect differentials and therefore correctly describes the
evolution of thermodynamic variables over a selected fluid element without hav-
ing to know the flow velocity explicitly. This point will be clarified as we work
through the many applications to compressible flow described in the remainder of
the text.

3.5 HEAT CAPACITIES

Consider the fixed volume shown below. An infinitesimal amount of heat per unit
mass is added causing an infinitesimal rise in the temperature and internal energy
of the material contained in the volume.

Figure 3.5   Heat addition at constant volume

The heat capacity at constant volume is defined as

(3.34)

Now consider the piston cylinder combination shown below. 

Figure 3.6   Heat addition at constant pressure
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An infinitesimal amount of heat is added to the system causing an infinitesimal
rise in temperature. There is an infinitesimal change in volume while the piston is
withdrawn keeping the pressure constant. In this case the system does work on
the outside world. The heat capacity at constant pressure is

(3.35)

For a process at constant pressure the heat added is used to increase the tempera-
ture of the gas and do work on the surroundings. As a result more heat is required
for a given change in the gas temperature and thus . 

The enthalpy of a general substance can be expressed as

(3.36)

where the pressure dependence needs to be determined by laboratory measure-
ment. Heat capacities and enthalpies of various substances are generally tabulated
purely as a functions of temperature by choosing a reference pressure of

 for the integration. This leads to the concept of a standard

enthalpy, . The standard enthalpy can be expressed as
(3.37)

The heat capacity of almost all substances goes to zero rapidly as the temperature
goes to zero and so the integration in (3.37) beginning at absolute zero generally
does not present a problem. We shall return to the question of evaluating the
enthalpy shortly after we have had a chance to introduce the concept of an ideal
gas.

3.6 IDEAL GASES

For an ideal gas, the equation of state is very simple.
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(3.38)

where  is the number of moles of gas in the system with volume, . The univer-
sal gas constant is

(3.39)

It is actually more convenient for our purposes to use the gas law expressed in
terms of the density.

(3.40)

where 

(3.41)

and  is the mean molecular weight of the gas. The physical model of the gas
that underlies (3.38) assumes that the gas molecules have a negligible volume and
that the potential energy associated with intermolecular forces is also negligible.
This is called the dilute gas approximation and is an excellent model over the
range of gas conditions covered in this text.

For gas mixtures the mean molecular weight is determined from a mass weighted
average of the various constituents. For air

(3.42)

The perfect gas equation of state actually implies that the internal energy per unit
mass of a perfect gas can only depend on temperature, . Similarly the
enthalpy of a perfect gas only depends on temperature

(3.43)

Since the internal energy and enthalpy only depend on temperature the heat capac-
ities also depend only on temperature, and we can express changes in the internal
energy and enthalpy as,

P
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--------------=

n V
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. (3.44)

In this course we will deal entirely with ideal gases and so there is no need to dis-
tinguish between the standard enthalpy and enthalpy and so there is no need to
use the distinguishing character “ “. 

Differentiate .

(3.45)

The gas constant is equal to the difference between the heat capacities.

(3.46)

The heat capacities themselves are slowly increasing functions of temperature.
But the gas constant is constant, as long as the molecular weight of the system
doesn’t change (there is no dissociation and no chemical reaction). Therefore the
ratio of specific heats

(3.47)

tends to decrease as the temperature of a gas increases.

All gases can be liquefied and the highest temperature at which this can be accom-
plished is called the critical temperature . The pressure and density at the point

of liquefaction are called the critical pressure  and critical density . The crit-
ical temperature and pressure are physical properties that depend on the details of
the intermolecular forces for a particular gas. An equation of state that takes the
volume of the gas molecules and intermolecular forces into account must depend
on two additional parameters besides the gas constant . The simplest extension
of the ideal gas law that achieves this is the famous van der Waals  equation of state

(3.48)

where

(3.49)
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The van der Waals equation provides a useful approximation for gases near the
critical point where the dilute gas approximation loses validity. 

3.7 CONSTANT SPECIFIC HEAT

The heat capacities of monatomic gases are constant over a wide range of temper-
atures. For diatomic gases the heat capacities vary only a few percent between the
temperatures of 200°K and 1200°K.  For enthalpy changes in this range one often
uses the approximation of a calorically perfect gas for which the heat capacities
are assumed to be constant and

(3.50)

For constant specific heat the Gibbs equation becomes

(3.51)

which can be easily integrated.

Figure 3.7 shows a small parcel of gas moving along some complicated path
between two points in a flow. The thermodynamic state of the gas particle at the
two endpoints is determined by the Gibbs equation.

Figure 3.7   Conceptual path of a fluid element moving between two 
states.

Integrating (3.51) between 1 and 2 gives an expression for the entropy of an ideal
gas with constant specific heats.
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. (3.52)

We can express Gibbs equation in terms of the enthalpy instead of internal energy.

. (3.53)

Integrate between states 1 and 2.

. (3.54)

If we eliminate the temperature in (3.54) using the ideal gas law the result is 

. (3.55)

In a process where the entropy is constant these relations become,

. (3.56)

Lines of constant entropy in P-T space are shown below.

Figure 3.8   Lines of constant entropy for a calorically perfect gas.
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The relations in (3.56) are sometimes called the isentropic chain.

Note that when we expressed the internal energy and enthalpy for a calorically
perfect gas in (3.50) we were careful to express only changes over a certain tem-
perature range.  There is a temptation to simply express the energy and enthalpy
as  and . This is incorrect! The correct values require the full
integration from absolute zero shown in (3.37).  As it happens, the gases we deal
with in this course, air, oxygen, nitrogen, hydrogen, etc all condense at very low
temperatures and so the contributions to the enthalpy from the condensed phase
and phase change terms in (3.37) tend to be relatively small.  This is also true for
the monatomic gas helium in spite of the fact that, unlike virtually all other sub-
stances, its heat capacity becomes very large in a narrow range of temperatures
near absolute zero.

3.8 THE ENTROPY OF MIXING

The second law of thermodynamics goes beyond the description of changes that
relate solely to equilibrium states of a system and quantifies the distinction
between reversible and irreversible processes that a system may undergo. For any
change of a system

(3.57)

where  is the change in entropy per unit mass. Substitute the first law in (3.57).
For any change of a system

. (3.58)

Equation (3.58) is the basis of a complete theory for the equilibrium of a thermo-
dynamic system. The incomplete notion of thermal equilibrium expressed by the
zeroth law is only one facet of the vast range of phenomena covered by the second
law (3.58). 

e CvT= h C pT=

q Tds
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3.8.1 SAMPLE PROBLEM - THERMAL MIXING

Equal volumes of an ideal gas are separated by an insulating partition inside an
adiabatic container. The gases are at the same pressure but two different temper-
atures. Assume there are no body forces acting on the system (no gravitational
effects).

Figure 3.9   Thermal mixing of an ideal gas at two temperatures

The partition is removed and the temperature of the system is allowed to come to
equilibrium.

1) What is the final temperature of the system?

Solution

Energy is conserved and all the gas energy is in the form of internal energy.

 (3.59)

Canceling the reference energies on both sides we can write

(3.60)

The ideal gas law is

(3.61)

Rearrange (3.61) to read

 (3.62)

Ta = 600K Tb = 300K T = Tfinal

E Eref– maCv T a T ref–( ) mbCv T b T ref–( )+ ma mb+( )Cv T final T ref–( )= =

maCvT a mbCvT b+ ma mb+( )CvT final=

PV maRT a mbRT b= =

mb
ma
-------

T a
T b
------=
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(3.63)

2) What is the change in entropy per unit mass of the system? Express your result
in dimensionless form.

Solution

The process takes place at constant pressure. In this case the entropy change per
unit mass of the two gases is

(3.64)

The entropy change per unit mass of the whole system is

(3.65)

This can be expressed in terms of the initial and final temperatures as

 (3.66)

The entropy of the system increases as the temperatures equalize.
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3.8.2 ENTROPY CHANGE DUE TO MIXING OF DISTINCT GASES

The second law states that the entropy change of an isolated system undergoing
a change in state must be greater than or equal to zero. Generally, non-equilibrium
processes involve some form of mixing such as in the thermal mixing problem
just discussed. Consider two ideal gases at equal temperatures and pressures sep-
arated by a partition that is then removed as shown below.

Figure 3.10   Mixing of two ideal gases at constant pressure and 
temperature.

For an ideal gas the Gibbs equation is

(3.67)

The entropy per unit mass is determined by integrating the Gibbs equation.

(3.68)

where  is a constant of integration. A fundamental question revolves around the
evaluation of the entropy constant, , for a given substance, . This is addressed
by the third law of thermodynamics discussed in section 3.14. 

For the two gases shown in the figure

. (3.69)
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where  refers to the molecular weights of the two distinctly different
gases. The entropy of the whole system is

(3.70)

Define the mass fractions

(3.71)

The overall entropy per unit mass before mixing is

(3.72)

Substitute (3.69)

(3.73)

After mixing each gas fills the whole volume V with the partial pressures given by

(3.74)

where

(3.75)

The entropy of the mixed system is

(3.76)

Therefore the entropy change of the system is

(3.77)
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The initially separated volumes were each in a state of local thermodynamic equi-
librium. When the partition is removed the gases mix and until the mixing is
complete the system is out of equilibrium. As expected the entropy increases. The
nice feature of this example is that at every instant of the non-equilibrium process
the pressure and temperature of the system are well defined. 

By the way it should be noted that as long as the gases in Figure 3.10 are dilute
and the enthalpy and internal energy depend only on temperature then the mixing
process depicted in Figure 3.10 occurs adiabatically without any change in
enthalpy or internal energy. If the gases are very dense so that intermolecular
forces contribute to the internal energy then the enthalpy and internal energy
depend on the pressure and the mixing process may release heat. In this case heat
must be removed through the wall to keep the gas at constant temperature. This
is called the heat of mixing. Throughout this course we will only deal with dilute
gases for which the heat of mixing is negligible.

Gibbs paradox

If the gases in Figure 3.10 are identical, then there is no diffusion and no entropy
change occurs when the partition is removed. But the full amount of entropy
change is produced as long as the gases are different in any way no matter how
slight. If we imagine a limiting process where the gas properties are made to
approach each other continuously the same finite amount of entropy is produced
at each stage until the limit of identical gases when it suddenly vanishes. This
unexpected result is called Gibbs paradox after J.W. Gibbs who first noticed it.

However the atomistic nature of matter precludes the sort of continuous limiting
process envisioned. As long as the two gases are different by any sort of experi-
mental measurement whatsoever the full entropy change (3.77) is produced. This
is true even if the two gases are chemically similar isotopes of the same element.
For example, the inter-diffusion of ortho and para forms of hydrogen which differ
only by the relative orientation of their nuclear and electronic spins would pro-
duce the same entropy increase. The entropy disappears only if the two molecules
are identical. 

A full understanding of this statement requires a combination of statistical ther-
modynamics and quantum mechanics. The founder of statistical mechanics is
generally regarded to be Ludwig Boltzmann (1844-1906) an Austrian physicist
who in 1877 established the relationship between entropy and the statistical model
of molecular motion. Boltzmann is buried in the Central Cemetery in Vienna and
on his grave marker is inscribed the equation 
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(3.78)

that is his most famous discovery. 

Boltzmann showed that the entropy is equal to a fundamental constant  times the
logarithm of  which is equal to the number of possible states of the thermody-
namic system with energy, . A state of the system is a particular set of  values
for the coordinates and velocities of each and every molecule in the system.

Boltzmann’s constant is essentially the universal gas constant per molecule.

(3.79)

where  is Avagadro’s number. For a monatomic ideal gas, statistical mechanics
gives

(3.80)

where  is the volume and  is the number of atoms in the system. When (3.80)
is substituted into (3.78) the result is

(3.81)

which is essentially the same expression that would be generated from Gibbs
equation. See Appendix 1 for more detail.

When a volume of gas molecules is analyzed using quantum mechanics the
energy of the system is recognized to be quantized and the statistical count of the
number of possible states of the system is quite different depending on whether
the individual molecules are the same or not. If the molecules are different the
number of possible states for a given energy is much larger and this is the basis
for the explanation of the Gibbs paradox.
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3.9 ISENTROPIC EXPANSION

3.9.1 BLOWDOWN OF A PRESSURE VESSEL

Consider the blowdown through a small hole of a calorically perfect gas from a
large adiabatic pressure vessel at initial pressure  and temperature  to the sur-

roundings at pressure  and temperature .

Figure 3.11   A spherical, thermally insulated pressure vessel 
exhausts to the surroundings through a small hole. 

(1) Determine the final temperature of the gas in the sphere.

Solution

Imagine a parcel of gas that remains inside the sphere during the expansion pro-
cess as shown below.

Pi T i

Pa T a

Pa Ta

TiPi P(t) T(t) Pa Tf

Pi >> Pa

initial state blowdown final state
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As long as the gas is not near the wall where viscosity might play a role, the expan-
sion of the gas parcel is nearly isentropic. The final temperature is

(3.82)

(2) Determine the entropy change per unit mass during the process for the gas
ejected.

Solution

The ejected gas mixes with the infinite surroundings and comes to a final temper-
ature and pressure,  and . The entropy change is

(3.83)
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TiPi Pa Tf

Pi >> Pa

initial state final state

T f
T i
------
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1–------------

=
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3.9.2 WORK DONE BY AN EXPANDING GAS

The gun tunnel is a system for studying the flow over a projectile at high speed in
rarefied conditions typical of very high altitude flight. High pressure gas is used
to accelerate the projectile down a gun barrel. The projectile exits into a large
chamber at near vacuum pressure. The figure below depicts the situation.

Figure 3.12   Projectile energized by an expanding gas

We wish to determine the kinetic energy of the projectile when it exits into the
vacuum chamber. The work done by the gas on the projectile is equal to the kinetic
energy of the projectile.

(3.84)

where the friction between the projectile and the gun barrel has been neglected as
well as any work done against the small pressure in the vacuum chamber.  

In order to solve this problem it is necessary to postulate a relationship between
the gas pressure in the gun barrel and the volume. The simplest approach is to
assume that the gas expands isentropically. In this case the pressure and density
of the gas behind the projectile are related by 

(3.85)
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where  is the mass of the gas expanding behind the projectile. The work inte-
gral (3.84) becomes

. (3.86)

Carry out the integration

(3.87)

or

(3.88)

The first term in brackets on the right side of (3.88) is the initial volume of gas

. (3.89)

Using (3.89) equation (3.88) takes the form

(3.90)

Replace  with  and recall that  and .
The kinetic energy of the projectile when it leaves the barrel is

(3.91)

Note that in the limit where the barrel of the gun is extremely long so that
 all of the gas thermal energy is converted to kinetic energy of the

projectile.
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3.9.3 EXAMPLE - HELIUM GAS GUN

Suppose the tunnel is designed to use Helium as the working gas. The gas is intro-
duced into the gun barrel and an electric arc discharge is used to heat the Helium
to very high pressure and temperature. Let the initial gas pressure and temperature

be  and . The initial length is ,

the final length is  and the barrel diameter is . The pro-

jectile mass is . Determine the exit velocity of the projectile. Compare the
exit velocity with the speed of sound in the gas at the beginning and end of the
expansion.

Solution

Helium is a monatomic gas with an atomic mass of . The mass of Helium
used to drive the projectile is determined from the ideal gas law

. (3.92)

or

(3.93)

The velocity of the projectile at the exit of the barrel is 

. (3.94)

where the relation  has been used. Note that the final projectile
speed is fairly small compared to the initial speed of sound in the gas,

. (3.95)

The temperature of the gas at the end of the expansion is determined using the
isentropic relations (3.56).
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. (3.96)

The corresponding speed of sound is

. (3.97)

The main assumption used to solve this problem is embodied in the use of (3.85)
to determine the pressure behind the projectile. This equation effectively neglects
the motion of the gas and assumes that the pressure, temperature and density are
uniform over the volume behind the projectile during the expansion. This is an
excellent assumption if the expansion is slow but not so good if the expansion is
fast. But fast compared to what? This is where the speed of sound calculation
comes in. If the projectile speed is small compared to the sound speed, , then the
gas speed over the length of the barrel must also be small compared to . In that
limit the pressure variation is also small and the uniform property assumption
works quite well. But notice that by the end of the expansion the speed of the pro-
jectile exceeds the speed of sound. A more accurate treatment of this problem
requires a full analysis of the unsteady gasdynamics of the flow. 

3.9.4 ENTROPY INCREASE DUE TO VISCOUS FRICTION

In the gas gun example viscous friction is an important generator of entropy. The
gas behind the projectile, away from the barrel wall is moving at very high speed
but the gas near the wall is subject to the no slip condition. In the small gap
between the projectile and the barrel the flow is similar to the Couette flow con-
sidered in the last chapter. Everywhere near the wall the flow is subject to very
high shear rates leading to high viscous stresses. 

So far we have seen how gradients in temperature and gas concentration lead to
an increase in the entropy. In Chapter 7 we will show that flow kinetic energy dis-
sipation due to viscous friction always leads to an increase in the entropy per unit
mass. An accurate calculation of viscous effects in the gun tunnel problem
requires a numerical analysis of the full viscous equations of motion and remains
today a difficult research problem. 
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One of the most difficult challenges in the development of new power and propul-
sion systems is the accurate prediction of entropy changes in the system. Literally
billions of dollars are spent by manufacturers in the pursuit of small reductions in
the entropy generated in compressors and turbines and small excesses can spell
the difference between success and failure of a new design.

3.10 SOME RESULTS FROM STATISTICAL MECHANICS

A discussion of this topic can be found in the Appendix. Here we shall state the
main results that will be used in our investigations of compressible flow. 

Classical statistical mechanics leads to a simple expression for  and in

terms of , the number of degrees of freedom of the appropriate molecular model.

(3.98)

For a mass point, , with three translational degrees of freedom and no internal
structure, . The law of equipartition of energy says that any term in the
expression for the energy of  the mass point that is quadratic in either the position
or velocity contributes  to the thermal energy of a large collection of
such mass points. Thus the thermal energy (internal energy) per molecule of a gas
composed of a large collection of mass points is

(3.99)

where  is Boltzmann’s constant,

 . (3.100)

Over one mole of gas,

(3.101)

where  is the universal gas constant and  is Avogadro’s number,

 . (3.102)

On a per unit mass of gas basis the internal energy is,

(3.103)
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This is a good model of monatomic gases such as Helium, Neon,Argon, etc. Over
a very wide range of temperatures,

(3.104)

from near condensation to ionization.

3.10.1 DIATOMIC GASES

At room temperature, diatomic molecules exhibit two additional rotational
degrees of freedom and

(3.105)

At very low temperatures,  can decrease below  because rotational
degrees of freedom can freeze out - a phenomenon that can only be understood
using quantum statistical mechanics. However, for  and  the theoretical

transition temperature is in the neighborhood of  degrees Kelvin, well below the
temperature at which both gases liquefy. For  the transition temperature is
about 90K. 

At high temperatures,  can increase above  because the atoms are not
rigidly bound but can vibrate. This brings into play two additional vibrational
degrees of freedom. At high temperatures the heat capacities approach

(3.106)

3.10.2 CHARACTERISTIC VIBRATIONAL TEMPERATURE

The determination of the temperature at which the specific heat changes from
 to  is also beyond classical statistical mechanics but can be

determined using quantum statistical mechanics. The specific heat of a diatomic
gas from room temperature up to high combustion temperatures is accurately pre-
dicted from theory to be

. (3.107)
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The characteristic vibrational temperatures for common diatomic gases are

. (3.108)

The increasing values of  with decreasing molecular weight reflect the increas-
ing bond strength as the interatomic distance decreases.

3.11 ENTHALPY - DIATOMIC GASES

The enthalpy of a diatomic gas is

(3.109)

This integrates to

(3.110)

The enthalpy is plotted below for .

Figure 3.13   Enthalpy versus temperature for a diatomic gas

3.12 SPEED OF SOUND

The speed of sound in a homogeneous medium is,
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(3.111)

For an ideal gas,

(3.112)

For a flow at velocity  the Mach number is

(3.113)

3.13 ATMOSPHERIC MODELS

In a stable atmosphere where the fluid velocity is zero, the pressure force on a
fluid element is balanced by the force of gravity.

(3.114)

where  is the gravitational potential. Near the Earth’s surface the variation of
gravitational acceleration with height is relatively small and so we can write

(3.115)

where  and  is the height above the ground. 

In an atmosphere where the entropy is constant the pressure and density at a given
height are related by

(3.116)

where  and  are the pressure and density at ground level. Use (3.116) to
replace the pressure in (3.115). The resulting equation can be integrated from the
ground to a height  and the result is
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(3.117)

In this model the atmospheric density decreases algebraically with height and

goes to zero (vacuum) when . 

An alternative model that is more accurate in the upper atmosphere is to assume
that the atmosphere is isothermal. In this case the pressure and density are related
by the ideal gas law  where the temperature is constant at the ground
value . In this case (3.115) integrates to

(3.118)

The length scale

(3.119)

is called the scale height of the atmosphere. Roughly speaking it is the height
where the gravitational potential energy of a fluid element is comparable to its
thermal energy. For Air at  the scale height is . 
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Figure 3.14   Density and temperature of the standard atmosphere.

How accurate are these models? A comparison is shown in Figure 3.14. Note that
the two models tend to bracket the actual behavior of the atmosphere. Below a
scale height of one, the atmosphere is approximately isentropic and the tempera-
ture falls off almost linearly. Above a scale height of about 1.5 the temperature is
almost constant.

3.14 THE THIRD LAW OF THERMODYNAMICS

The first law is a statement of conservation of energy and shows that heat and work
can be exchanged with one another. The second law restricts the possible occur-
rence of certain processes and can be utilized to predict the direction of a process.
Moreover, the second law shows that no engine can be built that converts all the
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input heat energy to an equal amount of useful work. The first and second laws
are well supported by a long history of agreement with experimental measure-
ments in a vast variety of applications. 

The third law of thermodynamics is still a source of leading edge research in the
thermodynamics of materials. It was first formulated by the German physicist
Walther Hermann Nernst in 1906 whose work won him the Nobel prize for Chem-
istry in 1920. One statement of the Nernst theorem is that the entropy of a system
at zero absolute temperature is a well-defined constant. Another statement is that
the entropy of a pure perfect crystalline solid at absolute zero is zero. 

The standard entropy of a gas at the standard pressure ( ) is determined
by integrating the Gibbs equation,

(3.120)

The heats of fusion and vaporization in (3.120) are at standard pressure. The third
law of thermodynamics requires that the heat capacity  as  at a rate
that is fast enough to insure convergence of the first integral in (3.120). Calori-

metric measurements show that  for nonmetals at very low temperatures.

For metals  is proportional to  at low temperatures but becomes propor-

tional to  at extremely low temperatures. At very low temperature the atomic
motion in a metallic crystal freezes out and the residual heat capacity comes from
the motion of the conduction electrons in the metal. 

Experimentally it does appear that the entropy at absolute zero approaches the
same constant value for all pure substances. The third law codifies this result and
sets  for all pure elements and compounds in their most stable, perfect
crystalline state at absolute zero. So for example the entropy of water vapor at

 and one atmosphere would be calculated from heat capacity data as
follows.
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(3.121)

This calculation assumes that the ice crystal is perfect. From a quantum mechan-
ical viewpoint a perfect crystal at zero temperature would exist in only one
(nonzero) energy state. The Boltzmann relation (3.78) would reduce to

 which is consistent with the Nernst theorem.

In a pure, perfect crystal there is no entropy of mixing but in a mixed crystal con-
taining atomic or molecular species A and B there are different ways A and B can
be arranged and so the entropy at absolute zero is not zero. 

The entropy at absolute zero is called the residual entropy. There can be a signif-
icant residual entropy in a variety of common substances where imperfections can
occur due to variations in the molecular orientation. Glasses (that are amorphous
materials) and alloys (that are mixtures of metals) also have residual entropy. The
determination of the residual entropy can be quite complex and is responsible for
deviations between calculated and experimental values of the entropy. 

Even in the case of a pure solid if the crystal is not perfect the entropy is nonzero.
For example, the CO molecule has a small dipole moment and so there is a finite
probability that, as it freezes, the molecules can align in the crystal as CO-OC-
CO instead of CO-CO-CO. A given crystal will contain a mixture of both types
of alignment and so it is not perfect and the entropy at  is not zero. 

All these matters are the subject of ongoing research. In virtually all applications
of thermodynamics to compressible flow the interesting result is based on changes
in entropy associated with some process such as the mixing problem described in
Section 3.8. Such changes are unaffected by possible errors in the entropy
constant.

3.15 PROBLEMS

Problem 1 - Use the Gibbs equation to determine each of the following for an
ideal gas.
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(3.122)

Problem 2 - In Section 2 it was stated that the internal energy and enthalpy of an
ideal gas depend only on temperature. Show that this is true. First show that for
an ideal gas the Gibbs equation can be written in the form

(3.123)

Work out the partial derivatives of the entropy, and show by the cross-derivative
test that .

Problem 3 - Use the Gibbs equation to show that for a general substance.

(3.124)

where  is the volume per unit mass.

Problem 4 -The temperature, entropy and pressure in a calorically perfect ideal
gas moving in an unsteady, three-dimensional flow are related by the function

. (3.125)

Take the gradient of (3.125) and show directly that the flow satisfies.

(3.126)

Problem 5 - Show that the internal energy of a van der Waals gas is of the form
.
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Problem 6 - A heavy piston is dropped from the top of a long, insulated, vertical
shaft containing air. The shaft above the piston is open to the atmosphere. Deter-
mine the equilibrium height of the piston when it comes to rest. Feel free to
introduce whatever data or assumptions you feel are required to solve the prob-
lem. Suppose you actually carried out this experiment. How do you think the
measured height of the piston would compare with your model?

Problem 7 - In problem 6 what would be the equilibrium height if the gas in the
shaft is Helium.

Problem 8 - Consider the nearly isentropic flow of an ideal gas across a low pres-
sure fan such as an aircraft propeller. Assume that the pressure change  is
small. Show that the corresponding density change is

(3.127)

where  and  are the undisturbed values ahead of the fan.

Problem 9 - Mars has an atmosphere that is about 96% Carbon Dioxide at a tem-
perature of about 200K. Determine the scale height of the atmosphere and
compare it with Earth. The pressure at the surface of Mars is only about 1000 Pas-
cals. Entry, descent and landing of spacecraft on Mars is considered to be in some
ways more difficult than on Earth. Why do you think this is?

Problem 10 - Suppose you are driving and a child in the back seat is holding a
Helium filled balloon. You brake for a stoplight. In surprise the child releases the
balloon. The x-momentum equation governing the motion of the air in the car can
be simplified to

. (3.128)

Use this result to show in which direction the balloon moves. What assumptions
are needed to reduce the momentum equation to (3.128)? Compare this problem
to the material developed in Section 2.13
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