

AA103 Air and Space Propulsion

Chapter 8 - Solid Propellant Rockets

1

10.1 Introduction

Section view of a typical solid propellant rocket

Figure 10.1 Solid rocket cross section

The are basically two types of propellant grains.

1) Homogeneous or double base propellants - Here fuel and oxidizer are contained within the same molecule. Typical examples are Nitroglycerine and Nitrocellulose

2) Composite propellants - heterogeneous mixtures of oxidizing crystals in an organic plasticlike fuel binder typically synthetic rubber.

Sometimes metal powders such as Aluminum are added to the propellant to increase the energy of the combustion process as well as fuel density. Typically these may be 12 to 22 % of propellant mass although in the space shuttle boosters Aluminum is the primary fuel.

Typical solid rocket motor design

3

Space shuttle solid rocket booster - note segmented design

Space shuttle solid rocket booster - exploded view

SRM field joint redesign after Challenger disaster

https://www.youtube.com/watch?v=01CfiyP0_7A

New SRM field joint

https://www.youtube.com/watch?v=01CfiyP0_7A

7

Environmental concerns over AP

There are Increasing concerns about groundwater contamination by perchlorates produced in the manufacture of solid rocket propellants. Even very low levels of contamination are correlated with reduced iodine intake in women.

Reference: CDC Report doi:10.1289/ehp.9466 October 5, 2006. Available at http://dx.doi.org/

PROPERTIES OF ROCKET PROPELLANTS								
Compound	Chemical Molecular Formula Weight		Density	Melting Point	Boiling Point			
Liquid Oxygen	0 ₂	32.00	1.14 g/ml	-218.8°C	-183.0°C			
Liquid Fluorine	F ₂	38.00	1.50 g/ml	-219.6°C	-188.1°C			
Nitrogen Tetroxide	N ₂ O ₄	92.01	1.45 g/ml	-9.3°C	21.15°C			
Nitric Acid	HNO ₃	63.01	1.55 g/ml	-41.6°C	83°C			
Hydrogen Peroxide	H ₂ O ₂	34.02	1.44 g/ml	-0.4°C	150.2°C			
Nitrous Oxide	N ₂ O	44.01	1.22 g/ml	-90.8°C	-88.5°C			
Chlorine Pentafluoride	CIF5	130.45	1.9 g/ml	-103°C	-13.1°C			
Ammonium Perchlorate	CIH ₄ NO ₄	117.49	1.95 g/ml	240°C	N/A			
Liquid Hydrogen	H ₂	2.016	0.071 g/ml	-259.3°C	-252.9ºC			
Liquid Methane	CH ₄	16.04	0.423 g/ml	-182.5°C	-161.6ºC			
Ethyl Alcohol	C ₂ H ₅ OH	46.07	0.789 g/ml	-114.1°C	78.2°C			
n-Dodecane (Kerosene)	C ₁₂ H ₂₆	170.34	0.749 g/ml	-9.6°C	216.3°C			
RP-1	C _n H _{1.953n}	≈175	0.820 g/ml	N/A	177-274°C			
Hydrazine	N ₂ H ₄	32.05	1.004 g/ml	1.4°C	113.5°C			
Methyl Hydrazine	CH ₃ NHNH ₂	46.07	0.866 g/ml	-52.4°C	87.5°C			
Dimethyl Hydrazine	(CH ₃) ₂ NNH ₂	60.10	0.791 g/ml	-58°C	63.9°C			
Aluminum	AI	26.98	2.70 g/ml	660.4°C	2467ºC			
Polybutadiene	(C ₄ H ₆) _n	≈3000	≈0.9 g/ml	N/A	N/A			

NOTES:

• Chemically, kerosene is a mixture of hydrocarbons; the chemical composition depends on its source, but it usually consists of about ten different hydrocarbons, each containing from 10 to 16 carbon atoms per molecule; the constituents include n-dodecane, alkyl benzenes, and naphthalene and its derivatives. Kerosene is usually represented by the single compound n-dodecane.

• RP-1 is a special type of kerosene covered by Military Specification MIL-R-25576. In Russia, similar specifications were developed under specifications T-1 and RG-1.

• Nitrogen tetroxide and nitric acid are hypergolic with hydrazine, MMH and UDMH. Oxygen is not hypergolic with any commonly used fuel.

Ammonium perchlorate decomposes, rather than melts, at a temperature of about 240 °C.

Propellant performance

Combustion chamber pressure, $P_c = 68$ atm (1000 PSI) Nozzle exit pressure, $P_e = 1$ atm								
Oxidizer	Fuel	Hypergolic	Mixture Ratio	Specific Impulse (s, sea level)	Density Impulse (kg-s/l, S.L.)			
Liquid Oxygen	Liquid Hydrogen	No	5.00	381	124			
	Liquid Methane	No	2.77	299	235			
	Ethanol + 25% water	No	1.29	269	264			
	Kerosene	No	2.29	289	294			
	Hydrazine	No	0.74	303	321			
	ММН	No	1.15	300	298			
	UDMH	No	1.38	297	286			
	50-50	No	1.06	300	300			
	Liquid Hydrogen	Yes	6.00	400	155			
Liquid Fluorine	Hydrazine	Yes	1.82	338	432			
FLOX-70	Kerosene	Yes	3.80	320	385			
	Kerosene	No	3.53	267	330			
	Hydrazine	Yes	1.08	286	342			
Nitrogen Tetroxide	ММН	Yes	1.73	280	325			
	UDMH	Yes	2.10	277	316			
	50-50	Yes	1.59	280	326			
	Kerosene	No	4.42	256	335			
	Hydrazine	Yes	1.28	276	341			
Red-Fuming Nitric Acid	ММН	Yes	2.13	269	328			
(14/0 1204)	UDMH	Yes	2.60	266	321			
	50-50	Yes	1.94	270	329			
Hydrogen Peroxide	Kerosene	No	7.84	258	324			
(85% concentration)	Hydrazine	Yes	2.15	269	328			
Nitrous Oxide	HTPB (solid)	No	6.48	248	290			
Chlorine Pentafluoride	Hydrazine	Yes	2.12	297	439			
Ammonium Perchlorate	Aluminum + HTPB (a)	No	2.12	266	469			
(solid)	Aluminum + PBAN (b)	No	2.33	267	472			

NOTES:

• Specific impulses are theoretical maximum assuming 100% efficiency; actual performance will be less.

• All mixture ratios are optimum for the operating pressures indicated, unless otherwise noted.

+ LO_2/LH_2 and LF_2/LH_2 mixture ratios are higher than optimum to improve density impulse.

• FLOX-70 is a mixture of 70% liquid fluorine and 30% liquid oxygen.

• Where kerosene is indicated, the calculations are based on n-dodecane.

• Solid propellant formulation (a): 68% AP + 18% Al + 14% HTPB.

• Solid propellant formulation (b): 70% AP + 16% Al + 12% PBAN + 2% epoxy curing agent.

Boeing – CSD Inertial Upper Stage

Diameter = 92-in Wp = 21,400-lb Diameter = 63-in Wp = 6,000-lb

Boeing inertial upper stage (IUS) with extensible vectored nozzle.

Nozzle area ratio can change from 49.3 to 181 increasing specific impulse by 14 seconds.

10.2 Combustion chamber pressure

Figure 10.2 Surface regression and gas generation

The gas generation rate integrated over the port surface area is

$$\dot{m}_g = \rho_p A_b \dot{r} \tag{10.1}$$

$$\begin{split} \rho_p &= \text{ solid propellant density} \\ A_b &= \text{ area of the burning surface} \\ \dot{r} &= \text{ surface regression speed} \\ \dot{m}_g &= \text{ rate of gas generation at the propellant surface} \end{split}$$

In general the regression rate of the propellant surface depends on chamber pressure and propellant temperature

 P_{t2} = combustion chamber pressure

K = impirical constant for a given propellant

 T_1 = impirical detonation temperature

n = *impirical exponent, approximately independent of temperature*

The exponent n is usually between 0.4 and 0.7 and the detonation temperature is substantially larger than the propellant temperature.

(10.4)

A very good comprehensive paper on solid propellants

Combustion of Solid Propellants

G. Lengellé, J. Duterque, J.F. Trubert

Research Scientists, Energetics Department Office national d'études et de recherches aérospatiales (ONERA) 29 avenue de la Division Leclerc BP 72 – 92322 Châtillon Cedex FRANCE

2.0 Energetics of the AP Combustion

The model of Ref. [19] is subscribed to in order to describe the combustion of AP alone. The AP undergoes a phase transition at 513 K, melts around 830 K and, in the thin (a few microns) superficial liquid layer thus created, an exothermic reaction, affecting 70 % of the AP, takes place and creates the final combustion gases, O_2 in particular. The remaining 30 % of the AP sublime into NH_3 and $HClO_4$ which react exothermically in a premixed flame very close to the surface (a few microns), Fig. 16.

Propellant regression rate versus chamber pressure for a variety of propellant types and propellant temperatures

5/10/21

$$\frac{dM_g}{dt} = \frac{d}{dt}(\rho_g V) = \rho_g \frac{dV}{dt} + V \frac{d\rho_g}{dt}$$
(10.5)

The combustion chamber volume changes as the propellant is converted from solid to gas.

$$\frac{dV}{dt} = \dot{r}A_b \tag{10.6}$$

To a good approximation the combustion chamber stagnation temperature is determined by the propellant energy density and tends to be approximately independent of the combustion chamber pressure. From the ideal gas law

$$\frac{d\rho_g}{dt} = \frac{1}{RT_{t2}} \frac{dP_{t2}}{dt}$$
(10.7)

The mass flow out of the nozzle is

$$\dot{m}_{n} = \left(\frac{\gamma+1}{2}\right)^{-\frac{(\gamma+1)}{2(\gamma-1)}} \frac{\gamma P_{t2}A^{*}}{\sqrt{\gamma RT_{t2}}}$$
(10.8)

Propellants	P _{chamber} bar	T _{chamber} K	C* M/Sec	$\begin{array}{c} C_e \Big _{A_e / A_t} = 100 \\ M / Sec \end{array}$	$\begin{array}{c} C_e \Big _{A_e / A_t \to \infty} \\ M / Sec \end{array}$
$H_2 + \frac{1}{2}O_2$	50	3626	2186	4541	5285
	100	3730	2203	4562	5287
$N_2H_4 + \frac{l}{2}N_2O_4$	50	3379	1818	3637	4030
	100	3451	1829	3643	4032
$(1.0)RP - 1 + (3.4)O_2$ by mass	50	3676	1733	3631	4467
	100	3787	1749	3654	4469
$(0.1)Al + (0.835)NH_4ClO_4$ + $(0.065)C_6H_6$ by mass	50	3434	1511	3160	3726
	100	3514	1520	3171	3728

The mass generated at the propellant surface is divided between the mass flow exiting the nozzle and the time dependent mass accumulation in the combustion chamber volume.

$$\dot{m}_g = \frac{dM_g}{dt} + \dot{m}_n \tag{10.9}$$

Substitute for the terms in (10.9).

$$\rho_{p}A_{b}\dot{r} = \rho_{g}\dot{r}A_{b} + V\frac{d\rho_{g}}{dt} + \left(\frac{\gamma+1}{2}\right)^{-\frac{(\gamma+1)}{2(\gamma-1)}}\frac{\gamma P_{t2}A^{*}}{\sqrt{\gamma RT_{t2}}}$$
(10.10)

Substitute the regression rate law (10.3) and the rate of change of density derived from the ideal gas law.

$$\frac{K(\rho_p - \rho_g)A_b}{T_1 - T_p}(P_{t2})^n = \frac{V}{RT_{t2}}\frac{dP_{t2}}{dt} + \left(\frac{\gamma + 1}{2}\right)^{-\frac{(\gamma + 1)}{2(\gamma - 1)}}\frac{\gamma P_{t2}A^*}{\sqrt{\gamma RT_{t2}}}$$
(10.11)

Rearrange (10.11)

$$\frac{V}{RT_{t2}}\frac{dP_{t2}}{dt} + \left(\frac{\gamma+1}{2}\right)^{-\frac{(\gamma+1)}{2(\gamma-1)}}\frac{\gamma P_{t2}A^{*}}{\sqrt{\gamma RT_{t2}}} - \frac{K(\rho_{p}-\rho_{g})A_{b}}{T_{1}-T_{p}}(P_{t2})^{n} = 0 \quad (10.12)$$

This first order ODE governs the unsteady filling and emptying of the rocket chamber volume.

After a rapid start-up transient the combustion chamber pressure reaches a quasisteady state where changes occur very slowly and to a good approximation

$$\left(\frac{\gamma+1}{2}\right)^{-\frac{(\gamma+1)}{2(\gamma-1)}} \frac{\gamma P_{t2} A^*}{\sqrt{\gamma R T_{t2}}} = \frac{K(\rho_p - \rho_g) A_b}{T_1 - T_p} (P_{t2})^n$$
(10.13)

Solve for the pressure.

$$P_{t2} = \left(\left(\frac{\gamma+1}{2}\right)^{\frac{(\gamma+1)}{2(\gamma-1)}} \frac{K(\rho_p - \rho_g)}{\gamma(T_1 - T_p)} \left(\frac{A_b}{A^*}\right) \sqrt{\gamma R T_{t2}} \right)^{\frac{1}{1-n}}$$
(10.14)

This formula is valid as long as the burning area is a slow function of time. Note that there is a tendency for the chamber pressure to increase as the burning area increases.

Propellant grain port design determines thrust-time behavior

Propellant grain design may vary along the port

This is a nonlinear first order ODE of the form.

$$\frac{dP_{t2}}{dt} + \left(\frac{1}{\tau}\right)P_{t2} - \beta(P_{t2})^n = 0$$
(10.16)

Where the characteristic time is

Note that this time is proportional to the time it would take for an acoustic wave to travel the length of the chamber multiplied by the internal nozzle area ratio.

The constant multiplying the nonlinear forcing term is

$$\beta = \left(\frac{K(\rho_p - \rho_g)A_b}{T_l - T_p} \left(\frac{RT_{t2}}{V}\right)\right)$$
(10.18)

10.3.1 Exact solution

The nonlinear first order ODE governing the chamber pressure can be solved exactly.

$$\frac{dP_{t2}}{dt} + \left(\frac{l}{\tau}\right)P_{t2} - \beta(P_{t2})^n = 0.$$
 (10.26)

The steady state solution is

$$P_{t2}\Big|_{steady \ state} = (\tau\beta)^{\frac{1}{1-n}}$$
(10.27)

Let

$$H = \frac{P_{t2}}{P_{t2}|_{steady \, state}} \qquad \eta = \frac{t - t_0}{\tau} \qquad (10.28)$$

The governing equation becomes

$$\frac{dH}{d\eta} = H^n - H \tag{10.29}$$

Which can be rearranged to read

$$\frac{dH}{H^n - H} = d\eta \tag{10.30}$$

Integrate

•

$$-(1-n)\eta = Log\left[\frac{1-H^{1-n}}{1-H_0^{1-n}}\right]$$
(10.31)

$$H_0$$
 is the initial value of $P_{t2}/P_{t2}|_{steady \ state}$

Solve for H

$$H = (1 - (1 - H_0^{l-n})e^{-(l-n)\eta})^{\frac{l}{(l-n)}}$$
(10.32)

Figure 10.3 Chamber pressure response of a solid rocket.

10.3.2 Chamber pressure history – circular port

Quasi-steady chamber pressure

$$P_{t2} = \left(\alpha\left(\frac{r}{r_i}\right)\right)^{\frac{1}{1-n}}$$

where

$$\alpha = \left(\frac{\gamma+1}{2}\right)^{\frac{(\gamma+1)}{2(\gamma-1)}} \frac{K(\rho_p - \rho_g)}{\gamma(T_1 - T_p)} \left(\frac{2\pi r_i L}{A^*}\right) \sqrt{\gamma R T_{t2}}$$

Regression rate law

$$\frac{dr}{dt} = \frac{K}{(T_1 - T_p)} \left(\alpha \left(\frac{r}{r_i}\right)\right)^{\frac{n}{1 - n}}$$
$$\frac{d(r/r_i)}{\frac{n}{(r/r_i)^{\frac{n}{1 - n}}}} = \left(\frac{K}{(T_1 - T_p)r_i}(\alpha)^{\frac{n}{1 - n}}\right) dt$$

Integrate

$$\frac{r}{r_i} = \left(1 + \left(\frac{1-2n}{1-n}\right) \left(\frac{K}{(T_1 - T_p)r_i}(\alpha)^{\frac{n}{1-n}}\right) t\right)^{\frac{1-n}{1-2n}} \qquad n \neq 0.5$$
$$\frac{r}{r_i} = Exp\left[\left(\frac{K}{(T_1 - T_p)r_i}(\alpha)^{\frac{n}{1-n}}\right) t\right] \qquad n = 0.5$$

5/10/21

Characteristic burn time

$$\tau_{burn} = \left(\frac{(T_1 - T_p)r_i}{\frac{n}{K(\alpha)^{1-n}}}\right)$$

Burnout time

$$t_{burnout} = \left(\left(\frac{r_f}{r_i}\right)^{\frac{1-2n}{1-n}} - 1 \right) \left(\frac{1-n}{1-2n}\right) \tau_{burn} \qquad n \neq 0.5$$
$$t_{burnout} = Log \left[\frac{r_f}{r_i}\right] \tau_{burn} \qquad n = 0.5$$

$$\frac{r}{r_i} = \left(1 + \left(\frac{1-2n}{1-n}\right) \left(\frac{K}{(T_1 - T_p)r_i}(\alpha)^{\frac{n}{1-n}}\right) t\right)^{\frac{1-n}{1-2n}} \qquad n \neq 0.5$$
$$\frac{r}{r_i} = Exp\left[\left(\frac{K}{(T_1 - T_p)r_i}(\alpha)^{\frac{n}{1-n}}\right) t\right] \qquad n = 0.5$$

Fully coupled chamber-pressure-port-radius history circular port

Define constant values of the characteristic time, the coefficient multiplying the nonlinear forcing term and a normalizing chamber pressure using the <u>initial radius</u> of the port.

$$\tau = \left(\frac{\gamma+1}{2}\right)^{\frac{\gamma+1}{2(\gamma-1)}} \frac{1}{\left(\gamma RT_{t2}\right)^{1/2}} \left(\frac{L_{port}\pi r_{initial}^{2}}{A^{*}}\right)$$

$$\beta = \frac{K(\rho_p - \rho_{gi})RT_{t2}}{T_1 - T_p} \left(\frac{L_{port} 2\pi r_{initial}}{L_{port} \pi r_{initial}}\right) = \frac{2K(\rho_p - \rho_{gi})RT_{t2}}{T_1 - T_p} \left(\frac{1}{r_{initial}}\right)$$

$$P_{t2quasi-steady\ state_{initial}} = (\tau\beta)^{\frac{1}{1-n}}$$

Note:
$$P_{t2} = \rho_g RT_{t2}$$
 and $P_{t2_{quasi-steady \ state_{initial}}} = \rho_{g_i} RT_{t2}$

$$A_{bi} = 2L_{port}\pi r_i$$
 and $V_i = L_{port}\pi r_i^2$

Dimensionless chamber pressure equation

$$\frac{dP_{t2}}{dt} + \frac{P_{t2}}{\tau \left(\frac{r}{r_{initial}}\right)^2} - \frac{\beta P_{t2}^{\ n}}{\left(\frac{r}{r_{initial}}\right)} \left(\frac{\rho_p - \rho_g}{\rho_p - \rho_{g_i}}\right) = \frac{dP_{t2}}{dt} + \frac{P_{t2}}{\tau \left(\frac{r}{r_{initial}}\right)^2} - \frac{\beta P_{t2}^{\ n}}{\left(\frac{r}{r_{p_g}} - \frac{\rho_g}{\rho_{g_i}}\right)} = 0$$

$$H = \frac{P_{t2}}{P_{t2_{quasi-steady state_{initial}}}} \qquad R = \frac{r}{r_{initial}} \qquad \eta = \frac{t}{\tau}$$

$$\frac{\rho_g}{\rho_{g_i}} = \frac{P_{t2}}{P_{t2_{quasi-steady state_{initial}}}} = H$$

$$\tau\beta = \left(P_{t\,2_{quasi-steady\ state_{initial}}}\right)^{1-n}$$

$$\frac{dH}{d\eta} + \frac{H}{R^2} - \frac{H^n}{R} \left(\frac{\frac{\rho_p}{\rho_{g_i}} - H}{\frac{\rho_p}{\rho_{g_i}} - 1} \right) = 0$$

Dimensionless port radius equation

$$\frac{dr}{dt} = \frac{K}{T_1 - T_p} P_{t2}^n$$

$$\frac{dR}{d\eta} = \frac{K}{T_1 - T_p} \left(\frac{\tau}{r_{initial}}\right) \left(P_{t^2 quasi-steady \ state_{initial}}\right)^n H^n$$

$$\tau \Big(P_{t_{2_{quasi-steady state_{initial}}}} \Big)^n = \frac{P_{t_{2_{quasi-steady state_{initial}}}}{\beta}$$

$$\frac{dR}{d\eta} = \left(\frac{P_{t_{2_{quasi-steady \ state_{initial}}}}{r_{initial}}\right) \frac{K}{T_{1} - T_{p}} \left(\frac{1}{\beta}\right) H^{n} = \left(\frac{P_{t_{2_{quasi-steady \ state_{initial}}}}{r_{initial}}\right) \frac{K}{T_{1} - T_{p}} \frac{\left(T_{1} - T_{p}\right) r_{initial}}{2K(\rho_{p} - \rho_{gi})RT_{t2}} H^{n}$$

$$\frac{dR}{d\eta} = \left(\frac{P_{t2}}{2\left(\frac{\rho_p}{\rho_{g_i}} - 1\right)\left(\frac{\rho_{gi}}{\rho_g}\right)\rho_g RT_{t2}}\right) \left(\frac{P_{t2quasi-steady \ state_{initial}}}{P_{t2}}\right) H^n = \left(\frac{P_{t2}}{2\left(\frac{\rho_p}{\rho_{g_i}} - 1\right)\left(\frac{P_{t2quasi-steady \ state_{initial}}}{P_{t2}}\right)\rho_g RT_{t2}}\right) \left(\frac{P_{t2quasi-steady \ state_{initial}}}{P_{t2}}\right) H^n$$

$$Note: P_{t2} = \rho_g RT_{t2} \text{ and } P_{t2quasi-steady \ state_{initial}} = \rho_{g_i} RT_{t2}$$

$$\frac{dR}{d\eta} = \frac{H^n}{2\left(\frac{\rho_p}{\rho_{g_i}} - 1\right)}$$

Coupled system

 $\frac{dR}{d\eta} = \frac{H^n}{2\left(\frac{\rho_p}{\rho_{g_i}} - 1\right)}$

$$\frac{dH}{d\eta} + \frac{H}{R^2} - \frac{H^n}{R} \left(\frac{\frac{\rho_p}{\rho_{g_i}} - H}{\frac{\rho_p}{\rho_{g_i}} - 1} \right) = 0$$

R(0) = 1

H(0) = Choose some initial value

Note:
$$P_{t2quasi-steady \ state_{initial}} = (\tau\beta)^{\frac{1}{1-n}}$$
 and $\rho_{g_i} = \frac{P_{t2quasi-steady \ state_{initial}}}{RT_{t2}}$

Adiabatic expansion after burnout

$$\begin{aligned} \frac{1}{2} \left(\frac{P}{P_{0}}\right) &= -\frac{\gamma A^{*} \left(\gamma RT_{0}\right)^{1/2}}{\left(\frac{\gamma+1}{2}\right)^{\frac{(\gamma+1)}{2(\gamma-1)}}} \left(\frac{P}{P_{0}}\right)^{\left(\frac{3\gamma-1}{2\gamma}\right)} \frac{1}{V_{f}} \frac{V_{i}}{V_{f}} - \frac{\gamma A^{*} \left(\gamma RT_{0}\right)^{1/2}}{\left(\frac{\gamma+1}{2}\right)^{\frac{(\gamma+1)}{2(\gamma-1)}} V_{i}} \left(\frac{P}{P_{0}}\right)^{\left(\frac{3\gamma-1}{2\gamma}\right)} \frac{V_{i}}{V_{f}} \\ \frac{1}{V_{f}} \left(\frac{P}{P_{0}}\right) &= -\frac{\gamma}{\tau} \left(\frac{P}{P_{0}}\right)^{\left(\frac{3\gamma-1}{2\gamma}\right)} \frac{1}{R_{final}^{2}} \\ \frac{1}{R_{f}} \left(\frac{P}{P_{0}}\right) &= -\gamma \left(\frac{P}{P_{0}}\right)^{\left(\frac{3\gamma-1}{2\gamma}\right)} \frac{1}{R_{final}^{2}} \\ \frac{1}{R_{final}^{2\gamma-1}} = -\gamma d\eta \frac{1}{R_{final}^{2\gamma}} \\ \frac{1}{\left(\frac{3\gamma-1}{2\gamma}\right)+1} H^{-\left(\frac{3\gamma-1}{2\gamma}\right)+1} \right|_{H_{0}}^{H} &= -\gamma (\eta - \eta_{0}) \frac{1}{R_{final}^{2}} \\ \frac{1}{\left(\frac{\gamma-1}{2\gamma}\right)} \frac{1}{H_{(\frac{\gamma-1}{2\gamma})}^{2\gamma-1}} + \frac{1}{\left(\frac{\gamma-1}{2\gamma}\right)} \frac{1}{H_{0}^{\left(\frac{\gamma-1}{2\gamma}\right)}} = \gamma (\eta - \eta_{0}) \frac{1}{R_{final}^{2}} \end{aligned}$$

5/10/21

Include the final expansion after all propellant is expended

Assume that after all the propellant is consumed the final expansion to the vacuum of space is <u>isentropic</u>. In the equations the unit step function is used to turn off the isothermal term and turn on an isentropic term. The chamber stagnation temperature is constant until the propellant is expended and the isentropic expansion begins.

$$\frac{dR}{d\eta} = \left(1 - u_{step}\left(R - \frac{r_{final}}{r_{initial}}\right)\right) \frac{H^n}{2\left(\frac{\rho_p}{\rho_{g_i}} - 1\right)}$$

$$\frac{dH}{d\eta} + \left(1 - u_{step}\left(R - \frac{r_{final}}{r_{initial}}\right)\right) \frac{H}{R^2} + u_{step}\left(R - \frac{r_{final}}{r_{initial}}\right) \frac{H^{\frac{3\gamma-1}{2\gamma}}}{R_{final}^2} - \left(1 - u_{step}\left(R - \frac{r_{final}}{r_{initial}}\right)\right) \frac{H^n}{R} \left(\frac{\frac{\rho_p}{\rho_{g_i}}}{\frac{\rho_p}{\rho_{g_i}}}\right) = 0$$

where
$$u_{step}(x) = 0$$
 if $x < 0$ and $u_{step}(x) = 1$ if $x \ge 0$

R(0) = 1

H(0) = Choose some initial value

Choose $r_{final} / r_{initial}$

Note:
$$P_{t2quasi-steady \ state_{initial}} = (\tau\beta)^{\frac{1}{1-n}}$$
 and $\rho_{g_i} = \frac{P_{t2quasi-steady \ state_{initial}}}{RT_{t2}}$

Example n=0.35, <u>Isentropic</u> final expansion

R(0) = 1

H(0) = 0.5

n = 0.35

$$\frac{\rho_p}{\rho_{gi}} = 196.66$$

 $\frac{r_{final}}{r_{initial}} = 2$

Note that for an isentropic expansion $\frac{T_{t2}}{T_{t2i}} = \left(\frac{P_{t2}}{P_{t2_{endofburn}}}\right)^{\frac{\gamma-1}{\gamma}} = \left(\frac{P_{t2}}{P_{t2i}}\right)^{\frac{\gamma-1}{\gamma}} \left(\frac{P_{t2i}}{P_{t2_{endofburn}}}\right)^{\frac{\gamma-1}{\gamma}} = \left(\frac{H}{H_{endofburn}}\right)^{\frac{\gamma-1}{\gamma}}$ where $T_{t2i} = 2500$

Shuttle SRB performance using RPA/CEA - Jonah Zimmermann

Pc = 622 psia (average, max = 910) - I ran it at the average pressure Ae/At = 7.22 delivered lsp at altitude = 268.2 s

Propellant (from wikipedia, confirmed on a nasa site): 69.6% AP 16% Al 0.4% Fe2O3 12.04% PBAN 1.96% curative

I ran it with just 70% AP, 14% PBAN, and 16% AI

Shuttle SRB performance using RPA

Parameter	Sea level	Optimum expansion	Vacuum	Unit
Characteristic veloc	ity	1630.16		m/s
Specific impulse	2462.96	2501.88	2760.25	m/s
Specific impulse	251.15	255.12	281.47	s
Thrust coefficient	1.5109	1.5347	1.6932	
		(0 (5 2 2 2 2 2)		
Estimated delivered	d performanc	e (O/F=2.333)		
Estimated delivered Reaction efficiency:	d performand	e (O/F=2.333)		
E stimated delivered Reaction efficiency:	d performand 0.9750	e (O/F=2.333)		
Estimated delivered Reaction efficiency: Nozzle efficiency:	d performand 0.9750 0.9021	e (O/F=2.333)		
Estimated delivered Reaction efficiency: Nozzle efficiency:	d performanc 0.9750 0.9021	e (O/F=2.333)		
Estimated delivered Reaction efficiency: Nozzle efficiency: Overall efficiency:	d performand 0.9750 0.9021 0.8796	e (O/F=2.333)		
Estimated delivered Reaction efficiency: Nozzle efficiency: Dverall efficiency: Parameter	d performand 0.9750 0.9021 0.8796 Sea level	e (O/F=2.333) Optimum expansion	Vacuum	Unit
Estimated delivered Reaction efficiency: Nozzle efficiency: Overall efficiency: Parameter Characteristic veloc	d performance 0.9750 0.9021 0.8796 Sea level	e (O/F=2.333) Optimum expansion 1589.39	Vacuum	Unit m/s
Estimated delivered Reaction efficiency: Nozzle efficiency: Overall efficiency: Parameter Characteristic veloc Specific impulse	d performano 0.9750 0.9021 0.8796 Sea level ity 2166.32	e (O/F=2.333) Optimum expansion 1589.39 2200.55	Vacuum 2427.81	Unit m/s m/s
Estimated delivered Reaction efficiency: Nozzle efficiency: Overall efficiency: Parameter Characteristic veloc Specific impulse Specific impulse	d performano 0.9750 0.9021 0.8796 Sea level ity 2166.32 220.90	ce (O/F=2.333) Optimum expansion 1589.39 2200.55 224.39	Vacuum 2427.81 247.57	Unit m/s m/s

Ambient condition for optimum expansion: H=1.17 km, p=0.869 atm

Shuttle SRB performance using CEA - mole fractions

CHAMBER THROAT EXIT Pinf/P 1.0000 1.7337 42.665 P, BAR 42.885 24.737 1.0052 T, K 3395.44 3205.78 2288.17 RHO, KG/CU M 4.2328 0 2.6074 0 1.5206-1 H, KJ/KG -1722.34 -2261.96 -4766.22 U, KJ/KG -2735.50 -3210.67 -5427.27 G, KJ/KG -34606.4 -33309.2 -26926.6 S, KJ/(KG)(K) 9.6848 9.6848 M (KG) C 00 000 00 00 00 00	ALOHCL2 0.00075 0.00052 0.00003 AL(OH)2 0.00021 0.00010 0.00000 AL(OH)2CL 0.00028 0.00018 0.00001 AL(OH)3 0.00009 0.00005 0.00000 AL2O 0.00005 0.00002 0.00000 AL2O2 0.00002 0.00001 0.00000 *CO 0.23587 0.23695 0.23739 ◀ *CO2 0.01459 0.01482 0.01910 *CI 0.01175 0.00993 0.00182
M, (1/n) 27.865 28.096 28.780 MW, MOL WT 25.900 26.033 26.519 (dLV/dLP)t -1.01880 -1.01438 -1.00190 (dLV/dLT)p 1.3370 1.2682 1.0459 Cp, KJ/(KG)(K) 3.8953 3.5170 2.1225 GAMMAs 1.1340 1.1376 1.1723 SON VEL,M/SEC 1071.9 1038.9 880.3 MACH NUMBER 0.000 1.000 2.803	CLO 0.00001 0.00000 0.00000 CL2 0.00002 0.00001 0.00000 *H 0.03501 0.02873 0.00469 HALO2 0.00002 0.00001 0.00000 HCN 0.00001 0.00000 0.00000 HCL 0.13365 0.13947 0.15603
PERFORMANCE PARAMETERS	HOCL 0.00001 0.00000 0.00000 *H2 0.26340 0.26960 0.28931
Ae/At 1.0000 7.2200 CSTAR, M/SEC 1583.2 1583.2 CF 0.6562 1.5584 Ivac, M/SEC 1952.1 2735.3 Isp, M/SEC 1038.9 2467.3	H2O 0.13231 0.13153 0.12949 *N 0.00001 0.00000 0.00000 *NH 0.00001 0.00000 0.00000 NH2 0.00001 0.00000 0.00000 NH3 0.00001 0.00001 0.00000 *NO 0.00055 0.00034 0.00001
MOLE FRACTIONS	*N2 0.08087 0.08140 0.08310 *O 0.00059 0.00034 0.00000
*AL 0.00010 0.00005 0.00000 ALCL 0.00475 0.00302 0.00004 ALCL2 0.00038 0.00023 0.00000 ALCL3 0.00013 0.00010 0.00001 ALH 0.00002 0.00001 0.00000 ALHCL 0.00002 0.00001 0.00000 ALHCL2 0.00003 0.00002 0.00000	*OH 0.00818 0.00582 0.00037 *O2 0.00012 0.00007 0.00000 AL2O3(a) 0.00000 0.00000 0.07856 ◀ AL2O3(L) 0.07051 0.07340 0.00000 ◀

*ALO

ALOCL

ALOH

ALOHCL

0.00020 0.00008 0.00000

0.00044 0.00026 0.00000

0.00063 0.00034 0.00000

0.00436 0.00253 0.00002

Shuttle SRB performance using RPA - mass fractions

Table 2. Mass fractions of the combustion products

HCO

	#	Species	Injector	Nozzle inl	Nozzle thr	Nozzle exi					
	#	AL 0.0	001092 0.0	0001092 0.0	0000333 0.0	000000	HCOOH	H 0.0000010	0.0000010	0.0000004	0.0000000
		AL(OH)2	0.0004926	0.0004926	0.0001738	0.000008	HNC	0.0000015	0.0000015	0.000006	0.0000000
		AL(OH)2CL	0.0010	543 0.0010	543 0.0005	407 0.0000202	HNCO	0.0000014	0.0000014	0.0000007	0.0000000
		AL(OH)3	0.0002802	0.0002802	0.0001306	0.0000039	HNO	0.0000012	0.0000012	0.0000004	0.0000000
		AL+	0.0000037	0.0000037	0.0000013	0.0000000	HO2	0.0000011	0.0000011	0.0000003	0.0000000
		AL20	0.0001272	0.0001272	0.0000278	0.0000000	HOCL	0.0000132	0.0000132	0.0000061	0.0000000
		AL2O3(L)	0.2775806	0.2775806	0.2904540	0.0000000	N 0	0000030 0.0	000030 0.0	000010 0.0	000000
		AL2O3(a)	0.0000000	0.0000000	0.0000000	0.3021025	N2 0	0874711 0.0	874711 0.0	1876281 0.0	877818
		ALCL	0.0114423	0.0114423	0.0058831	0.0000881	NCO	0000000	0.0000002	0.0000000	0,0000000
		ALCL2	0.0014497	0.0014497	0.0006990	0.0000094	NUC	0.0000002	0.0000002	0.0000000	0.0000000
		ALCL3	0.0006774	0.0006774	0.0004638	0.0000441		0.0000031	0.0000031	0.0000011	0.0000000
		ALH	0.0000270	0.0000270	0.0000073	0.0000000	NH2	0.0000036	0.0000036	0.0000014	0.0000000
	1	ALH2	0.0000002	0.0000002	0.0000000	0.0000000	NH3	0.000063	0.0000063	0.000036	0.0000004
Solid/liquid particles		ALH2CL	0.0000018	0.0000018	0.0000005	0.0000000	NO	0.0006341	0.0006341	0.0003212	0.0000094
		ALHOL 2	0.0000432	0.0000432	0.0000128	0.0000000	O 0	.0003666 0.0	003666 0.0	001649 0.0	000020
in the motor lead to:		ALN	0.0000002	0.0000002	0.0000000	0.0000000	O2 0	.0001424 0.0	001424 0.0	000625 0.0	000007
		ALO	0.0003271	0.0003271	0.0000965	0.0000000	OH	0.0053758	0.0053758	0.0032666	0.0002222
		ALO2	0.0000072	0.0000072	0.0000013	0.0000000					
1) reduced nozzle		ALOCL	0.0013381	0.0013381	0.0006335	0.0000074					
		ALOCL2	0.0000109	0.0000109	0.0000037	0.000000					
efficiency - two		ALOH	0.0074020	0.0074020	0.0033556	0.0000339					
nhana langan		ALOHCL	0.0019387	0.0019387	0.0008005	0.0000064					
phase losses.		ALOHUL2	0.0033213	0.0033213	0.0019896	0.0001250					
			000047 0.0	000047 0.0	000016 0.0	0023163					
		CL2	0.0000576	0.0000576	0.0000349	0.0000024					
2) Improved motor		CLO	0.0000136	0.0000136	0.0000052	0.0000000					
otobility through		CN	0.0000001	0.0000001	0.0000000	0.0000000					
stability through		CO	0.2550643	0.2550643	0.2547988	0.2505962 ┥					
absorption of high		CO2	0.0247990	0.0247990	0.0252484	0.0318767					
absorption of high		COCL	0.0000040	0.0000040	0.0000016	0.0000000					
frequency noise.			0.0000032	0.0000032	0.0000013	0.0000000					
, ,]	H2 0.0	204997 0.0	013024 0.0	0210040 0.0	0220031		_			
		H2O	0.0920388	0.0920388	0.0907104	0.0879142					
		H2O2	0.0000004	0.0000004	0.0000000	0.0000000					
		HALO	0.0000060	0.0000060	0.0000015	0.0000000					
		HALO2	0.0000373	0.0000373	0.0000124	0.0000000					
	F	ICHO, formalde	ehy 0.0000	014 0.0000	014 0.0000	007 0.0000000					
		HCL	0.1881485	0.1881485	0.1978594	0.2146591					
		HCN	0.0000064	0.0000064	0.0000031	0.0000002					

0.0000227 0.0000227 0.0000100 0.0000002