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10.1 Introduction
Section view of a typical solid propellant rocket
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Typical solid rocket motor design
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Space shuttle solid rocket booster - note segmented design
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Space shuttle solid rocket booster - exploded view



65/10/21

SRM field joint redesign after Challenger disaster

https://www.youtube.com/watch?v=01CfiyP0_7A
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New SRM field joint

https://www.youtube.com/watch?v=01CfiyP0_7A
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There are Increasing concerns about groundwater 
contamination by perchlorates produced in the 

manufacture of solid rocket propellants. Even very low 
levels of contamination are correlated with reduced iodine 

intake in women.

Reference: CDC Report doi:10.1289/ehp.9466 October 
5, 2006. Available at http://dx.doi.org/

Environmental concerns over AP
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Space shuttle solid rocket booster - thrust vs time

Propellant
Ammonium Perchlorate - 69.8%
Aluminum - 16%
PBAN binder - 12%
Epoxy curing agent - 2%
Iron oxide catalyst - 0.2%

Ammonium perchlorate
NH4ClO4

PBAN
Polybutadiene acrylonitrile

Specific impulse
Sea level 242 sec
Vacuum 268 sec
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Propellant densities
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Propellant performance
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Boeing – CSD Inertial Upper Stage
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Boeing inertial upper stage (IUS) with extensible vectored nozzle.
Nozzle area ratio can change from 49.3 to 181 increasing specific impulse by 14 seconds.
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10.2 Combustion chamber pressure

(10.1)

The gas generation rate integrated over the port surface area is

(10.2)
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In general the regression rate of the propellant surface depends 
on chamber pressure and propellant temperature

(10.3)

(10.4)

The exponent n is usually between 0.4 and 0.7 and the detonation 
temperature is substantially larger than the propellant temperature. 

Propellant 
temperature



165/10/21

A very good comprehensive paper on solid propellants
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Propellant regression rate versus chamber pressure for a 
variety of propellant types and propellant temperatures
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Propellant regression rate versus chamber pressure effect of AP particle size
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(10.5)

(10.6)

The combustion chamber volume changes as the propellant is converted 
from solid to gas.
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To a good approximation the combustion chamber stagnation temperature is 
determined by the propellant energy density and tends to be approximately 
independent of the combustion chamber pressure.  From the ideal gas law

The mass flow out of the nozzle is

(10.7)

(10.8)
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The mass generated at the propellant surface is divided between the mass flow exiting the 
nozzle and the time dependent mass accumulation in the combustion chamber volume.

(10.9)

Substitute for the terms in (10.9).

(10.10)
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Substitute the regression rate law (10.3) and the rate of change of density derived from 
the ideal gas law.

(10.11)

Rearrange (10.11)

(10.12)

This first order ODE governs the unsteady filling and emptying of the rocket chamber volume.
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After a rapid start-up transient the combustion chamber pressure reaches a  quasi-
steady state where changes occur very slowly and to a good approximation

(10.13)

Solve for the pressure.

(10.14)

This formula is valid as long as the burning area is a slow function of time. Note that there 
is a tendency for the chamber pressure to increase as the burning area increases.
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Propellant grain port design determines thrust-time behavior 
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Propellant grain design may vary along the port 
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This is a nonlinear first order ODE of the form. 

(10.15)

Rearrange (10.12)

10.3 Dynamic analysis

(10.16)
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Where the characteristic time is 

Note that this time is proportional to the time it would take for an acoustic wave 
to travel the length of the chamber multiplied by the internal nozzle area ratio.  

(10.17)
This is the 
characteristic time 
for filling or 
emptying a volume 
containing a gas. 

The constant multiplying the nonlinear forcing term is 

(10.18)
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10.3.1 Exact solution

The nonlinear first order ODE governing the chamber pressure can be solved exactly. 

(10.26)

The steady state solution is 

(10.27)
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Let

The governing equation becomes

Which can be rearranged to read

(10.28)

(10.29)

(10.30)
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Integrate

Solve for H

(10.31)

(10.32)
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10.3.2 Chamber pressure history – circular port

Quasi-steady chamber pressure

where
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Regression rate law

Integrate
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Characteristic burn time

Burnout time
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r
ri

t /τ burn

n = 0.8

n = 0.6

n = 0.5
n = 0.4

n = 0.8
r
ri
= 1

1− 3 t
τ

⎛
⎝⎜

⎞
⎠⎟
1/3



5/10/21 37

Define constant values of the characteristic time, the coefficient multiplying the nonlinear 
forcing term and a normalizing chamber pressure using the initial radius of the port.   

τ = γ +1
2

⎛
⎝⎜

⎞
⎠⎟

γ +1
2 γ −1( ) 1

γ RTt2( )1/2
Lportπrinitial

2

A*
⎛

⎝⎜
⎞

⎠⎟

β =
K ρ p − ρgi( )RTt2

T1 −Tp

Lport 2πrinitial
Lportπrinitial

2

⎛

⎝⎜
⎞

⎠⎟
=
2K ρ p − ρgi( )RTt2

T1 −Tp

1
rinitial

⎛
⎝⎜

⎞
⎠⎟

Fully coupled chamber-pressure-port-radius history circular port

Pt2quasi-steady  stateinitial
= τβ( )

1
1−n

Note :    Pt2 = ρgRTt2  and   Pt2quasi−steady  stateinitial
= ρgi

RTt2

Abi = 2Lportπri    and   Vi = Lportπri
2
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dPt2
dt

+ Pt2

τ r
rinitial

⎛
⎝⎜

⎞
⎠⎟

2 −
βPt2

n

r
rinitial

⎛
⎝⎜

⎞
⎠⎟

ρ p − ρg

ρ p − ρgi

⎛

⎝⎜
⎞

⎠⎟
= dPt2

dt
+ Pt2

τ r
rinitial

⎛
⎝⎜

⎞
⎠⎟

2 −
βPt2

n

r
rinitial

⎛
⎝⎜

⎞
⎠⎟

ρ p

ρgi

−
ρg

ρgi

ρ p

ρgi

−1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= 0

H = Pt2
Pt2quasi-steady  stateinitial

        R = r
rinitial

       η = t
τ

ρg

ρgi

= Pt2
Pt2quasi-steady  stateinitial

= H

τβ = Pt2quasi-steady  stateinitial
( )1−n

dH
dη

+ H
R2 −

H n

R

ρ p

ρgi

− H

ρ p

ρgi

−1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= 0

Dimensionless chamber pressure equation



5/10/21 39

dr
dt

= K
T1 −Tp

Pt2
n

dR
dη

= K
T1 −Tp

τ
rinitial

⎛
⎝⎜

⎞
⎠⎟
Pt2quasi−steady  stateinitial
( )n H n

τ Pt2quasi−steady  stateinitial
( )n = Pt2quasi−steady  stateinitial

β

dR
dη

=
Pt2quasi−steady  stateinitial

rinitial

⎛
⎝⎜

⎞
⎠⎟

K
T1 −Tp

1
β

⎛
⎝⎜

⎞
⎠⎟
H n =

Pt2quasi−steady  stateinitial

rinitial

⎛
⎝⎜

⎞
⎠⎟

K
T1 −Tp

T1 −Tp( )rinitial
2K ρ p − ρgi( )RTt2 H

n

dR
dη

= Pt2

2
ρ p

ρgi

−1
⎛

⎝⎜
⎞

⎠⎟
ρgi

ρg

⎛

⎝⎜
⎞

⎠⎟
ρgRTt2

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

Pt2quasi−steady  stateinitial

Pt2

⎛
⎝⎜

⎞
⎠⎟
H n = Pt2

2
ρ p

ρgi

−1
⎛

⎝⎜
⎞

⎠⎟
Pt2quasi−steady  stateinitial

Pt2

⎛
⎝⎜

⎞
⎠⎟
ρgRTt2

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

Pt2quasi−steady  stateinitial

Pt2

⎛
⎝⎜

⎞
⎠⎟
H n

Note :    Pt2 = ρgRTt2  and   Pt2quasi−steady  stateinitial
= ρgi

RTt2

dR
dη

== H n

2
ρ p

ρgi

−1
⎛

⎝⎜
⎞

⎠⎟

Dimensionless port radius equation
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Coupled system

dR
dη

= H n

2
ρ p

ρgi

−1
⎛

⎝⎜
⎞

⎠⎟

dH
dη

+ H
R2 −

H n

R

ρ p

ρgi

− H

ρ p

ρgi

−1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= 0

R 0( ) = 1

H 0( ) = Choose some initial  value

Note :  Pt2quasi-steady  stateinitial
= τβ( )

1
1−n  and  ρgi

=
Pt2quasi−steady  stateinitial

RTt2
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H = Pt2
Pt2quasi-steady  stateinitial

        R = r
rinitial

       η = t
τ

Adiabatic expansion after burnout

m =
Vf

R
P
T

m0 =
Vf

R
P0
T0

m
m0

= P
P0

⎛
⎝⎜

⎞
⎠⎟

1
γ

dm
dt

= − γ A*

γ +1
2

⎛
⎝⎜

⎞
⎠⎟

γ +1( )
2 γ −1( )

γ R( )1/2
P
T 1/2 = − γ P0A

*

γ +1
2

⎛
⎝⎜

⎞
⎠⎟

γ +1( )
2 γ −1( )

γ RT0( )1/2
P
P0

⎛
⎝⎜

⎞
⎠⎟

1− γ −1
2γ

⎛
⎝⎜

⎞
⎠⎟

dm
dt

= − γ P0A
*

γ +1
2

⎛
⎝⎜

⎞
⎠⎟

γ +1( )
2 γ −1( )

γ RT0( )1/2
P
P0

⎛
⎝⎜

⎞
⎠⎟

γ +1
2γ

⎛
⎝⎜

⎞
⎠⎟

d
dt

P
P0

⎛
⎝⎜

⎞
⎠⎟

1
γ
= − γ P0A

*

γ +1
2

⎛
⎝⎜

⎞
⎠⎟

γ +1( )
2 γ −1( )

γ RT0( )1/2 Vf

R
P0
T0

⎛
⎝⎜

⎞
⎠⎟

P
P0

⎛
⎝⎜

⎞
⎠⎟

γ +1
2γ

⎛
⎝⎜

⎞
⎠⎟

d
dt

P
P0

⎛
⎝⎜

⎞
⎠⎟
= − γ 2P0A

*

γ +1
2

⎛
⎝⎜

⎞
⎠⎟

γ +1( )
2 γ −1( )

γ RT0( )1/2 Vf

R
P0
T0

⎛
⎝⎜

⎞
⎠⎟

P
P0

⎛
⎝⎜

⎞
⎠⎟

γ +1
2γ

⎛
⎝⎜

⎞
⎠⎟
− 2
2γ

−2γ
2γ

⎛
⎝⎜

⎞
⎠⎟

d
dt

P
P0

⎛
⎝⎜

⎞
⎠⎟
= − γ P0A

*

γ +1
2

⎛
⎝⎜

⎞
⎠⎟

γ +1( )
2 γ −1( )

γ RT0( )1/2 Vf P0
γ RT0

⎛
⎝⎜

⎞
⎠⎟

P
P0

⎛
⎝⎜

⎞
⎠⎟

3γ −1
2γ

⎛
⎝⎜

⎞
⎠⎟

= −
γ A* γ RT0( )1/2

γ +1
2

⎛
⎝⎜

⎞
⎠⎟

γ +1( )
2 γ −1( )

Vf

P
P0

⎛
⎝⎜

⎞
⎠⎟

3γ −1
2γ

⎛
⎝⎜

⎞
⎠⎟

d
dt

P
P0

⎛
⎝⎜

⎞
⎠⎟
= −

γ A* γ RT0( )1/2

γ +1
2

⎛
⎝⎜

⎞
⎠⎟

γ +1( )
2 γ −1( )

P
P0

⎛
⎝⎜

⎞
⎠⎟

3γ −1
2γ

⎛
⎝⎜

⎞
⎠⎟ 1
Vf

Vi
Vi

−
γ A* γ RT0( )1/2

γ +1
2

⎛
⎝⎜

⎞
⎠⎟

γ +1( )
2 γ −1( )

Vi

P
P0

⎛
⎝⎜

⎞
⎠⎟

3γ −1
2γ

⎛
⎝⎜

⎞
⎠⎟ Vi
Vf

d
dt

P
P0

⎛
⎝⎜

⎞
⎠⎟
= − γ

τ
P
P0

⎛
⎝⎜

⎞
⎠⎟

3γ −1
2γ

⎛
⎝⎜

⎞
⎠⎟ 1
Rfinal

2

d
dη

P
P0

⎛
⎝⎜

⎞
⎠⎟
= −γ P

P0

⎛
⎝⎜

⎞
⎠⎟

3γ −1
2γ

⎛
⎝⎜

⎞
⎠⎟ 1
Rfinal

2

dH
dη

= −γ H
3γ −1
2γ

⎛
⎝⎜

⎞
⎠⎟ 1
Rfinal

2

dH

H
3γ −1
2γ

⎛
⎝⎜

⎞
⎠⎟

= −γ dη 1
Rfinal

2

1

− 3γ −1
2γ

⎛
⎝⎜

⎞
⎠⎟
+1

H
− 3γ −1

2γ
⎛
⎝⎜

⎞
⎠⎟
+1

H0

H

= −γ η −η0( ) 1
Rfinal

2

− 1
γ −1
2γ

⎛
⎝⎜

⎞
⎠⎟

1

H
γ −1
2γ

⎛
⎝⎜

⎞
⎠⎟

+ 1
γ −1
2γ

⎛
⎝⎜

⎞
⎠⎟

1

H0

γ −1
2γ

⎛
⎝⎜

⎞
⎠⎟

= γ η −η0( ) 1
Rfinal

2



5/10/21 42

Assume that after all the propellant is consumed the final expansion to the vacuum of space is isentropic. In the 
equations the unit step function is used to turn off the isothermal term and turn on an isentropic term. The chamber 
stagnation temperature is constant until the propellant is expended and the isentropic expansion begins.

dR
dη

= 1− ustep R −
rfinal
rinitial

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
H n

2
ρp

ρgi

−1
⎛

⎝⎜
⎞

⎠⎟

dH
dη

+ 1− ustep R −
rfinal
rinitial

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
H
R2 + ustep R −

rfinal
rinitial

⎛
⎝⎜

⎞
⎠⎟
H

3γ −1
2γ

Rfinal
2 − 1− ustep R −

rfinal
rinitial

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
H n

R

ρp

ρgi

− H

ρp

ρgi

−1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= 0

where ustep x( ) = 0 if   x < 0 and  ustep x( ) = 1 if  x ≥ 0

R 0( ) = 1

H 0( ) = Choose some initial  value

Choose rfinal / rinitial

Note :  Pt2quasi-steady  stateinitial
= τβ( )

1
1−n  and  ρgi

=
Pt2quasi−steady  stateinitial

RTt2

Include the final expansion after all propellant is expended
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dR
dη

= ustep
rfinal
rinitial

− R
⎛
⎝⎜

⎞
⎠⎟

H n

2
ρp

ρgi

−1
⎛

⎝⎜
⎞

⎠⎟

dH
dη

+ ustep
rfinal
rinitial

− R
⎛
⎝⎜

⎞
⎠⎟
H
R2 + ustep R −

rfinal
rinitial

⎛
⎝⎜

⎞
⎠⎟
H

3γ −1
2γ

Rfinal
2 − ustep

rfinal
rinitial

− R
⎛
⎝⎜

⎞
⎠⎟
H n

R

ρp

ρgi

− H

ρp

ρgi

−1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= 0

R 0( ) = 1

H 0( ) = 0.5

n = 0.35

ρp

ρgi

= 196.66

rfinal
rinitial

= 2

Note that  for  an isentropic expansion Tt2
Tt2i

= Pt2
Pt2endofburn

⎛

⎝
⎜

⎞

⎠
⎟

γ −1
γ

= Pt2
Pt2i

⎛
⎝⎜

⎞
⎠⎟

γ −1
γ Pt2i

Pt2endofburn

⎛

⎝
⎜

⎞

⎠
⎟

γ −1
γ

= H
Hendofburn

⎛

⎝⎜
⎞

⎠⎟

γ −1
γ

where Tt2i = 2500

t
τ

H

R

Example   n=0.35,  Isentropic final expansion

Tt2
Tt2i

t
τ

t
τ
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Shuttle SRB performance using RPA/CEA - Jonah Zimmermann
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Shuttle SRB performance using RPA
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Shuttle SRB performance using CEA - mole fractions
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Shuttle SRB performance using RPA - mass fractions

Solid/liquid particles 
in the motor lead to:

1) reduced nozzle 
efficiency - two 
phase losses.

2) Improved motor 
stability through 
absorption of high 
frequency noise.


