AA103 Homework 7

Cantwell Spring 2020-21

Due May 18, 2021

Suggested Reading

AA283 Course reader Chapters 10 and 11.

Problem 1

It is a beautiful summer day at the Cape and a space shuttle astronaut on her second mission finds that the g-forces during launch are noticeably larger than during her first mission that previous December. Can you offer a plausible explanation for this?

Problem 2

A solid propellant rocket operates in a vacuum with a 10cm diameter nozzle throat and a nozzle area ratio of 100. The motor has a cylindrical port 300cm long. After the ignition transient, at the beginning of the burn, the port is 20cm in diameter and the propellant recession velocity is 1.0cm/sec. The port diameter at the end of the burn is 80cm. The regression rate law is

$$\dot{r} = a \left(P_{t2} \right)^{1/2} \tag{1}$$

The solid propellant density is $2.0grams/cm^3$. The combustion gas has $\gamma=1.2$ and molecular weight, $M_w=20$. The combustion chamber temperature is $T_{t2}=2500K$. Determine the thrust versus time history of the motor during the burn.

Problem 3

One of the simplest types of solid rocket designs utilizes an end burning propellant grain as shown in Figure 1 The motor diameter is 100cm and the grain length at the beginning of the burn is 200cm. The

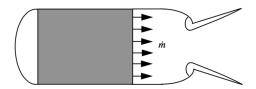


Figure 1: Solid rocket with end burning grain.

solid propellant density is $2grams/cm^3$. The combustion gas has $\gamma=1.2$ and molecular weight, $M_w=20$. The combustion chamber temperature is $T_{t2}=2500K$ and at the beginning of the burn, the pressure is $P_{t2}=5\times 10^5 N/m^2$. The motor exhausts to vacuum through a 30cm diameter nozzle throat with a nozzle area ratio of 10. Sketch the thrust-time history of the motor and determine the total impulse

$$I = \int_0^{t_b} (Thrust)dt \tag{2}$$

in units of kg - m/sec. Assume specific heats are constant.

Problem 4

A hybrid rocket with an initial mass of $m_{initial}=900kg$ operates in space. The fuel is paraffin with a density $0.93gm/cm^3$ and the oxidizer is nitrous oxide. The oxidizer mass flow rate is held fixed at $2.4\times10^4gm/sec$. The motor has a 10cm diameter nozzle throat, 30cm diameter nozzle exit, and a cylindrical port 143cm long. The initial port radius is 8.75cm. At the end of the burn, the port radius is 15.5cm. The regression rate law is $\dot{r}=0.035G_o^{0.6}cm/sec$. A calculation using CEA shows that $C^*=1.64\times10^5cm/sec$ where C^* is defined by $\dot{m}=P_{t2}A^*/C^*$. The effective nozzle exit velocity is $C=2.8\times10^5cm/sec$. Neglect nozzle erosion during the burn.

- 1) When the fuel is all burned the oxidizer flow is turned off. Determine the time when this occurs.
- 2) Determine the total mass flow rate and motor thrust at the beginning and end of the burn.
- 3) Determine the chamber pressure at the beginning and end of the burn.
- 4) Determine the velocity change of the vehicle.