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Chapter 9

Reacting mixtures of ideal gases

9.1 Introduction

This is a condensed version of Chapter 9 of the AA283 course reader. The discussion of
the element potential method for chemical equilibrium is limited to gas phase reactions
only.

For an open system containing several reacting chemical species that can exchange mass
and work with its surroundings the fundamental Gibbs equation relating equilibrium states
is

TdS = dE + PdV −
I∑

i=1

µidni +
K∑
k=1

Fkdlk. (9.1)

The Fk are forces that can act on the system through differential displacements. Ordinarily,
lower case letters will be used to denote intensive (per unit mole) quantities (h, s, e, etc)
and upper case will designate extensive quantities (H,S,E, etc). Heat capacities, pressure
and temperature are symbolized in capital letters. One mole is an Avagadro’s number of
molecules, 6.0221415× 1023.

The chemical potential energy per unit mole µi is the amount by which the extensive energy
of the system is changed when a differential number of moles dni of species i is added or
removed from the system. If the system is closed so no mass can enter or leave and if it is
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isolated from external forces, the Gibbs equation becomes

TdS = dE + PdV −
I∑

i=1

µidni (9.2)

where the differential changes in the number of moles of species i occur through chemical
reactions that may take place within the closed volume. The main difference between
(9.1) and (9.2) is that, in the closed system, changes in mole numbers are subject to the
constraint that the number of atoms of each element in the system is strictly constant.
The precise expression of the chemical potential in terms of conventional thermodynamic
variables of state will be established shortly. For the present it can be regarded as a new,
intensive state variable for the species i. Mathematically, equation (9.2) implies that

µi (E, V, n1, . . . , nI) = −T
(
∂S

∂ni

)
E,V,nj 6=i

. (9.3)

If no reactions occur then (9.2) reduces to the familiar form

TdS = dE + PdV. (9.4)

According to the second law of thermodynamics, for any process of a closed, isolated
system

TdS ≥ dE + PdV. (9.5)

Spatial gradients in any variable of the system can lead to an increase in the entropy.
Smoothing out of velocity gradients (kinetic energy dissipation) and temperature gradients
(temperature dissipation) constitute the two most important physical mechanisms that
contribute to the increase in entropy experienced by a non-reacting system during a non-
equilibrium process. If the system contains a set of chemical species that can mix, then
changes in entropy can also occur through the smoothing out of concentration gradients
for the various species. If the species can react, then entropy changes will occur through
changes in the chemical binding energy of the various species undergoing reactions.

The inequality (9.5) can be used to establish the direction of a thermodynamic system as
it evolves toward a state of equilibrium.
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9.2 Ideal mixtures

Consider a mixture of species with mole numbers (n1, n2, . . . , nI). The extensive internal
energy of the system is E and the volume is V . The extensive entropy of the system is the
function, S (E, V, n1, n2, . . . , nI). An ideal mixture is one where all molecules experience the
same intermolecular forces. In an ideal mixture surface effects, (surface energy and surface
tension) can be neglected and the enthalpy change when the constituents are mixed is
zero. Ideal mixtures obey Raoult’s law that states that the vapor pressure of a component
of an ideal mixture is equal to the vapor pressure of the pure component times the mole
fraction of that component in the mixture. In the ideal approximation the volume of
the system is the sum of the volumes occupied by the pure species alone. Similarly the
internal energy is the sum of internal energies of the pure species. Most real mixtures
approximate ideal behavior to one degree or another. A mixture of ideal gases is perhaps
the best example of an ideal mixture. Liquid mixtures where the component molecules
are chemically similar, such as a mixture of benzene and toluene, behave nearly ideally.
Mixtures of strongly different molecules such as water and alcohol deviate considerably
from ideal behavior.

Let the mole numbers of the mixture be scaled by a common factor α.

n1 = αñ1, n2 = αñ2, n3 = αñ3, . . . , nI = αñI (9.6)

According to the ideal assumption, the extensive properties of the system will scale by the
same factor.

E = αẼ, V = αṼ (9.7)

Similarly the extensive entropy of the system scales as

S (E, V, n1, . . . , nI) = αS̃
(
Ẽ, Ṽ , ñ1, . . . , ñI

)
. (9.8)

Functions that follow this scaling are said to be homogeneous functions of order one.
Differentiate (9.8) with respect to α.

Ẽ
∂S

∂E
+ Ṽ

∂S

∂V
+

I∑
i=1

ñi
∂S

∂ni
= S̃

(
Ẽ, Ṽ , ñ1, . . . , ñI

)
(9.9)
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Multiply (9.9) by α and substitute (9.8).

E
∂S

∂E
+ V

∂S

∂V
+

I∑
i=1

ni
∂S

∂ni
= S (E, V, n1, . . . , nI) (9.10)

The Gibbs equation is

dS =
dE

T
+
P

T
dV −

I∑
i=1

µi
T
dni. (9.11)

According to (9.11) the partial derivatives of the entropy are

∂S

∂E
=

1

T

∂S

∂V
=
P

T

∂S

∂ni
= −µi

T
.

(9.12)

Inserting (9.12) into (9.10) leads to a remarkable result for an ideal mixture.

E + PV − TS =

I∑
i=1

niµi (9.13)

Equation (9.13) is called the Duhem-Gibbs relation. The combination of state variables
that appears in (9.13) is called the Gibbs free energy.

G = E + PV − TS = H − TS (9.14)

Equation (9.13) expresses the extensive Gibbs free energy of an ideal mixture in terms of
the mole numbers and chemical potentials.

G =

I∑
i=1

niµi (9.15)
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This important result shows that the chemical potential of species i is not really a new
state variable but is defined in terms of the familiar state variables, enthalpy, temperature
and entropy. The chemical potential of species i is its molar Gibbs free energy.

µi = gi = hi − Tsi (9.16)

The enthalpy in (9.16) includes the chemical enthalpy associated with the formation of the
species from its constituent elements.

9.3 Criterion for equilibrium

The Gibbs free energy is sometimes described as the ”escaping tendency” of a substance.
At low temperatures the enthalpy dominates. A chemical species with a positive enthalpy
would like to break apart releasing some of its chemical enthalpy as heat and producing
products with lower enthalpy. A few examples are ozone (O3), hydrogen peroxide (H2O2),
and nitrous oxide (N2O). These are stable chemicals at room temperature but will de-
compose readily if their activation energy is exceeded in the presence of a heat source or a
catalyst. The entropy of any substance is positive and at high temperatures the entropy
term dominates the Gibbs free energy. In a chemical reaction the Gibbs free energy of
any species or mixture will increasingly tend toward a state of higher entropy and lower
Gibbs free energy as the temperature is increased. Take the differential of the Gibbs free
energy.

dG = dE + PdV + V dP − TdS − SdT (9.17)

For a process that takes place at constant temperature and pressure dT = dP = 0. The
Second Law (9.5) leads to the result that for such a process

dG = dE + PdV − TdS ≤ 0. (9.18)

A spontaneous change of a system at constant temperature and pressure leads to a decrease
of the Gibbs free energy. Equilibrium of the system is established when the Gibbs free
energy reaches a minimum. This result leads to a complete theory for the equilibrium of a
reacting system.
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9.4 The entropy of mixing

Consider the adiabatic system shown in Figure 9.1 consisting of a set of (n1, n2, . . . , ni, . . . , nI)
moles of gas species segregated into volumes of various sizes such that the volumes are all
at the same temperature and pressure.

Figure 9.1: A system of gases separated by partitions.

The total number of moles in the system is

N =
I∑

i=1

ni. (9.19)

The entropy per unit mole of an ideal gas is determined using the Gibbs equation

ds = Cp
dT

T
−Ru

dP

P
(9.20)

where the units of CP are Joules/(mole−Kelvin). Tabulations of gas properties are always
defined with respect to a reference temperature and standard pressure. The reference
temperature is universally agreed to be Tref = 298.15K and the standard pressure is

P ◦ = 105N/m2 = 105 Pascals = 102 kPa = 1 bar. (9.21)

All pressures are referred to P ◦ and the superscript ’◦’ denotes a species property evalu-
ated at standard pressure. A cautionary note: In 1999 the International Union of Pure and
Applied Chemistry (IUPAC) recommended that for evaluating the properties of all sub-
stances, the standard pressure should be taken to be precisely 100kPa. Prior to this date,
the standard pressure was taken to be one atmosphere at sea level, which is 101.325kPa.
Tabulations prior to 1999 are standardized to this value. The main effect is a small change
in the standard entropy of a substance at a given temperature tabulated before and after
1999. There are also small differences in heat capacity and enthalpy as well. The IUPAC
continues to provide standards for chemistry calculations and chemical nomenclature.
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The pressure has no effect on the heat capacity of ideal gases, and for many condensed
species the effect of pressure on heat capacity is relatively small. For this reason, tabulations
of thermodynamic properties at standard pressure can be used to analyze a wide variety
of chemical phenomena involving condensed and gas phase mixtures. Inaccuracies occur
when evaluations of thermodynamic properties involve phase changes or critical phenomena
where wide deviations from the ideal gas law occur, or condensed phases exhibit significant
compressibility.

Integrating (9.20) from the reference temperature at standard pressure, the entropy per
unit mole of the ith gas species is

si(T, P )− s◦i (Tref ) =

∫ T

Tref

C◦
pi (T )

dT

T
−Ru ln

(
P

P ◦

)
. (9.22)

where the molar heat capacity C◦
pi is tabulated as a function of temperature at standard

pressure. The standard entropy of a gas species at the reference temperature is

s◦i (Tref ) =

∫ Tref

0
C◦

pi (T )
dT

T
+ si

◦(0) (9.23)

where the integration is carried out at P = P ◦. To evaluate the standard entropy, heat
capacity data is required down to absolute zero. For virtually all substances, with the
exception of superfluid helium (II), the heat capacity falls off rapidly as T → 0 so that
the integral in (9.23) converges despite the apparent singularity at T = 0. From the third
law, the entropy constant at absolute zero, s◦i (0), is generally taken to be zero for a pure
substance in its simplest crystalline state. For alloys and pure substances such as CO
where more than one crystalline structure is possible, the entropy at absolute zero may be
nonzero and tabulated entropy data for a substance may be revised from time to time as
new research results become available. Generally the entropy constant is very small.

The entropy per unit mole of the ith gas species is

si(T, P ) = s◦i (T )−Ru ln

(
P

P ◦

)
. (9.24)

The entire effect of pressure on the system is in the logarithmic term of the entropy. The
extensive entropy of the whole system before mixing is

Sbefore =
I∑

i=1

nisi (T, P ) =
I∑

i=1

nis
◦
i (T )−

I∑
i=1

niRu ln

(
P

P ◦

)
. (9.25)
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Figure 9.2: System of gases with the partitions removed at the same pressure, temperature
and total volume as in Figure 9.1.

If the partitions are removed as shown in Figure 9.2 then, after complete mixing, each gas
takes up the entire volume and the entropy of the ith species is

si(T, Pi) = s◦i (T )−Ru ln

(
Pi

P ◦

)
. (9.26)

where Pi is the partial pressure of the ith species. The mixture is ideal so there is no
enthalpy change during the mixing. If the pressure was so high that the potential energy
associated with inter-molecular forces was significant then the enthalpy of mixing would
be non-zero.

The entropy of the system after mixing is

Safter =

I∑
i=1

nisi (T, P ) =

I∑
i=1

nis
◦
i (T )−

I∑
i=1

niRu ln

(
Pi

P ◦

)
. (9.27)

The change of entropy due to mixing is

Safter−Sbefore =

(
I∑

i=1

nis
◦
i (T )−

I∑
i=1

niRu ln

(
Pi

P ◦

))
−

(
I∑

i=1

nis
◦
i (T )−

I∑
i=1

niRu ln

(
P

P ◦

))
.

(9.28)

Cancel common terms in (9.28).

Safter − Sbefore = Ru

I∑
i=1

ni ln

(
P

Pi

)
> 0 (9.29)

Mixing clearly leads to an increase in entropy. To determine the law that governs the
partial pressure let’s use the method of Lagrange multipliers to seek a maximum in the
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entropy after mixing subject to the constraint that

P =
I∑

i=1

Pi. (9.30)

That is, we seek a maximum in the function

W (T, n1, n2, ..., nI , P1, P2, ..., PI , λ) =

I∑
i=1

nis
◦
i (T )−

I∑
i=1

niRu ln

(
Pi

P ◦

)
+ λ

(
I∑

i=1

Pi − P

)
(9.31)

where λ is an, as yet unknown, Lagrange multiplier. The temperature of the system and
number of moles of each species in the mixture are constant. Differentiate (9.31) and set
the differential to zero for an extremum.

dW =
∂W

∂P1
dP1 +

∂W

∂P2
dP2 + .....+

∂W

∂PI
dPI +

∂W

∂λ
dλ = 0 (9.32)

Now

dW = −
I∑

i=1

niRu

(
dPi

Pi

)
+ λ

(
I∑

i=1

dPi

)
+ dλ

(
I∑

i=1

Pi − P

)
= 0. (9.33)

The last term in (9.33) is zero by the constraint and the maximum entropy condition
becomes.

I∑
i=1

(
−niRu

Pi
+ λ

)
dPi = 0 (9.34)

Since the dPi are completely independent, the only way (9.34) can be satisfied is if the
Lagrange multiplier satisfies

λ =
niRu

Pi
(9.35)

for all i. In the original, unmixed, system each species satisfies the ideal gas law.

PVi = niRuT (9.36)
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Using (9.35) and (9.36) we can form the sum

λ
I∑

i=1

Pi =
I∑

i=1

PVi
T

. (9.37)

Finally the Lagrange multiplier is

λ =
V

T
(9.38)

where, V =
I∑

i=1

Vi. Using (9.35) and (9.38) the partial pressure satisfies

PiV = niRuT (9.39)

which is Dalton’s law of partial pressures. What we learn from this exercise is, not only
that the entropy increases when the gases mix, but that the equilibrium state is one where
the entropy is a maximum. Using Dalton’s law, the mole fraction of the ith gas species is
related to the partial pressure as follows

xi =
ni
N

=
Pi

P
(9.40)

The entropy of a mixture of ideal gases expressed in terms of mole fractions is

Sgas =
I∑

i=1

ni
(
s◦igas (T )−Ru ln (xi)

)
−NRu ln

(
P

P ◦

)
(9.41)

and the entropy change due to mixing, (9.29), is expressed as

Safter − Sbefore = −NRu

I∑
i=1

xi ln (xi) > 0. (9.42)

9.5 Enthalpy

The enthalpy per unit mole of a gas is determined from

dh = Cp(T )dT. (9.43)
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The enthalpy of a gas species is

hi (T )− hi (Tref ) = h◦i (T )− h◦i (Tref ) =

∫ T

Tref
C◦
pi (T )dT. (9.44)

In principle the standard enthalpy of the ith gas species at the reference temperature could
be taken as

h◦i (Tref ) =

∫ Tref

0
C◦
pidT + h◦i (0). (9.45)

In this approach the enthalpy constant is the enthalpy change associated with chemical
bond breaking and making that occurs when the atoms composing the species are brought
together from infinity to form the molecule at absolute zero. Note that even for an atomic
species, the enthalpy constant is not exactly zero. A quantum mechanical system contains
energy or enthalpy arising from ground state motions that cannot be removed completely
even at absolute zero temperature. In practice, enthalpies for most substances are tabulated
as differences from the enthalpy at the reference temperature of 298.15K which is much
more easily accessible than absolute zero so the question of the zero point enthalpy rarely
comes up. Thus the standard enthalpy of a species is

h◦i (T ) =

∫ T

Tref
C◦
pi (T )dT + ∆h◦fi (Tref ) (9.46)

where ∆h◦fi (T ) is the enthalpy change that occurs when the atoms of the species are
brought together from at infinity at the finite temperature T . The enthalpy including the
heat of formation (9.46) is sometimes called the complete enthalpy. In practice certain con-
ventions are used to facilitate the tabulation of the heat of formation of a substance.

9.5.1 Enthalpy of formation and the reference reaction

The enthalpy of formation of a substance, denoted ∆h◦f (Tref ), is defined as the enthalpy
change that occurs when one mole of the substance is formed from its elements in their
reference state at the given temperature T and standard pressure P ◦. The reference state
for an element is generally taken to be its most stable state at the given temperature and
standard pressure. The reference reaction for a substance is one where the substance is the
single product of a chemical reaction between its elements in their most stable state.

This convention for defining the heat of formation of a substance is useful even if the
reference reaction is physically unlikely to ever actually occur. A consequence of this



CHAPTER 9. REACTING MIXTURES OF IDEAL GASES 9-12

definition is that the heat of formation of a pure element in its reference state at any
temperature is always zero. For example, the enthalpy of formation of any of the diatomic
gases is zero at all temperatures. This is clear when we write the trivial reaction to form,
for example hydrogen, from its elements in their reference state.

H2 → H2 (9.47)

The enthalpy change is clearly zero. In fact the change in any thermodynamic variable
for any element in its reference state is zero at all temperatures. A similar reference
reaction applies to any of the other diatomic species O2, N2, F2, Cl2, Br2, I2, and the heat
of formation of these substances is zero at all temperatures. The most stable form of carbon
is solid carbon or graphite and the reference reaction is

C(s) → C(s) (9.48)

with zero heat of formation at all temperatures.

The reference reaction for carbon dioxide at 298.15K is

C(s) +O2 → CO2 ∆h◦fCO2
(298.15) = −393.522 kJ/mole. (9.49)

Here the carbon is taken to be in the solid (graphite) form and the oxygen is taken to be
the diatomic form. Both are the most stable forms over a wide range of temperatures.
Even if the temperature is well above the point where carbon sublimates to a gas (3915K)
and significant oxygen is dissociated, the heats of formation of C(s) and O2 remain zero
even though the most stable form of carbon at this temperature is carbon gas.

The heats of formation of metal elements are treated a little differently. The heat of
formation of crystalline aluminum is zero at temperatures below the melting point and the
heat of formation of liquid aluminum is zero at temperatures above the melting point. The
same applies to boron, magnesium, sulfur, titanium and other metals.

The enthalpy (9.46) is usually expressed in terms of tabulated data as

hi (T ) = h◦i (T ) = ∆h◦fi (Tref ) + {h◦i (T )− h◦i (Tref )} . (9.50)
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For a general reaction the enthalpy balance is

∆h◦ (Tfinal) =

Iproduct∑
iproduct

niproducth
◦
iproduct

(Tfinal)−
Ireactant∑
ireactant

nireactanth
◦
ireactant

(
Tinitialireactant

)
.

(9.51)

So for example, to determine the heat of formation of CO2 at 1000K where the initial
reactants are also at 1000K, the calculation would be

∆h◦fCO2
(1000) =(

∆h◦fCO2
(298.15) +

{
h◦fCO2

(1000)− h◦fCO2
(298.15)

})
−

(
∆h◦fC(s)

(298.15) +
{
h◦fC(s)

(1000)− h◦fC(s)
(298.15)

})
−

(
∆h◦fO2

(298.15) +
{
h◦fO2

(1000)− h◦fO2
(298.15)

})
.

(9.52)

Putting in the numbers from tabulated data gives

∆h◦fCO2
(1000) =

[−393.522 + 33.397]− [0 + 11.795]− [0 + 22.703] = −394.623.
(9.53)

which is the tabulated value of the heat of formation of carbon dioxide at 1000K. See
Appendix 2 in the AA283 course reader. Note that the enthalpy of the reference reactants
at the reaction temperature must be included in the calculation of the heat of formation
calculation. Further discussion of heats of formation can be found in Appendix 1 of the
AA283 course reader and tables of thermo-chemical data for selected species can be found
in Appendix 2.

9.6 Chemical equilibrium, the method of element poten-
tials

If the species are allowed to react at constant temperature and pressure, the mole fractions
will evolve toward values that minimize the extensive Gibbs free energy of the system
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subject to the constraint that the number of moles of each element in the mixture remains
fixed. The number of moles of each atom in the system is given by

aj =

I∑
i=1

niAij (9.54)

where Aij is the number of atoms of the jth element in the ith molecular species. The
appropriate picture of our system is shown in Figure 9.3. The Gibbs free energy of the
system is

Figure 9.3: System of gas phase reacting molecular species at constant temperature and
pressure with fixed number of moles of each element.

G (T, P, n1, n2, ..., nI) =

I∑
i=1

xigi (T, P, xi) (9.55)

Written out

G (T, P, n1, n2, ..., nI) = N
I∑

i=1

xi (g◦i (T ) +RuT ln (xi)) +NRuT ln

(
P

P ◦

)
(9.56)

We will use the method of Lagrange multipliers to minimize the Gibbs free energy subject
to the atom constraints. Minimize the function

W (T, P, n1, n2, ..., nI , λ1, ..., λJ) = G (T, P, n1, n2, ..., nI)−RuT

J∑
j=1

λj

(
I∑

i=1

niAij − aj

)
(9.57)



CHAPTER 9. REACTING MIXTURES OF IDEAL GASES 9-15

where the J unknown Lagrange multipliers, λj , are dimensionless. Our modified equilib-
rium condition is

dW =
∂W

∂T
dT +

∂W

∂P
dP +

∂W

∂n1
dn1 + ....+

∂W

∂nI
dnI +

∂W

∂λ1
dλ1 + ....+

∂W

∂λJ
dλJ = 0 (9.58)

Substitute (9.57) into (9.58) and impose dP = dT = 0.

dW =
I∑

i=1

(nidgi (T, P, xi) + gi (T, P, xi) dni)−RuT

j∑
j=1

λj

I∑
i=1

dniAij (9.59)

The order of the sums can be rearranged so (9.59) can be written as

dW =

I∑
i=1

nidgi (T, P, xi) +

I∑
i=1

gi (T, P, xi)−RuT

J∑
j=1

λjAij

 dni = 0. (9.60)

The differential of the molar Gibbs free energy is

dgi =
∂gi
∂T

dT +
∂gi
∂P

dP +RuT
dxi
xi
. (9.61)

For a process that takes place at constant temperature and pressure

dW = RuT
I∑

i=1

ni
dxi
xi

+
I∑

i=1

gi (T, P, xi)−RuT
J∑

j=1

λjAij

dni = 0. (9.62)

The first sum in (9.62) can be re-written as follows

dW = RuTN

I∑
i=1

xi
dxi
xi

+

I∑
i=1

gi (T, P, xi)−RuT
J∑

j=1

λjAij

dni = 0 (9.63)

or

dW = RuTN

I∑
i=1

dxi +

I∑
i=1

gi (T, P, xi)−RuT

J∑
j=1

λjAij

dni = 0. (9.64)
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But the normalization conditions for the sum of the mole fractions implies that

I∑
i=1

dxi = d

(
I∑

i=1

xi

)
= d (1) = 0. (9.65)

Finally our modified equilibrium condition is

dW =

I∑
i=1

gi (T, P, xi)−RuT

J∑
j=1

λjAij

dni = 0 (9.66)

Since the dni are completely free, the condition (9.66) can only be satisfied if

gi (T, P, xi) = RuT
J∑

j=1

λjAij . (9.67)

The Gibbs free energy of the system is

G (T, P, n1, n2, ..., nI) = RuT

I∑
i=1

J∑
j=1

niλjAij . (9.68)

Each atom in the mixture contributes equally to the extensive Gibbs free energy regardless
of which molecule it is in. The molar Gibbs free energy of the ith gas phase species is

gi(T, P, xi) = g◦i (T ) +RuT ln (xi) +RuT ln

(
P

P ◦

)
. (9.69)

Insert (9.69) into (9.67). For each gas phase species

g◦i (T )

RuT
+ ln (xi) + ln

(
P

P ◦

)
=

J∑
j=1

λjAij . (9.70)

Solve for the mole fraction of the ith species in the mixture.

xi = Exp

−g◦i (T )

RuT
− ln

(
P

P ◦

)
+

J∑
j=1

λjAij

 . (9.71)
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The constraints on the atoms are

aj =
I∑

i=1

xiAij . (9.72)

Substitute (9.71) into (9.72).

aj = N
I∑

i=1

AijExp

−g◦i (T )

RuT
− ln

(
P

P ◦

)
+

J∑
j1=1

λjAij1

 j = 1, ..., J (9.73)

Note that we have to introduce the dummy index j1 in the formula for xi when we make
the substitution. The normalization condition on the mole fractions gives

−g◦i (T )

RuT
− ln

(
P

P ◦

)
+

J∑
j=1

λjAij

 = 1 (9.74)

The total number of moles in the mixture is N . Equations, (9.73), and (9.74) are J + 1
equations in the unknowns λ1, ...., λJ , and N .

As a practical matter, it is easier to compute the solution to equations (9.73) and (9.74)
by reformulating the equations to get rid of the exponentials. Define

Bi(T ) ≡ Exp
{
−g

◦
i (T )

RuT

}
(9.75)

In addition, define

yj = Exp (λj) . (9.76)

The mole fractions become

xi =

(
P ◦

P

)
Bi

J∏
j1=1

(yj1)Aij1 (9.77)
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The system of equations that needs to be solved now becomes

(
P ◦

P

)
N

I∑
i=1

AijBi

J∏
j1=1

(yj1)Aij1 = aj , j = 1, . . . , J

(
P ◦

P

) I∑
i=1

Bi

J∏
j=1

(yj)
Aij = 1

(9.78)

Note that in this formulation only the always positive yj are needed to determine the mole
fractions. The element potentials λj , which are the logarithm of the yj , never actually need
to be calculated.

A key advantage of this formulation of the problem is that the equations that need to be
solved for the unknown yi and N are multivariate polynomials, and algorithms are available
that enable the roots to be determined without requiring an initial guess of the solution.
Typically a number of real and complex roots are returned. The correct root is the one
with all positive real values of the yi and N . In general, there is only one such root.

9.7 Example - combustion of carbon monoxide

If we mix carbon monoxide (CO) and oxygen (O2) at 105Pa and 298.15K then ignite the
mixture, the result is a strongly exothermic reaction. The simplest model of such a reaction
takes one mole of CO plus half a mole of O2 to produce one mole of carbon dioxide.

CO +
1

2
O2 → CO2 (9.79)

But this model is not very meaningful without some information about the temperature
of the process. If the reaction occurs in an adiabatic system at constant pressure, the
final temperature is very high and at that temperature the hot gas consists of a mixture
of a number of species beside CO2. A more realistic model assumes that the composition
includes virtually all of the combinations of carbon and oxygen that one can think of
including

C,CO,CO2, O,O2. (9.80)

Other more complex molecules are possible such as C2 and O3 but are only present in
extraordinarily low concentrations. For the composition (9.79) the temperature of the
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mixture at one atmosphere turns out to be 2975.34K. This is called the adiabatic flame
temperature.

Let’s use the minimization of the Gibbs free energy to determine the relative concentrations
of each molecular species for the mixture (9.80) at the equilibrium temperature 2975.34K.
We will order the species as in (9.80). All the species are in the gas phase and the matrix
of element coefficients Aij is shown in Figure 9.4.

Figure 9.4: Matrix of element coefficients for the CO, O2 system.

For this system of molecular species, (9.73) and (9.74) lead to the following equations
governing the mole fractions and the total number of moles. Note that P = P ◦ in this
case.

a1 = N

(
A11Exp

(
− g◦1
RuT

+ λ1A11 + λ2A12

)
+A21Exp

(
− g◦2
RuT

+ λ1A21 + λ2A22

)
+

A31Exp

(
− g◦3
RuT

+ λ1A31 + λ2A32

)
+A41Exp

(
− g◦4
RuT

+ λ1A41 + λ2A42

)
+

A51Exp

(
− g◦5
RuT

+ λ1A51 + λ2A52

))
(9.81)

a2 = N

(
A12Exp

(
− g◦1
RuT

+ λ1A11 + λ2A12

)
+A22Exp

(
− g◦2
RuT

+ λ1A21 + λ2A22

)
+

A32Exp

(
− g◦3
RuT

+ λ1A31 + λ2A32

)
+A42Exp

(
− g◦4
RuT

+ λ1A41 + λ2A42

)
+

A52Exp

(
− g◦5
RuT

+ λ1A51 + λ2A52

))
(9.82)
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1 = Exp

(
− g◦1
RuT

+ λ1A11 + λ2A12

)
+ Exp

(
− g◦2
RuT

+ λ1A21 + λ2A22

)
+

Exp

(
− g◦3
RuT

+ λ1A31 + λ2A32

)
+ Exp

(
− g◦4
RuT

+ λ1A41 + λ2A42

)
+

Exp

(
− g◦5
RuT

+ λ1A51 + λ2A52

) (9.83)

The unknowns in this system are the two Lagrange multipliers λ1 and λ2 corresponding
to each element in the mixture and the total number of moles . The number of moles of
carbon atoms is a1 = 1 and the number of moles of oxygen atoms is a2 = 2. The great
advantage of this method is that the number of unknowns is limited to the number of
elements in the mixture not the number of molecular species. Use (9.75) and (9.76) to
rewrite (9.81), (9.82) and (9.83) in the form of (9.78).

a1 = N(A11B1y1
A11y2

A12 +A21B2y1
A21y2

A22 +A31B3y1
A31y2

A32+

A41B4y1
A41y2

A42 +A51B5y1
A51y2

A52)

(9.84)

a2 = N(A12B1y1
A11y2

A12 +A22B2y1
A21y2

A22 +A32B3y1
A31y2

A32+

A42B4y1
A41y2

A42 +A52B5y1
A51y2

A52)

(9.85)

1 = B1y1
A11y2

A12 +B2y1
A21y2

A22 +B3y1
A31y2

A32+

B4y1
A41y2

A42 +B5y1
A51y2

A52

(9.86)

Substitute the Aij in equations (9.84), (9.85) and (9.86).

1 = N
(
B1y1 +B2y1y2 +B3y1y2

2
)

(9.87)

2 = N
(
B2y1y2 + 2B3y1y2

2 +B4y2 + 2B5y2
2
)

(9.88)

1 = B1y1 +B2y1y2 +B3y1y2
2 +B4y2 +B5y2

2 (9.89)
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The B coefficients are

B1 = e−
g◦C
RuT

B2 = e−
g◦CO
RuT

B3 = e−
g◦CO2
RuT

B4 = e−
g◦O
RuT

B5 = e−
g◦O2
RuT .

(9.90)

At this point we need to use tabulated thermodynamic data to evaluate the B coefficients.
The Gibbs free energy of the ith molecular species is

g◦i (T ) = ∆h◦fi (Tref ) + {h◦i (T )− h◦i (Tref )} − Ts◦i (T ) . (9.91)

Data for each species is as follows (See appendix 2 of the AA283 course reader). In the
same order as (9.80)

g◦C (2975.34) = 715.004 + 56.208− 2975.34 (0.206054) = 158.131 kJ/mole
g◦CO (2975.34) = −110.541 + 92.705− 2975.34 (0.273228) = −830.782 kJ/mole
g◦CO2

(2975.34) = −393.522 + 151.465− 2975.34 (0.333615) = −1234.68 kJ/mole
g◦O (2975.34) = 249.195 + 56.1033− 2975.34 (0.209443) = −317.866 kJ/mole
g◦O2

(2975.34) = 0.00 + 97.1985− 2975.34 (0.284098) = −748.09 kJ/mole.

(9.92)

The universal gas constant in appropriate units is

Ru = 8.314472× 10−3 kJ/mole−K (9.93)



CHAPTER 9. REACTING MIXTURES OF IDEAL GASES 9-22

and RuT = 24.7384 kJ/mole. Now the coefficients are

B1 = Exp

(
−

g◦C
RuT

)
= Exp

(
−158.131

24.7382

)
= 1.67346× 10−3

B2 = Exp

(
−
g◦CO

RuT

)
= Exp

(
830.782

24.7382

)
= 3.84498× 1014

B3 = Exp

(
−
g◦CO2

RuT

)
= Exp

(
1234.68

24.7382

)
= 4.73778× 1021

B4 = Exp

(
−

g◦O
RuT

)
= Exp

(
317.866

24.7382

)
= 3.80483× 105

B5 = Exp

(
−
g◦O2

RuT

)
= Exp

(
748.090

24.7382

)
= 1.35889× 1013.

(9.94)

I used Mathematica to solve the system, (9.87), (9.88), and (9.89). The result is

y1 = 1.42474× 10−11

y2 = 0.392402
N = 1.24144

(9.95)

At the mixture temperature T = 2975.34K, the mole fractions of the various species
are

xC = B1y1 = 1.42474× 10−11

xCO = B2y1y2 = 6.23285× 1010 × 1.42474× 10−11 × 0.392402 = 0.34846

xCO2 = B3y1y2
2 = 2.08341× 1011 × 1.42474× 10−11 × 0.3924022 = 0.45706

xO = B4y2 = 0.103215× 0.392402 = 0.0405018

xO2 = B5y2
2 = 0.3924022 = 0.153979.

(9.96)

Note that there is almost no free carbon at this temperature. We could have dropped C
from the mixture (9.80) and still gotten practically the same result.

9.7.1 Adiabatic flame temperature

In the example in the previous section the products of combustion were evaluated at the
adiabatic flame temperature. This can be defined at constant volume or constant pressure.
For our purposes we will use the adiabatic flame temperature at constant pressure. Imagine
the reactants brought together in a piston-cylinder combination permitting the volume to
be adjusted to keep the pressure constant as the reaction proceeds. A source of ignition is
used to start the reaction that evolves to the equilibrium state defined by the equilibrium



CHAPTER 9. REACTING MIXTURES OF IDEAL GASES 9-23

species concentrations at the original pressure and at an elevated temperature called the
adiabatic flame temperature. In the process the Gibbs function is minimized and since the
process is adiabatic, the enthalpy before and after the reaction is the same.

The general enthalpy balance for a reaction is given in (9.51). Fully written out the balance
is

∆h◦ (Tfinal) =

Iproduct∑
iproduct

niproduct

{
∆h◦fiproduct (298.15) +

(
h◦iproduct (Tfinal)− h◦iproduct (298.15)

)}
−

Ireactant∑
ireactant

nireactant

{
∆h◦fireactant

(298.15) +
(
h◦ireactant

(Tireactant)− h◦ireactant
(298.15)

)}
.

(9.97)

If the reaction takes place adiabatically then ∆h◦ (Tfinal) = 0 and

Iproduct∑
iproduct

niproduct

{
∆h◦fiproduct (298.15) +

(
h◦iproduct (Tfinal)− h◦iproduct (298.15)

)}
=

Ireactant∑
ireactant

nireactant

{
∆h◦fireactant

(298.15) +
(
h◦ireactant

(Tireactant)− h◦ireactant
(298.15)

)}
.

(9.98)

Equation (9.98) can be solved along with (9.87), (9.88) and (9.89) to determine the final
temperature of the mixture along with the mole fractions and total number of moles. In
the carbon monoxide combustion example of the previous section we would write

nC
{

∆h◦fC (298.15) + (h◦C (Tfinal)− h◦C (298.15))
}

+

nCO

{
∆h◦fCO (298.15) + (h◦CO (Tfinal)− h◦CO (298.15))

}
+

nCO2

{
∆h◦fCO2

(298.15) +
(
h◦CO2

(Tfinal)− h◦CO2
(298.15)

)}
+

nO
{

∆h◦fO (298.15) + (h◦O (Tfinal)− h◦O (298.15))
}

+

nO2

{
∆h◦fO2

(298.15) +
(
h◦O2

(Tfinal)− h◦O2
(298.15)

)}
=

nCO

{
∆h◦fCO (298.15)

}
+ nO2

{
∆h◦fO2

(298.15)
}
.

(9.99)

The enthalpy of the reactants is

nCO

{
∆h◦fCO (298.15)

}
+ nO2

{
∆h◦fO2

(298.15)
}

=

1.0 kgmole
{
−110.527× 103 kJ/kgmole

}
+ 0.5 kgmole {0 kJ/kgmole} =

−110.527× 103 kJ.

(9.100)
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On a per unit mass basis the enthalpy of the reactant mixture is

−110.527× 106 J

1× 28.014 + 0.5× 31.98
= −2.5117× 106 J/kg. (9.101)

The enthalpy per unit mass of the product mixture at various temperatures is plotted in
Figure 9.5.

Figure 9.5: Enthalpy of the product mixture as a function of temperature.

As the products of combustion are cooled from 4000K the enthalpy decreases monitonically.
The only temperature where the enthalpy of the product mixture matches that of the
original reactants is the adiabatic flame temperature, 2975.34K.

9.7.2 Isentropic expansion

Now consider an isentropic expansion from a known initial state, (Tinitial, Pinitial) to a final
state (Tfinal, Pfinal) with the final pressure known. The condition that determines the
temperature of the final state is

S(Tfinal, Pfinal, n1final
, n2final

, n3final
, ..., nIfinal

) =

S(Tinitial, Pinitial, n1initial
, n2initial

, n3initial
, ..., nIinitial

)
(9.102)

or

I∑
i=1

nifinal
s◦i (Tfinal)−NfinalRu

I∑
i=1

xifinal
ln
(
xifinal

)
−NfinalRu ln

(
Pfinal

P ◦

)
=

I∑
i=1

niinitial
s◦i (Tinitial)−NinitialRu

I∑
i=1

xiinitial
ln (xiinitial

)−NinitialRu ln

(
Pinitial

P ◦

)
.

(9.103)
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Equation (9.103) can be solved along with (9.87), (9.88) and (9.89) to determine the final
temperature of the mixture after isentropic expansion along with the mole fractions and
total number of moles.

For example, take the mixture from the previous section at the initial state, Tinitial = 2975.34K
and Pinitial = 1 bar. The entropy of the system on a per unit mass basis is 8.7357kJ/kg−K
which is essentially equivalent to the extensive entropy. Now expand the mixture to
Pfinal = 0.1 bar. If we calculate the entropy of the system at this pressure and various
temperatures, the result is the following plot.

Figure 9.6: Entropy of the product mixture as a function of temperature.

The temperature at which the entropy of the final state is the same as the initial state is
Tfinal = 2566.13K.

9.7.3 Nozzle expansion

If we interpret the expansion just described as an adiabatic, isentropic expansion in a
nozzle we can use the conservation of stagnation enthalpy to determine the speed of the
gas mixture at the end of the expansion.

Hinitial = Hfinal +
1

2
U2 (9.104)

The initial enthalpy is taken to be the reservoir value. For this example the numbers
are

U =
√

2 (Hinitial −Hfinal) =
√

2 (−2.51162 + 3.94733)× 106 J/kg = 1694.53m/ sec .

(9.105)
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Ordinarily we are given the geometric area ratio of the nozzle rather than the pressure
ratio. Determining the exit velocity in this case is a little more involved. Here we need
to carry out a series of calculations at constant entropy and varying final pressure. For
each calculation we need to determine the density and velocity of the mixture and plot the
product ρU as a function of the pressure ratio. Beginning with the mixture at the adiabatic
flame temperature as the reservoir condition, the results are plotted below.

Figure 9.7: Mass flux in a converging-diverging nozzle as a function of nozzle static pressure
ratio.

The maximum mass flux occurs at the nozzle throat. Equate the mass flow at the throat
and the nozzle exit. For Pinitial/Pfinal = 10.0 the nozzle area ratio is

Ae

At
=
ρtUt

ρeUe
=

73.6768

29.8354
= 2.46944. (9.106)

This completes the specification of the nozzle flow. The case we have considered here is
called the shifting equilibrium case where the gas mixture is at equilibrium at every point
in the nozzle. One can also consider the case of frozen flow where the composition of the
gas mixture is held fixed at the reservoir condition.

9.8 Rocket performance using CEA

The equilibrium combustion package CEA (Chemical Equilibrium with Applications) from
NASA Glenn can also be used to perform equilibrium chemistry calculations and has
a capability similar to STANJAN but with a much wider range of chemicals with data
based on the current standard pressure. Some typical performance parameters for several
propellant combinations at two chamber pressures are shown in Figure 9.8. The propellants
are taken to be at an equivalence ratio of one (complete consumption of fuel and oxidizer)
and so the exhaust velocity is not optimized. The numbers correspond to the effective
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exhaust velocity for the given chamber pressure and area ratio assuming vacuum ambient
pressure. The maximum effective exhaust velocity generally occurs with a somewhat fuel
rich mixture that produces more low molecular weight species in the exhaust stream.

Figure 9.8: Some typical performance parameters for several propellant combinations at
two chamber pressures.
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