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Recall this suggested viewing

National Science Foundation
Fluid Mechanics Films

http://web.mit.edu/fluids/www/Shapiro/ncfmf.html

Fluid Dynamics of Drag, Parts | to IV
Fundamental Boundary Layers
Turbulence
Channel flow of a Compressible Fluid
Waves in Fluids

Pressure Fields and Fluid Acceleration
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http://web.mit.edu/fluids/www/Shapiro/ncfmf.html
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Introduction to gasdynamics

Suggested reading — AA210 Course reader Chapters 1, 3, 5and 9
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Fluxes

Mass flux vector

Mass
Area—Time

pU =

Momentum flux tensor

__— Momentum

pUU

Area—Time

Energy flux vector

Energy

k)U =
p(e i ) Area —Time

[ ]"=units of
) R 1 B 13 Pt
[P0 )=
— M
[pUU]_ -T2
—- M
Lp(e+ )T ]=5
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Add up mass in
and mass out
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Conservation of mass

rate of mass
accumulation
inside the control
volume

W(x,y,z,t)

V(x,y,2,t)

U(x,y,z,t)
p(x, y, 2, 1)

0

rate of mass

rate of mass

flow

out of the control

volume

flow
into the control
volume
pW|z + Az
pV|y+Ay *
. |
N
. T
|
—! > I e
|
pU|x |
| _A_.
: \
' N
S 1 h
(x,y,2) |
%4
‘Ay P |Z
g Ax

-

(x+ Ax, y + Ay, z + Az)

Control volume

AzAyAz (_p) = AyAzp U|, — AyAzp U, A, +

ot

AzAzp V|, — AzAzp V|

y+Ay

+ AxzAyp W\, — AzAyp W], A,

Mass flux in the

x-direction
L
M| =
_ T) M
[pU] - 3 T2
L LT
Momentum Mass per
per unit unit area
volume per
second
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Continuity equation
AA210 chapter 1
AxAyAz(@>—l—AyAz(pU| Ar —PU)+ l
Rearrange Ot TraT x (1.3)

AzAz (p Vlijiny — P V]y) +AzAYy (p W, n, —pW],) =0
Divide (1.3) through by the infinitesimal volume AxAyAz .

op p U|:13—|—Aa: — P U|:L- p V|y+Ay — P V|y P W|Z+AZ — P W|z —

ot T Ax i Ay T Az 0 a9
Let Az — 0,Ay — 0, Az — 0. In this limit (1.4) becomes
op 0OpU 0pV  0pW
R T s T — 0. 15
ot " oz oy | oz ()

4/12/21 6
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Index notation and the Einstein convention

Make the following replacements
(x> y’ Z) — (xla xé, x3)
(Ua V’ W) — (Ula U2, U3)

Using index notation the continuity equation is

3
3p+ a(pUl) -0

ot axi
1=1

Einstein recognized that such sums from vector calculus always involve a
repeated index. For convenience he dropped the summation symbol.

dp a(pUi)_
?5t-+ ox. =0

l

Coordinate independent form

<
i

B Jd d d
P Ve(pl) = 0 (9}’@’92)

ot
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Density Volume flux in the y direction
'p]_% [V]—é— 5 _ Volume
) r T L'T Area-Sec

Outward unit

normal vector | —— T

- Y
U Vv
Control volumesurface | = == = = = = = = — = = = == = = = = = = = = X
U

Momentum flux

L L
M (T 0 M7
[pUV]=—5=| = |=—
L T L'T \
x-momen_tum :)/(e)lrulmiet x-momentum convected in the
per unit area per y-direction per unit area per
volume S second

4/12/21
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accumulation inside
the control volume

rate of rate of sum of
momentum _ ) momentum n forces acting
flow into flow out of on the

the control volume the control volume control volume

z

pUW|z+Az (x + Ax, y + Ay, 7 + Az)
W(x,y.z,t) pU V’y + Ay *
V(-x!yrz)t) }~ | |
~\‘ |
M |
U(x,y.z,t) '
s I s
p(-x’ Y, % t) UuU |
p |x I Az
A

\ i -
(x,y,2) pUV|
- pUW| Y
Ay 2z
\<_ Ax
opU

AzAyAz (W) = AyAzp UU|, — AyAzp UU| p, +

Add up momentum in
and momentum out in

the x-direction AzAzpU V|y — AzAzpU V|y+Ay + AxAyp UW|Z — AzAypU W|z—|—Az +

4/12/21 {the sum of x — component forces acting on the system}
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Rearrange

X equation

y and z
equations
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Conservation of momentum cont'd

AzAyAs (ag’—tU) + AyAz (p UL, 5, — pUUL,) +

AzAz (pU V|y+Ay - pU V|y) + AxAy (,0 UW|z+Az - pU W|z) -

{the sum of x — component forces acting on the system} .

apU + P UU|z+Aa: —Pp UUlz + pU V’erAy - pU Vly + 1Y UW|z+Az - pU W|z _

ot Azx Ay Az
{the sum of x — component forces acting on the system per unit volume}
(1.67)
Let (Az — 0,Ay — 0,Az — 0). In this limit (1.67) becomes
the sum of
opU  0pUU  9pUV n 0pUW | z — component forces (1.68)
ot oz Oy 0z )| per unit volume acting '
on the control volume
Similar equations describe conservation of momentum in the y and z directions.
the sum of
opV " opVU n opVV n OpVW ) y — component forces
ot oz dy 0z | per unit volume acting
on the control volume
(1.69)

the sum of
OpW N o0pWU n OpWV n OpWW | z— component forces
ot Ox dy 0z per unit volume acting
on the control volume

10
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Pressure and viscous forces act on the control volume surface

Z

(x+ Ax, y + Ay, 7z + Az)
T
xz\“Az
—»l
|
ol ] A
y + Ay (HP+T,)
(_P+Txx)‘ - == | _____ . > ‘x+Ax
X ‘ I e
| T Az
R P Xy
-k\ y
y ----~_|y
(x,y, 2) sz|
z
‘Ay
\<_ Ax—>
X

Fp = AyAz ((=P + Toz)lppng — (=P + Tas)l,) + AzAz (Twylymy - Twy'y) T
AzAy (Tmz|z+Az - T$Z|z)

Fy = AyAz (Txyl.'z:-i—Aa: o T:cylx) +AzAz ((_P + Tyy)|y+Ay N (_P T Tyy)ly) T
ACL’Ay (Tyzlz—i—Az o Tyzlz)

Fz = AyAZ (TfL‘ZI:I;-i—A:I: - TIL‘ZLL-) + AzAz (Tyz|y+Ay - Tyzly) +
ACEAy ((—P + Tzz)|z+Az - (_P + TZZ)Iz)

11
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Rearrange

X,y and z
equations
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Conservation of momentum equation

AxAyAz (({)g—tU> = AyAz (P Uu|, —p UU|:c+A:c) +

AzAz (pU V|y — pU V|y+Ay) + AzAy (p UW|,— pU W|Z+Az) +

AyAZ ((—P + 7':1:93)|a:+Aa: - (_P + T-’mf‘)lm) +

AzAz <T$y|y+Ay - 'rxyly) + AzAY (Taz| yypp — Tazl,)

opU p UU|$+Ax —Pp UU|$ + (P — T-’Efl:)|a;+Ax — (P - Txm)|z
+ +
ot Ax

pU V|y+Ay —pU V|y - (Twy|y+Ay N T:z:yly) + P UW|z+Az —pU W|z B (Twzlz—i—Az B Tacz|z)

=0

Ay Az

Let Az — 0,Ay — 0, Az — 0. In this limit (1.78) becomes

opU N 0 (pUU + P — Tyy) N 0 (pUV — Tygy) N 0(pUW —7p,)
ot oz Ay 0z N

opV n 0 (pVU — Tyy) N 0(pVV + P —1yy) N 0 (pVW — 1y,)

ot Ox Oy 0z

opW N 0 (WU — 7y,) N 0(pWV —1y,) N 0 (pPWW + P — 1)

0.

=0

=0

ot oz Oy 0z

(1.78)

(1.79)

12
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Conservation of energy

rate of energy
accumulation
inside the control
volume

rate of energy flow
out of the

control volume

by convection

rate of energy addition
due to heat conduction

rate of energyflow )

into the
control volume
by convection J
work done on the )
control volume
by pressure and
viscous forces

/

due to sources inside

energy generation
} +
the control volume

ple + k)W|Z + Az
Weeyzt) — ple+k)V| L 4 * (x + Ax, y + Ay, 7 + A7)
V(xy.z.t) A | |
Q“ I
.. T
U(x,y,z,t |
(x.y.2,t) . ] p(eT+k)U|x+Ax
|
p(e + k)U |x A | Az
_—_ - - — A
' N
y | \
(x,y,2) | Y
> |pteriow] P |
Al Ax
X

13
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ASTRONAUTICS

z
(-PW + 7, U+ szV + rzzW)‘z . A

(-PV+T U+, V+ ‘EyzW)‘y + Ay ? (x + Ax, y + Ay, z + Az)

K »

-
~
-~
-

' A
(1PU+T, U+t W+7 W)
— (R [ x + Ax

(-PU+7T, U+ rxyV+rx2W)|x \ Az
—_—_—— - - — = 4
, \ —PV+r\xxU+ rny+1:yZW)‘y
LA ~ oy
I

(-PW+1t, U+ rzyV + rZZW)|z

=

X

Power input to the control volume = F - U =

((_P + Ta:x)|m+Az - (=P + wa)|g;) U+

AyA +
Y Z{ (T$y|m+A:c - T$y|x) V+ (Tm|m+Az o Tl'z'a:) w }

AxAz{ ETmyly_l_Ay - 7':1:y|y3 U+ <(_P+Tyy)|y+Ay - (—P‘|‘Tyy)|y) V+ }+
w

Tyz |y+Ay — Tyz |y

ASEAy{ (T$Z|z+Az - TC'TZ'Z) U + (Tyz|z+Az - Tyzlz) V+ } .

4/12/21 (=P + T22)lypns — (P4 7a2),) W
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Power input by viscous and pressure forces, cont'd

Power input to the control volume = F -U =

(=PU + T3qU + T3y V + 15, W)
(=PU + TgzU + TgyV + 7, W)

AyAz {

Rearrange

(=PV + 124U + 1yy)V + 7y, W) yi Ay
AzAz { (=PV + 124U + 1y)V + 7y, W) T

AzA (_PW+szU+szV+TzzW)|z+Az—
Y\ (=PW + 70U + 1V + 12 W)).

4/12/21
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Equation for conservation of energy

Op(e+k) _

AzAyA
BT

AyAz (p(e+k) Ul, —ple+k) Ulpyng) +
AzAz (p (e+k) V|, —p(e+k) V|y+Ay) +
AzAy (p(e+k) W, —ple+k) W, a,)+

AyAz{ ES__P+T$$)|w+Az - (_P+Txm)|x) U+

+
Zy|:L‘+AI - sz|z) V+ (Tm2|z+Az - Tzz|z) w }

Tyz|y+Ay - Tyz|y w

Aahz { gfzywy - ny|y§ Ut (Pt mmllyssy = P+ 7ll,) VH } .

— U+ (7| — 1yl,) V+

AzA (TZZ|Z+AZ Tzz|z) Y2Zlz4-Az Yzly
i ((_P + TZZ)|z+Az - (-P+ TZZ)'z) w *

YAz (Qaly = Qalopas) +A282 (Qyl, = Qulyiay) +

AIAy (Qz|z - Q2|z+Az) +

{power generation due to energy sources inside the control volume} .

Op(e+k)

o

0(p(e+k)U + PU — 74U — T2y V — 70 W + Qs)
oz

+

O(ple+k)V + PV —1y,U — 1y V — 7. W + Qy)
%y

+

A(p(e+ k)W + PW — 15U — 130V — 7, W + Q)
0z

{power generation due to energy sources inside the control volume}

Heat flux vector

Q; = —k(dT/dx,)

16
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Equations of motion in differential form

Conservation of mass

Op | OpU  OpV n opW 0
ot or oy oy

Conservation of momentum

opU N 0 (pUU + P — Tyy) n 0 (pUV — Tyy) n 0 (pUW — 14,) _

ot ox oy 0z 0
0V O(pVU — 1)  O(pVVHP—1y) (VW -7)

ot ox oy 0z N
OpW N O (pWU — 14,) N 0(pWV —1y,) " O(pWW + P — 1) _ 0

ot ox Oy 0z

Conservation of energy

Op(e+k)
o

d(ple+k)U+ PU — 155U — T3V — 72, W + Q)
ox

0(ple+k)V+ PV —1y,U — 1)V — 7, W + Qy)
Oy

d(ple+ k)W + PW — .U — 7V — 7, W + Q)
0z B

{Power generation due to energy sources inside the control volume}

The coordinate-independent form of the equations of motion is

Op Sy

E‘FV'(/)U)—O

8pU — = — ~
W+v-(pUUJrPI—T)—pG_o

Oop(e+k) _

_ P o _ _
+V-(pUle+—+k)—-—T-U+Q)—pG-U=0.
ot p
Using index notation the same equations in Cartesian coordinates are

op 0 B
%t %(PUJ) =0

8pUZ~ 0
~— (PUU; + Poij — 7ij) — pGi =
5 —{—awj(pUU]—i— dij — Tij) —pGi =0
ople+k) 0 P _
T —+ 8—% (pU'L (6+ ; +k) _Tz_]Uj +Q'L) _szUz =0.

17
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Particle paths, streamlines and streaklines

Streamlines

Streaklines

L it W/ W

18
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Steady flow over a wing flap.

Figure 1.3 Computed streamlines over a wing flap.

19



BI@‘E\E%Q Particle paths in 2D

ASTRONAUTICS

The figure below shows the trajectory in space of a fluid element moving under the action of a
two-dimensional steady velocity field

particle trajectory

Yo

The equations that determine the trajectory are:

2D = (), y(0)]
S
UD = v(x(e), (1)

4/12/21 20



BI@‘E\E%Q Particle paths in 3D

ASTRONAUTICS

Figure 1.6 Particle trajectory in three dimensions

The figure above shows the trajectory in space traced out by a particle under the
action of a general three dimensional unsteady flow,

4/12/21 21
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The equations governing the motion of the particle are:

dx(t)
dt

= U (x;(0), xp(0), x5(0), 1) ;i = 1,2,3

Formally, these equations are solved by integrating the velocity field.

A
x;(1) = x;0 + IO U.(x,(2), x,(1), x3(t), tydt , i=1 23

22
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The substantial derivative operator D
The acceleration of a particle is

2
d x.(1) d oU. JU.dx,
l _ “ — I 1
- dtUl(x](t)’xZ(t)’x3(t)’t) at +axk dt

dtz

Insert the velocities. The result is called the substantial or material derivative and is
usually denoted by

The time derivative of any flow variable evaluated on a fluid element is given by a
similar formula. For example the rate of change of density following a fluid particle is

23
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Leibniz rule for differentiation of integrals

Differentiation under the integral sign. According to the
fundamental theorem of calculus if

I(x) = r f(x")dx'
constant

then
d
dr f(x).
Similarly if
onstant
I(x) = f f(x")dx
X
then

dl

i)

24
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Suppose the function depends on two variables
I(t) = J.bf(x', t)dx'
a

where the limits of integration are constant.

The derivative of the integral with respect to time is

ar(r) _ (9 ., ,
—d;—' = Eé;f(x,t)dx

But suppose the limits of the integral depend on time.

(1)
I(t, a(2), b(1)) = f(xX, t)dx
a(t)

25
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f(x, 1)
f(xa to)
|
|
| |
/ 3 I

| |
| |
] |
a(t) b(t)

Figure 5.1 Integration with a moving boundary. The function f(x,t)
is shown at one instant in time.

From the chain rule.

DI _ ol dlda dldb
Dt 0ot OJdadt Jbdt

In this case the derivative of the integral with respect to time is

(1)
DI d ., , db da
i = | 3 0+ 10,0~ a0 D

Time rate of change due to
movement of the boundaries.

26
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AERONAUTICS &

ASTRONAUTICS of some function of space and time, F, contained inside a control volume V.

¥ U, (surface velocity)

X3

—dev - %i:var JFUAOﬁdA.

V(t) V() A(r)

Rate of change of the total amount of F in V

Rate due to changes of F within V
+

4/12/21 Rate due to movement of the surface of V
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X U
2 surface
stress

Vi

heat
transfer

U(Xl,xZ,X3,t)

Let the velocity of each surface element coincide with the fluid velocity. This is called
a Lagrangian control volume.

D oF —
EdeV_ J.'a'?d‘“" J-FU-ndA.
V(1) V(1) A1)

Use Gauss’s theorem to convert the surface integral to a volume integral.

Reynolds transport l—?—t I Fdv = J (‘9—F + Vo(FU))dV.

ot
theorem V(o Vi)

4/12/21
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Conservation of mass

The Reynolds transport theorem applied to the density is
D ap — )
—_ adyv = — + V. U)l|dV.
D: ] P J (at (pU)
V(t) V(1)
Since there are no sources of mass contained in the control

volume and the choice of control volume is arbitrary the kernel
of the integral must be zero.

%’:+ Ve(pU) = 0

This is the general procedure that we will use to derive
the differential form of the equations of motion.

29
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Incompressible flow

Expand the continuity equation.

g’:+UOVp+pV0U 0.

If the density is constant then the continuity equation
reduces to

pVelU = 0.

30
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Newtonian stress

The stress tensor in a fluid is composed of two parts; an isotropic part due to the pressure
and a symmetric part due to viscous friction.

where

I =010 =

001 y

We deal only with Newtonian fluids for which the stress is linearly related to the rate-of-strain.

2
Tij = 2H5;- (}“ - “v)5ij5kk

. ](aui auj)

= = +
] 2 c?xj Bxi

where

4/12/21 31
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Notice that viscous forces contribute to the normal stresses through the non-zero diagonal terms in the
stress tensor.

2
Tij = 2HS;- (}“ - “v)5ij5kk
Sum the diagonal terms to generate the mean normal stress

(o = (1/3)o;; = —P+qukk.

mean

The “bulk viscosity” that appears here is often assumed to be zero. This is the so-called Stokes
hypothesis. In general the bulk viscosity is not zero except for monatomic gases but the Stokes
hypothesis is often invoked anyway.

4/12/21 32
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the external forces that act on the control volume surface.

}1)_)7 f pUdV = j (=PI +7) e7idA + j pGdvV .
V() A(1) V(1)

Use the Reynolds transport theorem to replace the left-hand-side and Gauss’ s theorem to
replace the surface integrals.

j(ggtlﬂ Ve(pUU + PI-7) - pG) - 0.

V(1)

Since there are no sources of momentum inside the control volume and the choice of control
volume is arbitrary, the kernel must be zero.

dpU

5 + Ve (pUU+PI 7)-pG =

4/12/21 33
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The rate of change of the total energy inside the control volume is determined by the rate
at which the external forces do work on the control volume plus the rate of heat transfer
across the control volume surface.

g I p(e + k)dv = j ((—~P;+’:[)»0_U-—Q)oﬁdA+ J- (p(_?-U)dV.
tV(t) A(1) V(r)

In a linear heat conducting medium
Q; = —k(JT /9x,)

Again, use the Reynolds transport theorem to replace the left-hand-side and Gauss’s
theorem to replace the surface integrals.

I (9P(e+")+ V.(pU(e+f+k)-%-U+Q)—pG'U)dV = 0.
Vi ot P

4/12/21 34
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Since there are no sources of energy inside the control volume and the choice of control volume is
arbitrary, the kernel must be zero.

8p(eat+k)+ VO(pU(e+§+k)—%o—U+Q)—PE’U =0
Stagnation enthalpy
P 1
h, = e+;—)+k = h+§Ul.Ul.

4/12/21 35
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Typical gas transport properties at 300K and one atmosphere.

m
. B x 108, x x 102, = x 10°%, ~
Fluid kg/(m)(s) | P Lsmys) | P Pr
He 1.98 0 15.0 12.2 0.67
Ar 2.27 0 1.77 1.40 0.67
H, 0.887 | 32 17.3 10.8 0.71
N, 1.66 0.8 2.52 1.46 0.71
0, 207 | - 04 2.58 1.59 0.72
CO, 1.50 | 1,000 1.66 0837 | 0.75
Air 1.85 0.6 2.58 1.57 0.71
H,O (liquid) | 85.7 3.1 61 0.0857 | 6.0
Ethyl alcohol 110 | 4.5 18.3 0.14 15
Glycerine 134000 | 04 | 29 109 11,000
ucC
pr=-FL

36
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Summary - differential equations of motion

ot

apU
ot
dp(e + k) ( ——(
> pUl e +
ap
ot
dpU;
ot

ap(ea: 2 " ox, (pU(

P, Ve(pl) =

+V0(pUU+PI 7)-pG = 0

+0-,x(pU)

8 (pUU + PO, —r)—pG =0

k)—rl.jU i+ Ql.)—pGiUi =0

37
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ASTRONAUTICS

Recall the Leibniz rule

D J- FdV = %!-;dV+ J F U, endA.
V(1) V(t) A(t)

Integral equations on an Eulerian control volume

If the surface of the control volume is fixed in space, ie, the velocity of the surface is zero then

d oF
o FdV = -a—th

| %4 | %4
This is called an Eulerian control volume.

4/12/21 38
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The integral form of the continuity equation on an Eulerian control volume is
derived as follows.

pdV = fapdv

Use the differential equation for continuity to replace the partial derivative
inside the integral on the right-hand-side

Ipdv IV (pU)dV

Use the Gauss theorem to convert the volume integral to a surface integral.

The integral form of the continuity equation is:

C%j,odv + JpU eiidA = 0
4 A

39
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The integral form of the conservation equations on an Eulerian control volume is

d e
= [pav + [(pU) eda = 0
v A
‘%fp_ﬁdV + J(pUU + PI - 7) n‘sz—J'pf}dV =0
Vv A v

c%‘f/p(e+")dV+£(pU(e+§+k)—%-‘17+ Q).ﬁdA—‘j/(pZ;.U)dv -0
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The integral form of the continuity equation on a Mixed Eulerian-Lagrangian control volume is derived as
follows. Let F in Liebniz rule be the fluid density.

D _ [ dp ——
D; pdV = J- (9th+ J p U,y ®ndA
V(1) V(1) A1)

Use the differential equation for continuity to replace the partial derivative inside the first integral on the
right-hand-side and use the Gauss theorem to convert the volume integral to a surface integral. The
integral form of the continuity equation on a Mixed Eulerian-Lagrangian control volume is

l% pde—proﬁdA+ Jp'l_]A-ﬁdA
V(r) A(1) A(t)
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The integral equations of motion on a general control volume where the surface velocity

is not the same as the fluid velocity are derived in a similar way.

The most general integral form of the conservation equations is

D o
= j pdV + jp(U—UA)-ndA =0
V(1) A(1)

D [ pTav+ | (pTU(T - Ty) + Pl - 7) e idA- [ pGav =0

Dt
V(t) A(1) V(1)

DD-; j ple+k)dV + [ (ple+k)e(U-TUy)+PleU—7eU + Q) o adA-
V(1) A(1)

J’ (pG e U)dV = 0
V(1)

Remember U, is the velacity of the control volume surface.
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Examples of control volume analysis

Example 1 - Solid body at rest, steady flow

Integral form of momentum conservation

j(pUU+Pi—%)-ﬁdA+ I(Pi—%)oﬁdA =0
AI AZ
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Momentum fluxes in the streamwise and normal directions are equal to the lift and drag forces exerted
by the flow on the body.

Drag = J.(P; — ;L') o ndA
Az

. Lift = J-(P;—%)OﬁdA
A2

(pUU + PI-7) e7idA| + Drag = 0.

A
1
Xq

0.

j(pUﬁ + PI-7)endA| + Lift

A
I
X2
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Example 2 - Channel flow with heat addition

—_—
—

A

_____—.__>

2
n e lp-n
~f _ |
5Qw | =

Mass conservation

j(pU) o ndA + J(pU) enidA = 0.
A A,

Energy conservation

J‘(pU(e+k)+PU—%0U+Q)oﬁdA = 0.
A




rﬁk}xﬁ 15913512 To a good approximation the energy balance becomes
ASTRONAUTICS

Jpl_](e+§+k)-r‘sz = —j@ondA.
A A
Most of the conductive heat transfer is through the wall.

_J‘Q o ndA s_j Q endA = 80.
A A

w

The energy balance reduces to
JphtU ondA + J‘pht—U enidA = 6Q.
Az A

When the vector multiplication is carried out the energy balance becomes

fszzhtsz —IpIUIhﬂdA = 50.
A, A

The heat addition (or removal) per unit mass flow is equal to the change
4/12/21 in stagnation enthalpy of the flow.
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Example 3 - Arotating fan in a stationary flow

The control
volume
surface is
attached to
and moves
with the fan
surface.

The integrated mass fluxes are zero.

j(pU)oﬁdA =0
r

Momentum fluxes are equal to the surface forces on the fan

J'(pUU+P}—':L') o idA + j(pU(U—UA)+Pi—%) eiidA = 0
A A,

e

j(pl_]l_/+P;—%) eiidA+F = 0
Ae
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- - - The flow and fan velocity on the
Fo= I(PI‘ T) e ndA fan surface are the same due to

A the no-slip condition.

f

The integrated energy fluxes are equal to the work done by the flow on the fan.

J-(pU(e+k)+Pl_]—;L'0_U) o idA + I(PU-%oU) eiidA = 0.
A A

e f

elU)eondA = W

QU

Work = J (PU -
A

f
If the flow is adiabatic and work by viscous normal stresses is neglected the energy

equation becomes.

Ip(e+§+k)50ﬁdA+5W = 0
A

e

The work per unit mass flow is equal to the change in stagnation enthalpy

of the flow.
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Example 4 - Combined heat transfer and work

In a general situation with heat transfer and work
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Recall the enthalpy

P
h=e+—

P

Stagnation enthalpy

ht=h+lU2
2

4/12/21

Quasi-one dimensional conservation equations

General steady
channel flow with

s z friction, heat
exchange, mass

exchange and work

mass conservation

[ pU -7dA =~ pU - 7dA + Sri

Ay A

momentum conservation

J(pUU+fﬁ—%)ﬁ¢4=—j@iﬁ7+P7—%yﬁd4—J(PY—%)ﬁmy-j@ﬁ—%)ﬁ¢4+Um5m

A, A " Ag
energy conservation / Work by the fan
[(pnT-7-0+0)-7da=-[(phT-7-U+0)-idA+ [ Q-7dA+h,dn+ [(PU-7-T) -7id

Ay Ay A, Ay
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Area averaged flow

Average the flow across the channel.

p(x) = X(%jp(x, v, 2)dydz.

Define
T(x) = A—(IB:T(x, y, 2)dydz
P(x) = ﬁ..P(x, y, z)dydz
50) = 5[50 3, v
U(x) = X(]-;S;U(x, y, 2)dydz
T (x) = ﬁ:rxx(x, y, z)dydz
0. (x) = A—(I;‘):Qx("’ y, 2)dydz
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Every variable in the flow can be written as a mean plus a fluctuation.

p(x,y,z) = p(x)+ p'(x,y,2)
T(x,y,2) = T(x) + T'(x, y,2)
P(x,v,2) = P(x)+ P'(x,y,2)
s(x,y,2) = 8(x)+5'(x,y,2)
Ulx,y,2) = Ux)+U(x,y,2)

Txx(x) y’ Z) = %xx(x) + Txx'(x’ y’ Z)

Q. (x,y2) = 0yx)+Q/(x,,2)
Express the mass flux integral in terms of means and fluctuations.
ijdA = J(f) + p WU + U)dA = JﬁffdA + jp’U'dA =
A A A A

P(x)U(x)A(x) + pU'A(x)

As long as nonlinear correlations are small, the mean is an accurate approximation.
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In terms of area averaged variables, the integral equations of motion are as follows.

I(PB—%) eiidA| —U_ S+ 6F_ = 0
AW
X

(PoHL U, Us + 00)A,— (P H U -7, U+ ODA; =
6Q + h, Om— oW
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The traction vector

The pressure-stress integral on the wall.

The traction vector

Pn - Txxnx - Txyny — sznz

——’t‘n+Pn—Tn—Tn

Xy X y yy'y y<

—sznz—‘czyny + PnZ - Tzznz

.

Z
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Imagine the length of the control volume made very small.

J' (P6-7) eiidA| = J. (Pn -t n —T.n -7, n)dA=

A A

w X w

P,+P T .., 17 D,+ D
] 2 XX ] XX2 1 2
( )(AI —AZ)—( 3 )(AI—AZ) + Twit(——————)Ax

2 2
where | |
Jndi = (A;-A))
AW
and

D, +D,
'[ (Txyny + sznz)dA E—Twﬂ( 3 )Ax.
AW
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Introduce the hydraulic diameter

1/2
D = (_4) |
b .

The integrated equations of motion now take the form

prU,A,—pUsA; = 6

(P U Uy + Py—1, A, —(p U U+ Pr—1,,)A, -
T + T

P,+P D,+D
1 2 XxX] Xx2 1 2
( 3 )(AZ_AI)+( 3 )(AZ—AI) +1:wrt( 3

U, 8~ 6F

(Poh U=, Uy + Q) Ay —(pyhy U7, U + Q) DA,
6Q + h, Om— oW

where the “hat” has been dropped.

Jax

(

56



|FTAN FORD

AERONAUTICS &
ASTRONAUTICS

4/12/21

Let the length of the control volume go to zero.

p,U,A,—p,U;A; = d(pUA)

' 2 2 2
p,UA,—p,U;A; = d(pU A)
P,A,-P;A; = d(PA)

TxeAZ - TxxIA] = d( TxxA)
Py + P,
2
(Txxl + Txx2
\ 2

D1+D2
1'7:( 3 )Ax = rwnDdx

w

)(AZ—AI) = PdA

)(A2 -A;)) = 1.dA

pZUthZA2 - pIU]htIA] = d(pUhA)

'L'xszzA2 ~ T r1 U1A1 = d(7,UA)

Qu2Ar-04; = d(Q,4)

o7
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The integrated equations are now expressed in terms of differentials.

d(pUA) = &m

d(pU°A) + d(PA) —d(t_A) —PdA + 7_ dA =
-t wDdx+ U_ 8~ 6F

d(pUh,A) + (-d(7_UA)) + d(Q A) = 8Q +h, &m— W

Use continuity to simplify the momentum and energy equations.

Udm + pUAdU + AdP - Adt_, = -1, nDdx + U, 6m— OF

) C Tx e Tex Qx ) Qx _
h,6m + pUAdh, — —'[—)—ém - pUAd(—;)—-) + Z)—(—]5m + pUAd(ﬁ]) =
00 + htm5m — oW
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The 1-D (area averaged) equations of motion.

d(pUA) = &m

d(P-1.)+pUdU = ——’L'W( "

(2 %) - 2B 1

Lop o pU pUA pUA

Introduce the friction coefficient.

T

_ w
Cf—£U2
2P*

and the heat and work per unit mass flow

A

XX

Oy

ﬂDdx) + (Uxm - U)om _ 6Fx

A

om

- 99 . _ oW
09 = pUA ~’ oW = pUA"™

p

+pU

)

pUA
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Finally the area averaged equations of motion take the concise form

d(pUA) =
] dx (U,,,—U)om OF,
d(P-7.)+pUdU = —épU (4CfD) y -

T Q Tex Qx om
d(h _?+5fl) 5q - 6w+( (ht— : +pU))pUA

4/12/21
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By averaging flow properties
over the channel cross-section,

steady equations of motion can

that describe differential
changes of the flow.

to a good approximation the full

be reduced to a set of equations

4/12/21

Ax—0

mass conservation
d(pUA) = 61

momentum conservation

General steady
channel flow with

friction, heat
exchange, mass
exchange and work

d(P-1.)+pUdU =—§pU2

D A

energy conservation

d(h,—f—”+ Q. J— 00 oW +(h,m—(h,—f—”+—

p pU - pUA pUA

1 (4Cfdx] OF,
L |- —=x4
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Steady, gravity-free, adiabatic flow of a compressible fluid in a channel

|
w— | | e Note, friction is not zero
|
|

For this case the energy equation takes the form of a perfect differential.

T Oy
— = 0.
d(ht > +pU)

For most flow situations (outside of shock waves) the stress and heat conduction terms can be neglected. Thus

hyy = hyp.
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Stagnation temperature and pressure,cont’d

Compressible flow stagnating against a wing leading edge

P, T, h

P, T; h, 22 2
. ::::::EEA

U] U2:0

M2=0

1
If the path from 1 to 2 is adiabatic ~ &, =h, =h, + 5Uf

If the temperature change between 1 and 2 is not large then the heat capacity will be nearly
constant. The stagnation temperature is defined by

1
CT,=C1T,=CT+ EUf
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The stagnation temperature is defined by

1
CT,=CT,=C,[T + EUf

We can express this in terms of the Mach number

T y—1 5 M=-"—~=

L =14+ —|M - 172

T, ( 2 ) 1 a (yRT)

If the path from 1 to 2 is isentropic P,=P,
A 7 C Isentropic flow is realized If
P (T | y—1Y), , ! y=—"= viscous friction and heat
= T =| 1+ > M; C, transfer are zero (adiabatic
: ! frictionless flow).
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The mass flow at any point in a channel can be expressed in
terms of the local stagnation pressure and temperature

: 14 PA
m= pUA = 11 [ ﬁ)f(M)
(}/+1 2(yy—1) YR,
2
y+1

—1.4 _ }/_-I-l 2(y-1) M

=T 166 f(M)—( > ) 1 IR

/ (1+7/_M2 ’

v=1.2 2
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