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Recall this suggested viewing

National Science Foundation
Fluid Mechanics Films

http://web.mit.edu/fluids/www/Shapiro/ncfmf.html

Fluid Dynamics of Drag, Parts I to IV

Fundamental Boundary Layers

Turbulence

Channel flow of a Compressible Fluid

Waves in Fluids

Pressure Fields and Fluid Acceleration

http://web.mit.edu/fluids/www/Shapiro/ncfmf.html
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Introduction to gasdynamics

Suggested reading – AA210 Course reader Chapters 1, 3, 5 and 9
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Fluxes

ρ[ ] = M
L3 ,  U[ ] = L

T
,  e[ ] = L2

T 2 ,  k[ ] = L2

T 2

"[ ]"= units of

ρU = Mass
Area −Time

Mass flux vector

ρUU = Momentum
Area −Time

Momentum flux tensor

U = U,V ,W( )

UU =
UU UV UW
UV VV VW
UW VW WW

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

ρ e+ k( )U = Energy
Area −Time

Energy flux vector

ρU⎡⎣ ⎤⎦ =
M

L2 −T

ρUU⎡⎣ ⎤⎦ =
M

L −T 2

ρ e+ k( )U⎡⎣ ⎤⎦ =
M
T 3k = 1

2
U ⋅U = 1

2
U 2 +V 2 +W 2( )
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Conservation of mass

Control volume

Add up mass in 
and mass out

ρU[ ] =
M L

T
⎛
⎝⎜

⎞
⎠⎟

L3
= M
L2T

Momentum 
per unit 
volume

Mass per 
unit area 

per 
second

Mass flux in the 
x-direction
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Continuity equation

(1.3)

Equation numbers
AA210 chapter 1

(1.4)

Rearrange

(1.5)
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Index notation and the Einstein convention

Make the following replacements

Using index notation the continuity equation is

Einstein recognized that such sums from vector calculus always involve a 
repeated index. For convenience he dropped the summation symbol. 

Coordinate independent form
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Momentum transport due to convection

ρ[ ] = M
L3

U

V

V[ ] = L
T
= L3

L2T
= Volume
Area ⋅Sec

ρUV[ ] =
M L

T
⎛
⎝⎜

⎞
⎠⎟

L3
L
T

⎛
⎝⎜

⎞
⎠⎟ =

M L
T

⎛
⎝⎜

⎞
⎠⎟

L2T

x-momentum 
per unit 
volume

Volume 
per unit 
area per 
second

Momentum flux

U

x-momentum convected in the 
y-direction per unit area per 

second

Control volume surface

Volume flux in the y directionDensity

Outward unit 
normal vector

x
y
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Conservation of momentum

Add up momentum in 
and momentum out in 
the x-direction
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Conservation of momentum cont’d

Rearrange

y and z 
equations

x equation
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Pressure and viscous forces act on the control volume surface
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Conservation of momentum equation

Rearrange

x, y and z 
equations
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Conservation of energy
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Power input by viscous and pressure forces
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Power input by viscous and pressure forces, cont’d

Rearrange
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Equation for conservation of energy

Heat flux vector
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Equations of motion in differential form



Particle paths, streamlines and streaklines

184/12/21

Streamlines Streaklines



Steady flow over a wing flap.
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The figure below shows the trajectory in space of a fluid element moving under the action of a 
two-dimensional steady velocity field

The equations that determine the trajectory are:

Particle paths in 2D
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The figure above shows the trajectory in space traced out by a particle under the 
action of a general three dimensional unsteady flow,
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Particle paths in 3D



The equations governing the motion of the particle are:

Formally, these equations are solved by integrating the velocity field.
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The substantial derivative operator D

The acceleration of a particle is

Insert the velocities. The result is called the substantial or material derivative and is 
usually denoted by

The time derivative of any flow variable evaluated on a fluid element is given by a 
similar formula. For example the rate of change of density following a fluid particle is 
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Leibniz rule for differentiation of integrals

Differentiation under the integral sign. According to the 
fundamental theorem of calculus if 

then 

Similarly if 

then 
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Suppose the function depends on two variables 

where the limits of integration are constant.

The derivative of the integral with respect to time is 

But suppose the limits of the integral depend on time.
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From the chain rule. 

In this case the derivative of the integral with respect to time is 

Time rate of change due to 
movement of the boundaries.4/12/21 26



In three dimensions Leibniz’ rule describes the time rate of change of the integral 
of some function of space and time, F , contained inside a control volume V. 

4/12/21 27



Consider a fluid with the velocity field defined at every point. 

Let the velocity of each surface element coincide with the fluid velocity. This is called 
a Lagrangian control volume. 

Use Gauss’s theorem to convert the surface integral to a volume integral. 

Reynolds transport 
theorem
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Conservation of mass

The Reynolds transport theorem applied to the density is 

Since there are no sources of mass contained in the control 
volume and the choice of control volume is arbitrary the kernel 
of the integral must be zero.

This is the general procedure that we will use to derive 
the differential form of the equations of motion.
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Incompressible flow

Expand the continuity equation.

If the density is constant then the continuity equation 
reduces to
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Conservation of momentum

The stress tensor in a fluid is composed of two parts; an isotropic part due to the pressure 
and a symmetric part due to viscous friction.

where

We deal only with Newtonian fluids for which the stress is linearly related to the rate-of-strain. 

where
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Newtonian stress



Notice that viscous forces contribute to the normal stresses through the non-zero diagonal terms in the 
stress tensor. 

Sum the diagonal terms to generate the mean normal stress 

The “bulk viscosity” that appears here is often assumed to be zero. This is the so-called Stokes 
hypothesis. In general the bulk viscosity is not zero except for monatomic gases but the Stokes 
hypothesis is often invoked anyway. 
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The rate of change of the total amount of momentum inside the control volume is determined by 
the external forces that act on the control volume surface.

Use the Reynolds transport theorem to replace the left-hand-side and Gauss’s theorem to 
replace the surface integrals.

Since there are no sources of momentum inside the control volume and the choice of control 
volume is arbitrary, the kernel must be zero.
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Conservation of energy
The rate of change of the total energy inside the control volume is determined by the rate 
at which the external forces do work on the control volume plus the rate of heat transfer 
across the control volume surface.

In a linear heat conducting medium

Again, use the Reynolds transport theorem to replace the left-hand-side and Gauss’s 
theorem to replace the surface integrals.
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Since there are no sources of energy inside the control volume and the choice of control volume is 
arbitrary, the kernel must be zero.

Stagnation enthalpy

4/12/21 35



Typical gas transport properties at 300K and one atmosphere.
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Summary - differential equations of motion
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Integral form of the equations of motion

Recall the Leibniz rule

If the surface of the control volume is fixed in space, ie, the velocity of the surface is zero then

This is called an Eulerian control volume.

Integral equations on an Eulerian control volume
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The integral form of the continuity equation on an Eulerian control volume is 
derived as follows. 

Use the differential equation for continuity to replace the partial derivative 
inside the integral on the right-hand-side

Use the Gauss theorem to convert the volume integral to a surface integral. 
The integral form of the continuity equation is:
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The integral form of the conservation equations on an Eulerian control volume is
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Mixed Eulerian-Lagrangian control volumes

The integral form of the continuity equation on a Mixed Eulerian-Lagrangian control volume is derived as 
follows. Let F in Liebniz rule be the fluid density.

Use the differential equation for continuity to replace the partial derivative inside the first integral on the 
right-hand-side and use the Gauss theorem to convert the volume integral to a surface integral. The 
integral form of the continuity equation on a Mixed Eulerian-Lagrangian control volume is 
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The integral equations of motion on a general control volume where the surface velocity 
is not the same as the fluid velocity are derived in a similar way. 

The most general integral form of the conservation equations is

Remember UA is the velocity of the control volume surface.
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Example 1 - Solid body at rest, steady flow

Integral form of mass conservation

Integral form of momentum conservation

Examples of control volume analysis

4/12/21 43



Momentum fluxes in the streamwise and normal directions are equal to the lift and drag forces exerted 
by the flow on the body.
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Example 2 - Channel flow with heat addition

Mass conservation

Energy conservation
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To a good approximation the energy balance becomes

Most of the conductive heat transfer is through the wall.

The energy balance reduces to

When the vector multiplication is carried out the energy balance becomes

The heat addition (or removal) per unit mass flow is equal to the change 
in stagnation enthalpy of the flow.4/12/21 46



Example 3 - A rotating fan in a stationary flow

The integrated mass fluxes are zero.

Momentum fluxes are equal to the surface forces on the fan

The control 
volume 
surface is 
attached to 
and moves 
with the fan 
surface.
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The vector force by the flow on the fan is

The integrated energy fluxes are equal to the work done by the flow on the fan.

If the flow is adiabatic and work by viscous normal stresses is neglected the energy 
equation becomes.

The work per unit mass flow is equal to the change in stagnation enthalpy 
of the flow.

The flow and fan velocity on the 
fan surface are the same due to 
the no-slip condition.
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In a general situation with heat transfer and work

Example 4 - Combined heat transfer and work
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Quasi-one dimensional conservation equations

General steady
channel flow with 
friction, heat 
exchange, mass 
exchange and work

 

mass conservation

ρU
A2

∫ ⋅ndA = − ρU
A1

∫ ⋅ndA +δ !m

momentum conservation

ρUU + PI −τ( )
A2

∫ ⋅ndA = − ρUU + PI −τ( )
A1

∫ ⋅ndA − PI −τ( )
Aw
∫ ⋅ndA − PI −τ( )

Af
∫ ⋅ndA +Uxmδ !m

energy conservation

ρhtU −τ ⋅U +Q( )
A2

∫ ⋅ndA = − ρhtU −τ ⋅U +Q( )
A1

∫ ⋅ndA + Q ⋅n dA
Aw
∫ + htmδ !m + PU −τ ⋅U( )

Af
∫ ⋅ndA

Work by the fan

Recall the enthalpy

h = e+ P
ρ

Stagnation enthalpy

ht = h +
1
2
U 2



Area averaged flow

Average the flow across the channel.

Define
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Every variable in the flow can be written as a mean plus a fluctuation.

Express the mass flux integral in terms of means and fluctuations.

As long as nonlinear correlations are small, the mean is an accurate approximation.
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In terms of area averaged variables, the integral equations of motion are as follows. 
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The pressure-stress integral on the wall.

The traction vector

The traction vector
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Imagine the length of the control volume made very small.

where

and
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Introduce the hydraulic diameter

The integrated equations of motion now take the form

where the “hat” has been dropped.
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Let the length of the control volume go to zero.
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The integrated equations are now expressed in terms of differentials. 

Use continuity to simplify the momentum and energy equations.
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The 1-D (area averaged) equations of motion.

Introduce the friction coefficient.

and the heat and work per unit mass flow
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Finally the area averaged equations of motion take the concise form
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Working equations for quasi-one-dimensional flow

General steady
channel flow with 
friction, heat 
exchange, mass 
exchange and work

 

mass conservation
d ρUA( ) = δ !m
momentum conservation

d P −τ xx( ) + ρUdU = − 1
2
ρU 2 4Cfdx

D
⎛
⎝⎜

⎞
⎠⎟
− δFx

A
+ Uxm −U

A
⎛
⎝⎜

⎞
⎠⎟ δ !m

energy conservation

d ht −
τ xx

ρ
+ Qx

ρU
⎛
⎝⎜

⎞
⎠⎟
= δQ
ρUA

− δW
ρUA

+ htm − ht −
τ xx

ρ
+ Qx

ρU
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
δ !m
ρUA

Δx→ 0

By averaging flow properties 
over the channel cross-section, 
to a good approximation the full 
steady equations of motion can 
be reduced to a set of equations 
that describe differential 
changes of the flow. 



Steady, gravity-free, adiabatic flow of a compressible fluid in a channel

For this case the energy equation takes the form of a perfect differential.

For most flow situations (outside of shock waves) the stress and heat conduction terms can be neglected. Thus
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Note, friction is not zero
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Compressible flow stagnating against a wing leading edge

If the path from 1 to 2 is adiabatic

CpT2 = CpTt = CpT1 +
1
2
U1

2

If the temperature change between 1 and 2 is not large then the heat capacity will be nearly 
constant. The stagnation temperature is defined by

h2 = ht = h1 +
1
2
U1

2

Stagnation temperature and pressure,cont’d



4/12/21 64

CpT2 = CpTt = CpT1 +
1
2
U1

2

The stagnation temperature is defined by

We can express this in terms of the Mach number

M = U
a
= U

γ RT( )1/2
Tt
T1

= 1+ γ −1
2

⎛
⎝⎜

⎞
⎠⎟ M1

2

γ =
Cp

Cv

If the path from 1 to 2 is isentropic P2 = Pt2

Pt
P1

= Tt
T1

⎛
⎝⎜

⎞
⎠⎟

γ
γ −1

= 1+ γ −1
2

⎛
⎝⎜

⎞
⎠⎟ M1

2⎛
⎝⎜

⎞
⎠⎟

γ
γ −1

Stagnation temperature and pressure,cont’d

Isentropic flow is realized If 
viscous friction and heat 
transfer are zero (adiabatic 
frictionless flow).
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The mass flow at any point in a channel can be expressed in 
terms of the local stagnation pressure and temperature

 

!m = ρUA = γ

γ +1
2

⎛
⎝⎜

⎞
⎠⎟

γ +1
2 γ −1( )

PtA
γ RTt

⎛

⎝⎜
⎞

⎠⎟
f M( )

f M( ) = γ +1
2

⎛
⎝⎜

⎞
⎠⎟

γ +1
2 γ −1( ) M

1+ γ −1
2

M 2⎛
⎝⎜

⎞
⎠⎟

γ +1
2 γ −1( )


